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We study the problem of planning the motion of “data mules” for collecting the data from sta-
tionary sensor nodes in wireless sensor networks. Use of data mules significantly reduces energy
consumption at sensor nodes compared to commonly-used multihop forwarding approaches, but

has a drawback that it increases the latency of data delivery. Optimizing the motion of data mules,
including path and speed, is critical for improving the data delivery latency and making the data
mule approach more useful in practice. In this paper, we focus on the path selection problem:

finding the optimal path of data mules so that the data delivery latency can be minimized. We
formulate the path selection problem as a graph problem that is capable of expressing the ben-
efit from larger communication range. The problem is NP-hard and we present approximation
algorithms for both single data mule case and multiple data mules case. We further consider the

case in which we have only partial knowledge of communication range, where we design semi-
online algorithms that improves the offline plan using online knowledge at runtime. Simulation
experiments on Matlab and ns2 demonstrate that our offline and semi-online algorithms pro-

duce significantly shorter path lengths and data delivery latency compared to previously proposed
methods, suggesting that controlled mobility can be exploited much more effectively.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design—Wireless communication; G.2.2 [Mathematics of Computing]:

Graph Theory—Path and circuit problems

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Controlled mobility, approximation algorithm, integer pro-
gramming, semi-online algorithm, simulation

1. INTRODUCTION

Data mules, i.e., mobile devices that we can control the motion provide an alter-
native way for collecting data from spatially dispersed sensor nodes. Unlike data
collection via multihop forwarding among the nodes, data mules travel across the
sensing field and communicate with each node when it is in the proximity. Data
mules have been used in recent sensor network applications, e.g., a robot in un-
derwater environmental monitoring [Vasilescu et al. 2005] and a UAV (unmanned
aerial vehicle) in structural health monitoring [Mascarenas et al. 2008]. A benefit
in data mule approach is that, by eliminating the need for multihop forwarding of
data, energy consumption at the nodes is significantly reduced. On the other hand,
a drawback is an increased data delivery latency, which is mainly governed by the
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motion of data mules. Thus optimizing the motion of data mules is an important
problem for data mule approach to be useful in practice.

Motion planning problem of data mules consists of three parts: determining the
path, calculating speed changes over time, and scheduling when to collect data from
each node. Although these are not independent from each other, simultaneously
optimizing them is hard, as indicated by the NP-hardness of path selection problem
alone, which we show later in the paper. To deal with this hardness, previous
studies [Kansal et al. 2004; Somasundara et al. 2004; Ma and Yang 2006; Xing
et al. 2007] simplified the problem by using simple mobility models and/or simple
communication models. However, these simplifications lead to suboptimal solutions
that incur unnecessarily large data delivery latency. To balance solution quality and
problem tractability, we have proposed the data mule scheduling (DMS) problem
as a unified problem framework for motion planning of data mules [Sugihara and
Gupta 2007]. The main idea of the DMS framework is to increase the independence
between the subproblems (path selection, speed control, and job scheduling) and
optimize them mostly separately. The latter two subproblems correspond to one
dimensional case of the problem (1-D DMS) where data mules move along the given
paths.

In this paper we discuss the path selection problem. Following the idea of the
DMS framework, we treat the path selection as an independent problem. Our
strategy is to formulate the problem as a graph problem that we call the Label-
Covering Tour (LCT) problem. We present approximation algorithms for the LCT
problem for single data mule case and multiple data mules case. We also present
integer linear program (ILP) formulation of the LCT problem for obtaining the
lower bounds through LP relaxations. We demonstrate the performance of the
approximation algorithms by simulation experiments, in which we compare our
methods with previously proposed methods and with the lower bounds. We further
discuss the case in which we only have partial knowledge about the communication
range. For this case we present semi-online algorithms that make an initial plan only
with offline knowledge and then update it at runtime to opportunistically exploit
online information. Performance for this case is evaluated by using ns2 network
simulator.

Our contributions are:

—Formulate the path selection problem of data mules as a graph problem and
design approximation algorithms both for single and multiple data mules cases;

—Model the case of partially known communication range by proposing a novel
hybrid connectivity model and design semi-online algorithms for the case;

—Demonstrate the effectiveness of the proposed algorithms by extensive simulation
experiments on Matlab and ns2.

The rest of this paper is organized as follows. In Section 2 we introduce related
work. In Section 3 we consider the path selection problem for single data mule
case. We define the Label-Covering Tour problem and present an approximation
algorithm, along with the results of simulation experiments. In Section 4 we discuss
multiple data mules case. Besides an approximation algorithm, we also present an
integer linear program (ILP) formulation of the problem and some experimental
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results. In Section 5 we study the case of partially known communication range.
We present semi-online algorithms and show the results of realistic simulation ex-
periments using ns2. Finally Section 6 concludes the paper.

2. RELATED WORK

We mainly introduce related works on path selection problem in data mule ap-
proach. Refer to [Ekici et al. 2006] for overview of data mule and similar approaches
that use controlled mobility in wireless sensor networks.

Path selection problem has been discussed in several different problem settings.
Somasundara et al. [2004] studied the problem of choosing the path of a data mule
that traverses through a sensor field with sensors generating data at a given rate.
They designed heuristic algorithms to find a path that minimizes the buffer overflow
at each sensor node. In their subsequent work [Somasundara et al. 2007], they pre-
sented a heuristic algorithm for multiple data mules case based on the formulation
as a vehicle routing problem (VRP). Gu et al. [2006] presented an improved algo-
rithm for the same problem settings as [Somasundara et al. 2004]. In these works,
it is assumed that data mules need to go to the sensor node’s exact location to
collect data (i.e., no remote communication). This assumption facilitates TSP-like
formulations of the problem and makes the path selection problem of a data mule
similar to packet routing problem such as the one studied in [Meliou et al. 2006],
where the authors discuss the optimal routing scheme of a query packet and the
requested data. However, these formulations result in underutilized communication
capability, since data mules can actually collect data from nodes without visiting
their exact locations via wireless communications.

Zhao and Ammar [2003] studied the problem of optimally controlling the motion
of a data mule in mobile ad-hoc networks. A data mule, which is called a “message
ferry” in their work, mediates communications between sparsely deployed stationary
nodes. They considered the remote communication, but path selection is done based
on a TSP-like formulation. They extended their work to multiple data mules case
in [Zhao et al. 2005] and presented heuristic algorithms. In our work, we realize
a more optimized path selection where the data mule only needs to visit subset of
nodes as long as it travels inside the communication range of each node at least
once.

Xing et al. [2007] designed path selection algorithms when each node can for-
ward data toward the base station along a routing tree constructed in advance.
Their formulation is also similar to TSP and also assumed the existence of forward-
ing nodes that do not generate data by themselves, in order to make the network
connected and enable the construction of routing tree rooted at the base station.
Although these assumptions allow the fail-over mechanism that improves the data
delivery rate, they also limit the applicability of the technique. Our problem frame-
work can express not only their settings1, but also more general settings including
disconnected networks.

Ma and Yang [2006] discussed the path selection problem under different assump-
tions. Their objective is to maximize the network lifetime, which is defined as the

1Combination of data mule and multihop forwarding approaches is also expressible in the DMS

problem framework. Please refer to [Sugihara and Gupta 2009] for more details.
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time until the first node dies (i.e. minimum of the lifetime of all nodes). They
considered the remote wireless communication and also multihop communication
among nodes. When the path of data mule is given, they showed the problem of
maximizing the network lifetime is formulated as a flow maximization problem that
has a polynomial time algorithm. Choosing the path of data mule is done by their
heuristic algorithm that uses the divide and conquer approach and finds a near-
optimal path for each part of the nodes. A problem in their algorithm is that it
is applicable only to special configurations in which the data mule starts from the
left end of the area, travels toward the right end and then comes back to the left
end. Hence, for example, it is not clear how to use the algorithm for circular area
having the base station in the center. Our algorithms do not have any restrictions
on the shape of node deployment area.

We study semi-online scheduling problem for the case when the communication
range is known only partially. The term “semi-online scheduling” mainly appears
in the context of job scheduling, and refers to the cases when partial information is
available offline. Common examples of partial information are optimum makespan,
order of job arrivals, etc. For more on these topics, see [Pruhs et al. 2004]. In
our case, part of feasible intervals (i.e., intervals in which a job can be executed)
is known in advance, but the job is possibly executable also in other intervals.
This is not a standard assumption in the scheduling literature. It is partly because
scheduling problems for jobs with multiple feasible intervals are not common. There
are few papers discussing multiple feasible intervals for nonpreemptive case [Shih
et al. 2003; Chen et al. 2005] and unit length intervals case [Simons and Sipser
1984], but neither is identical to our problem settings.

3. PATH SELECTION PROBLEM

In this section we discuss the path selection problem for single data mule case. First
we introduce the data mule scheduling (DMS) problem as a problem framework for
motion planning problem of data mules. Then we give a formal definition of the path
selection problem. Our main idea is to formulate it as a graph problem, which we
call the Label-Covering Tour problem. The Label-Covering Tour problem is to find
a minimum-cost path that intersects with the communication ranges of all nodes,
so that a data mule can collect data from them. We prove the problem is NP-hard
and present an approximation algorithm. Further we evaluate the performance of
the algorithm by simulation experiments.

3.1 Data Mule Scheduling (DMS) Problem Framework

Before going into details of the path selection problem, we introduce the data mule
scheduling (DMS) problem framework for motion planning problem of data mules.

Motion planning of data mules is a hard problem. Communications with sen-
sor nodes need to take place at the neighbor of each node and will take certain
time duration, whereas the motion of data mule is possibly governed by dynamics
constraints. There is also a prioritization problem when the data mule is in the
communication ranges of multiple nodes.

To deal with this complexity, in the DMS framework, we decompose the problem
into loosely connected subproblems. Specifically, as shown in Figure 1, we can
decompose the problem into the following three subproblems:
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Fig. 1. Subproblems of data mule scheduling

(1) Path selection: which trajectory the data mule follows

(2) Speed control: how the data mule changes the speed while moving along the
path

(3) Job scheduling: from which sensor the data mule collects data at each time
point

Path selection is to determine the trajectory of the data mule in the sensor field.
To collect data from each particular sensor, the data mule needs to go in the sensor’s
communication range at least once.

Speed control is the second subproblem to determine how the data mule changes
its speed along the chosen path. The data mule needs to change the speed so that
it stays within each sensor’s communication range long enough to collect all the
data from it.

The final subproblem is job scheduling. Once the time-speed profile is deter-
mined, we get a mapping from each location to a time point. Thus we get a
scheduling problem by regarding data collection from each sensor as a job. Each
job has one or more intervals in which it can be executed. Job scheduling is to
determine the allocation of time to jobs so that all jobs can be completed.

In this paper, we focus on the path selection subproblem. The speed control and
job scheduling subproblems are considered together as the one dimensional DMS
(1-D DMS) problem, which is discussed in [Sugihara and Gupta 2010b]. The 1-D
DMS problem applies to the cases in which data mules need to move along fixed
paths.

The DMS problem framework is general and can be used to express several earlier
problems in the area. For instance, the assumption of no remote wireless commu-
nication (as in [Somasundara et al. 2004; 2007]) is easily expressed by setting the
communication range to zero in the path selection subproblem. The constant speed
assumption (as in [Ma and Yang 2006; 2007; Xing et al. 2007]) and variable speed
assumption (as in [Zhao and Ammar 2003; Kansal et al. 2004]) are handled in the
speed control subproblem.
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Fig. 2. Simplifying the path selection problem using a labeled graph representation: (a) Instance

of path selection problem. (b) Corresponding labeled graph.

3.2 Problem Description

The ultimate objective of the path selection problem is to find a path such that
the shortest travel time (= latency) can be realized in the corresponding 1-D DMS
problem. However, it is not clear which path results in shorter travel time. For
example, even if the path length is short, the travel time would be long if the
intersections of the path and communication range of each node are short, because
the data mule needs to slow down to collect all the data. Moreover, it is also difficult
to search an optimal path in a brute-force manner when the data mule can freely
move around within the space.

To deal with these issues, we simplify the path selection problem. To reduce
the solution space, we consider a complete graph having vertices at sensor nodes’
locations and assume the data mule moves between vertices along a straight line.
Each edge is associated with a cost and a set of labels, where the latter represents
the set of nodes whose communication ranges intersect with this edge. In other
words, the data mule can collect data from these nodes while traveling along this
edge. We want to find a minimum-cost tour that the data mule can collect data
from all the nodes. We discuss later how we assign the cost to each edge so that a
tour with smaller cost results in shorter travel time.

Figure 2 is an example that depicts the basic idea of the formulation. Figure 2(a)
shows five nodes and their communication ranges, in addition to the base station
(shown as “s”), where the data mule starts and brings the data back. From this
input, we construct a labeled undirected complete graph as shown in Figure 2(b).
Each edge e has a set of labels L(e) ⊆ L and cost c(e), where L = {l1, ..., ln} is the
set of all labels and n is the number of sensor nodes. We determine L(e) as follows:
li ∈ L(e) if node i’s communication range intersects with edge e. Intuitively, by
moving along edge e, the data mule can collect data from the nodes whose labels
are in L(e).

Now we define the Label-Covering Tour problem formally as follows: Given an
undirected complete graph G = (V,E) where each vertex in V = {v0, v1, ..., vn}
is a point in R2, a cost function on edges c : E → Q+

0
, a set L = {l1, ..., ln} of

labels, and a set of constants {r1, ..., rn}. Each edge eij ∈ E is associated with
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subset Lij ⊆ L. For k = 1, ..., n, lk ∈ Lij iff the Euclidean distance between
vk and an edge eij is equal to or less than rk. A tour T is a list of points that
starts and ends with v0, allowing multiple visits to each point. A tour T is “label-
covering” when it satisfies at least one of the following conditions for k = 1, ..., n:
1) ∃eij ∈ T (E), lk ∈ Lij , where T (E) is the set of edges traversed by T , or 2)
dist(v0, vk) ≤ rk, where dist(vi, vj) is the Euclidean distance between vi and vj .
Find a label-covering tour T that minimizes the total cost

∑

eij∈T (E) cij .
Unfortunately, this simplified problem is still NP-hard.

Theorem 3.1. Label-Covering Tour is NP-hard.

Proof. We show metric TSP is a special case of Label-Covering Tour. First
we choose the cost function c to satisfy the triangle inequality (e.g., Euclidean
distance). For a given set of points V = {v0, ..., vn}, by choosing small ri’s, we can
make dist(v0, vi) > ri for all i > 0, Lij = {li, lj} for all i, j > 0, and L0j = {lj} for
all j > 0. For such ri’s, any label-covering tour must visit all the points. An optimal
label-covering tour does not visit any point multiple times except v0 at the start
and the end of the tour, since in such cases, we can construct another label-covering
tour with smaller total cost by “shortcutting.” Therefore, an optimal label-covering
tour is an optimal TSP tour for V .

As the cost metric c, we use Euclidean distance in the rest of the paper. As
mentioned earlier, there is no rigorous argument that it is always an appropriate
metric in the sense that minimizing the total cost leads to minimum data delivery
latency. Nevertheless we choose Euclidean distance based on the empirical fact
that, when we formulate the path selection problem as the Label-Covering Tour
problem, there is a high positive correlation between total Euclidean distance and
the travel time of data mule. See [Sugihara and Gupta 2008] for more details.

The Label-Covering Tour problem is merely one possible way of formulating the
path selection problem. Clearly TSP is also an option, as used in many studies,
though it has a problem that we cannot leverage the communication range. An
alternative formulation that takes account the communication range is TSP with
Neighborhoods (TSPN) problem, in which the problem is to find a shortest tour
that visits each of given regions instead of points. Application of TSPN problem
to path selection is proposed in some recent studies [Yuan et al. 2007; Tekdas et al.
2009]. In the evaluation section we compare the performance by the Label-Covering
Tour formulation and TSPN formulation.

The formulation as the Label-Covering Tour problem can easily be extended in
several ways to deal with different problem settings. For example, suppose there
are obstacles in the field that do not allow a data mule to move from one node to
another along a straight line. We can consider this case by eliminating some edges
from the graph G, which is otherwise a complete graph. Another example is to allow
a data mule to make turns at the locations other than the nodes’ locations, so that
we can consider more flexible paths. This is also useful for the above obstructed
case. We can incorporate this just by adding more vertices in the graph.

3.3 Approximation Algorithm

We design an approximation algorithm for the Label-Covering Tour problem. As
discussed earlier, Euclidean distance is used as the cost metric. This enables us
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—Make a TSP tour T using an exact or approximation algorithm for metric TSP

—Construct a directed graph (V, E) where V = {T (i)} and E = {T (i)T (j)| for all l,
i ≤ l ≤ j, Euclidean distance between line segment T (i)T (j) and T (l) is equal to or less
than r}.

—Find shortest path from T (0) to T (n) (e.g., by Dijkstra’s algorithm).

Fig. 3. Approximation algorithm for Label-Covering Tour: T (i) is the i-th vertex that the tour T

visits. T (0) is the starting vertex.

to design an approximation algorithm by using known algorithms for metric TSP
where the triangle inequality holds.

Figure 3 shows the approximation algorithm for Label-Covering Tour. It first
finds a TSP tour T by using any algorithm (exact or approximate) for TSP. Then
it finds a short2 label-covering tour that is obtained by shortcutting T .

Computation time of the algorithm is CTSP + O(n3), where CTSP denotes the
computation time of the algorithm used for solving TSP. If we add a constraint
j ≤ i + k for some constant k in the definition of E in the second step of the
algorithm, the computation time becomes CTSP + O(nk2), which is useful for large
n when the above cubic-time computation is not feasible. An additional benefit
about the algorithm related to computation time is that it does not require all
edges to be labeled beforehand. Especially when the number of nodes is large,
making the labeled graph itself may take a long time proportional to O(n3). The
proposed approximation algorithm computes the label of an edge as necessary when
it makes a decision on whether to skip a node.

Next we analyze the approximation factor of the algorithm. Let TOPT , TAPP

denote the optimal label-covering tour and the approximate label-covering tour,
respectively. Total length of tour T is denoted as |T |. Also let α be the approx-
imation factor of the TSP algorithm used in the first step of the approximation
algorithm. Then we have the following theorem:

Theorem 3.2. |TAPP | ≤ α(|TOPT |+ 2nr)

Proof. Clearly |TAPP | ≤ α|TTSP |, where TTSP is the optimal TSP tour. We
give a lower bound to TOPT by constructing another TSP tour by modifying TOPT .
Figure 4 shows the idea of construction. The points A and B (shown in filled circles)
are visited by TOPT and other points in the figure (shown in non-filled circles) are
not. We call the former “visited points” and the latter “non-visited points”. By
the definition of a label-covering tour, any non-visited points are within distance r
from either a traversed edge or a visited point of a label-covering tour. For example
in the figure, all of AC and DD’, ..., GG’ have the length less than r. Then we can
construct a “tour”3 that is identical to TOPT but takes a detour to visit each non-
visited point (e.g., ACAD’DD’...B). Since there are at most n non-visited points,

2In [Sugihara and Gupta 2008], we have misstated that the algorithm finds the shortest label-
covering tour. There is no guarantee that the label-covering tour obtained by the algorithm is the
shortest one of all the shortcut tours of T .
3This is not a tour in our definition because it does not consist of edges between the nodes.
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Fig. 4. Constructing a TSP tour from the optimal label-covering tour TOPT : every non-visited
point is within distance r from TOPT .

total length of detour is at most 2nr. This “tour” is easily converted to a shorter
TSP tour by skipping all additional points (e.g., D’, E’, ...) and apply shortcutting
so that each point is visited exactly once. Therefore, we have |TOPT |+2nr ≥ |TTSP |.
The theorem follows by combining this and |TAPP | ≤ α|TTSP |.

3.4 Performance Evaluation

We evaluate the performance of the approximation algorithm by numerical experi-
ments. We have implemented the algorithm in Matlab.

3.4.1 Method. We deploy n nodes in the circular area of radius d that has the
base station at the center. The nodes are randomly placed within the circle. Each
of the nodes has a circular communication range of identical radius r. For each edge
connecting a pair of nodes, we assign a set of labels by calculating the distance from
the line segment and each node. We use Concorde TSP solver4 to find an optimal
TSP tour.

Using the tour, we transform the original problem to 1-D DMS problem and
calculate the travel time by using the heuristic algorithm presented in [Sugihara and
Gupta 2010a]. We assume that each node has the same execution time e = 10[sec]
and also that the speed of data mule needs to be zero at each point where it changes
the direction5.

For each (n, d, r), we generate 50 node deployments and take the average for the
results. For 1-D DMS, we use the maximum absolute acceleration amax = 1[m/s2],
and the maximum speed vmax = 10[m/s] to roughly simulate the motion of a
helicopter as in [Mascarenas et al. 2008].

Figure 5 shows some examples of label-covering tours for a node deployment with
different communication ranges. As the communication range grows, the number
of visited points becomes less and the path length becomes shorter.

3.4.2 Effect of node density and network size. Figure 6(a) shows the relation
between the communication range and the total travel time for different node den-
sity. To see how the size of communication range affects the travel time, we have
normalized the total travel time by the one when the communication range is zero.

4http://www.tsp.gatech.edu/concorde/index.html
5Otherwise, it would require infinite acceleration, since we assume a path consists of only line

segments and not curves.
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Fig. 5. Label-covering tours for different communication ranges: 40 nodes, d = 500[m]; Path of
data mule is shown in bold line.
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Fig. 6. Comparison of total travel time for (a) different node density (40 nodes) and (b) different
number of nodes (d = 500[m] for 20 nodes): amax = 1[m/s2], vmax = 10[m/s]

The graph shows that the total travel time is reduced in all cases by up to 50%
for this parameter set, suggesting the proposed problem formulation and algorithm
altogether successfully exploit the breadth of communication range. The amount
of reduction is bigger when the density is higher (i.e., smaller d), except the case
of d = 150[m] for large communication ranges. This is because the total travel
time is already very close to the absolute lower bound, which is the product of the
execution time and the number of nodes.

Figure 6(b) shows the effect of number of nodes, varied from n = 5 to n = 100.
We set d to 500[m] when n = 20, and changed d in proportion to

√
n so that the

density remains constant. The results show the reduction of total travel time for
large communication ranges, but no big difference for different number of nodes.
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3.4.3 Comparison with other strategies. Next we compare the travel time of
our approximation algorithm with those of previously proposed motion planning
algorithms as listed below.

—TSP-like: Based on the model used in [Somasundara et al. 2004]. Data mule
visits all nodes. It stops at each node location to collect data and moves to the
next node. While moving, the speed is constant at vmax. We use optimal TSP
tours.

—Stop-and-collect: Based on the model used in [Ma and Yang 2007]. Data mule
takes a label-covering tour, as in our approximation algorithm. However, it stops
to collect data when it is in the communication range of each node. While moving,
speed is constant at vmax. We find tours by using our approximation algorithm
with optimal TSP tours6.

—Message Ferrying: Based on the algorithm proposed in [Zhao and Ammar 2003].
Data mule visits all nodes as in the TSP-like algorithm, but communication is
also done while moving. Speed is variable between 0 and vmax. Speed and data
collection schedule are determined by solving a linear program such that the total
travel time is minimized. We use optimal TSP tours.

To allow direct comparison, we set amax = +∞ for our proposed approximation
algorithm, since all other algorithms assume data mule can change its speed in-
stantly. Note that when amax = +∞, we can obtain an exact solution for the 1-D
DMS problem by solving a linear program [Sugihara and Gupta 2010b].

Figure 7 shows the results for a representative case for 40 nodes. When the
communication range is small, the travel time does not differ among the algorithms.
As the communication range grows, Message Ferrying and the proposed algorithm
show larger improvements than other two methods, and the proposed algorithm
gets gradually better than Message Ferrying. When the communication range is
150[m], the proposed algorithm is nearly 10% better than Message Ferrying, 40%
better than Stop-and-collect, and more than 50% better than TSP-like method.

6We could not use the path selection algorithm proposed in [Ma and Yang 2007], since it has a
restriction on the configuration of data mule and deployment area. Specifically, it assumes the
data mule starts from the left end of the deployment area, travels toward the right end, and comes

back to the initial position.
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Fig. 8. Comparison of Label-Covering Tour and TSPN formulations (40 nodes): (a) ratio of tour
length; (b) ratio of travel time: a = +∞, (c) a = 1[m/s2]

When there is an acceleration constraint (i.e., amax 6= +∞), which none of the
previous studies has addressed, the gaps between the proposed algorithm and others
are expected to be larger. This is because all of these methods require the data
mule to stop more frequently than the proposed algorithm does.

3.4.4 Comparison with TSPN-based formulation. As discussed in Section 3.2,
Label-Covering Tour is not a sole option for formulating the path selection problem
of a data mule. One of the alternative formulations that has been proposed in
the literature [Yuan et al. 2007; Tekdas et al. 2009] is as a TSPN (TSP with
Neighborhoods) problem. We compare the travel time for these formulations.

Since TSPN is an NP-hard problem, we use an approximation algorithm pre-
sented in [Elbassioni et al. 2005] (called “Algorithm A” in the paper). We chose
this algorithm because it always produces a polygonal path, whereas some algo-
rithms (e.g., [Dumitrescu and Mitchell 2003]) consider paths with arcs 7. The
algorithm assumes each region may have different diameter and works as follows:

(1) Order the points by their diameter δ1 ≤ δ2 ≤ ... ≤ δn.

(2) Pick the point p1 on the smallest region randomly. For i = 2...n, pick the point
pi on the i-th region that minimizes min1≤j≤i−1 dist(pi, pj).

(3) Construct a TSP tour on {p1, ..., pn} using any TSP algorithm.

For our case, we choose the base station as the first point (“p1”) in the second step
and use optimal TSP tours for the last step.

Figure 8 shows the comparison of results for two algorithms based on different
formulations. As Figure 8(a) shows, the TSPN-based formulation always produces
shorter tours than the LCT-based one. However, as Figure 8(b) shows, travel time
is equal or longer in the TSPN-based formulation in many cases. This is more
prominent in the acceleration constrained case shown in Figure 8(c), where the
travel time is longer by more than 10% in most cases.

Figure 9 explains the reason of these results. In this example, though the LCT
tour is longer than the TSPN tour, it contains much fewer number of turns. This

7Note that, when the path includes arcs, we need to consider angular velocity and acceleration,

and thus we cannot treat path selection and speed control problems separately anymore.
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Label-covering tour (length: 4412, 8 turns) TSPN tour (length: 2479, 23 turns)

Fig. 9. Example of tours for same node deployment (40 nodes, d = 500[m], r = 150[m]): Label-
covering tour contains 8 turns, while TSPN tour contains 23 turns.

is reasonable since in the approximation algorithm for LCT problem, we effectively
reduce the number of edges in the tour by skipping vertices in a TSP tour. When
there is an acceleration constraint (Figure 8(c)), the data mule needs to stop at
each turn and thus more frequent stops tend to make the travel time longer due
to acceleration and deceleration. When there is no acceleration constraint (i.e.,
a = +∞), the number of turns itself does not affect the travel time. However, since
a TSPN tour tends to intersect the communication range of each node only at a
point, the data mule needs to stop at the point to collect data from the node. As
a result, the travel time for a TSPN tour is not as good as expected from its tour
length.

These arguments on the advantage of the LCT-based formulation over the TSPN-
based one are not theoretically supported8. Certainly there are the cases that the
TSPN-based formulation produces better performance and moreover there are a
number of algorithms for finding TSPN tours other than the one we used. Nev-
ertheless, it is experimentally shown for realistic parameters that the LCT-based
formulation often outperforms the TSPN-based one and the results can be explained
with appropriate reasons. With some additional reasons such as that fewer turns
with long edges make it easier for the data mule to maneuver, we claim that the
LCT-based formulation, along with the proposed approximation algorithm, has a
good balance of performance and practicality.

4. MULTIPLE DATA MULES CASE

In this section, we first define the path selection problem for multiple data mules
case and then present an approximation algorithm. We also present an integer
linear program (ILP) formulation of the problem and apply relaxations in several
ways to obtain the lower bounds. In the end we present the results from simulation
experiments.

8As an additional reason to prefer the LCT-based formulation, it can easily handle the case with
obstacles in the field (mentioned in the end of Section 3.2), while it is not immediately clear in

the TSPN-based ones.
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4.1 Problem Definition

Based on the Label-Covering Tour problem9 for single data mule case, we define
k-Label-Covering Tour (k-LCT) problem for k data mules case as follows. We
are given an undirected complete graph G = (V,E) where each vertex in V =
{v0, v1, ..., vn} is a point in R2, a cost function on edges c : E → Q+

0
, a set L =

{l1, ..., ln} of labels, and constants {r1, ..., rn} ∈ Q+
0

and K ∈ Z+. Each edge
eij ∈ E is associated with subset Lij ⊆ L. For p = 1, ..., n, lp ∈ Lij iff the
Euclidean distance between vp and edge eij is equal to or less than rp. A subtour
T is a list of subset of all vertices that starts and ends with v0, allowing multiple
visits to each vertex. A set of subtours {T1, T2, ..., TK} is “label-covering” when
it satisfies at least one of the following conditions for p = 1, ..., n: 1) ∃k, eij ∈
Tk(E), lp ∈ Lij , where Tk(E) is the set of edges traversed by Tk, or 2) dist(v0, vp) ≤
rp, where dist(vi, vj) is the Euclidean distance between vi and vj . Find a set of
label-covering subtours {T1, T2, ..., TK} that minimizes the maximum of cost of
subtours maxk

∑

eij∈Tk(E) c(eij).
As in the previous section, we focus on the case that c is the Euclidean distance.

4.2 Approximation Algorithm

Our strategy in designing an approximation algorithm is to solve TSP for k sales-
men (k-TSP) first and then to shortcut each subtour so that the label-covering
property is maintained. For solving k-TSP problem, we use k-SPLITOUR algo-
rithm [Frederickson et al. 1978]. k-SPLITOUR algorithm constructs k subtours by
splitting 1-TSP tour in the following way:

—Find a 1-TSP tour R = (v0, v1, ..., vn, v0) with
∑

e∈R(E) c(e) = D.

—For each j, 1 ≤ j < k, find the last vertex vp(j) such that the cost of the path
from v0 to vp(j) along R is not greater than (j/k)(D − 2cmax) + cmax, where
cmax = maxi c(e0i).

—Form k subtours as R1 = (v0, v1, ..., vp(1), v0), R2 = (v0, vp(1)+1, ..., vp(2), v0),
..., Rk = (v0, vp(k−1)+1, ..., vn, v0).

We have the following theorem about the approximation ratio:

Theorem 4.1 [Frederickson et al. 1978]. If Ĉk is the cost of the largest of
the k subtours generated by k-SPLITOUR algorithm, and C∗

k is the cost of the
largest subtour in an optimal solution of k-TSP, then

Ĉk/C∗
k ≤ α + 1− 1/k,

where α is the bound for the single traveling salesman algorithm.

Figure 10 shows the algorithm for the k-LCT problem. In the algorithm, we first
use k-SPLITOUR algorithm to construct k subtours. Then we apply shortcutting
for each subtour as long as the label-covering property is not violated. Shortcutting
is attempted on the longest subtour first. If not successful, we try the second longest
one, and the third one, etc., until there is no subtours that can be shortcutted. We
have the following guarantee on the approximation ratio:

9We call it the “1-LCT” problem for clarity in the rest of the paper.
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—Find k-TSP subtours {R1, R2, ..., Rk} using k-SPLITOUR algorithm.

—While true,
—For each subtour R, in the decreasing order of total cost,

—Find a visited vertex v s.t.
—the label-covering property is maintained if v is skipped by R, and
—c(R)− c(R\v) is maximized.

—If v is found, R← R\v and break the inner loop; Otherwise continue.
—If no vertex was skipped in all subtours in this iteration, stop and output the subtours.

Fig. 10. Approximation algorithm for k-LCT problem

Theorem 4.2. If APP is the approximate solution of a given instance of the
k-LCT problem and OPT is the optimal one, APP ≤ (α + 1 − 1

k
)(OPT + 2nr),

where α is the approximation ratio of TSP algorithm and r is the communication
range.

Proof. As we construct k-label-covering subtours by shortcutting k-TSP sub-
tours, we have APP ≤ Ĉk. By definition of the label-covering property, for any
unvisited vertex there exists an edge in k-label-covering subtour within distance c.
Thus, by using the same technique for Theorem 3.2 to convert a label-covering tour
into a TSP tour, we have C∗

k ≤ OPT +2nr. Then, from Theorem 4.1, the theorem
follows.

4.3 Integer Linear Program Formulations

First we give an ILP formulation of the 1-LCT problem. Variables are

—xij ∈ {0, 1}: edge eij = (vi, vj) is included in the tour iff xij = 1

—yi ∈ {0, 1}: node vi is visited iff yi = 1

Constants are

—cij ∈ Q+
0 : cost of edge eij

—di,pq ∈ {0, 1}: equals 1 iff node vi is within the distance ri from edge epq.

Then the 1-LCT problem is
Minimize

∑

i,j cijxij

Subject to

xii = 0 (∀i) , y0 = 1 (1)

yi ≤
∑

j

xji =
∑

j

xij ≤ (n− 1)yi ∀i (2)

∑

p,q

xpqdi,pq ≥ 1 + yi ∀i ≥ 1 (3)

1

|S|
∑

i∈S

yi ≤
∑

i∈S,j 6∈S

xij ≤
∑

i∈S

yi ∀S ⊆ V \{v0} (4)

1

|S|
∑

i∈S

yi ≤
∑

i∈S,j 6∈S

xji ≤
∑

i∈S

yi ∀S ⊆ V \{v0} (5)
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Inequality (2) enforces in- and out-degree of each vertex to be equal. It also
enforces that both degrees are zero when the vertex is not visited. We obtain this
by combining the following two constraints:

—if yi = 0,
∑

j xji =
∑

j xij = 0

—if yi = 1,
∑

j xji =
∑

j xij

Inequality (3) is the label-covering property. It is obtained by combining the
following two constraints:

—if yi = 0,
∑

p,q xpqdi,pq ≥ 1

—if yi = 1, no constraint (
∑

p,q xpqdi,pq ≥ 2 is trivially satisfied)

Finally, inequalities (4) and (5) are the constraints for eliminating invalid sub-
tours. They are obtained by combining the following two constraints:

—if
∑

i∈S yi = 0,
∑

i∈S,j 6∈S xij =
∑

i∈S,j 6∈S xji = 0

—if
∑

i∈S yi > 0,
∑

i∈S,j 6∈S xij ≥ 1 and
∑

i∈S,j 6∈S xji ≥ 1

Note that these subtour constraints consist of exponential number of inequalities.
However, we can use the cutting-plane technique (e.g., [Pataki 2003]), in which we
solve the ILP problem without these constraints first, add only violated inequalities
and solve again, and repeat this until we obtain the tour without invalid subtours.

We can easily extend this formulation to the k-LCT problem in the following

way. Instead of xij , yi, the variables are x
(k)
ij and y

(k)
i , representing whether edge

eij is included in k-th tour (i.e., tour of k-th data mule) and whether vertex vi

is visited by k-th tour, respectively. To allow the min-max objective, we have an
additional variable z. Constants are the same as in the 1-LCT problem. Then,

k-LCT problem is to minimize z subject to ∀k.
∑

i,j cijx
(k)
ij ≤ z and inequalities

(1)-(5), with substituting x
(k)
ij , y

(k)
i for xij , yi.

4.4 Obtaining Lower Bounds

The ILP problem above cannot be solved in a realistic time when the number of
variables is large. Instead, we use that for obtaining lower bounds of the optimal
solution by applying various relaxations.

Lower bounds are useful because of the following reason. In Theorem 4.2, we
have obtained a theoretical guarantee on the performance of the approximation
algorithm for the k-LCT problem. However, the upper bound given in the theorem
is loose when r is large. This gives a motivation for evaluation by experiments, in
which we compare the approximate solution with lower bounds to figure out the
performance in practical settings.

We consider the following relaxations to obtain the lower bounds:

—ILPcover: ILP without subtour constraints: This finds subtours that collectively
satisfy the label-covering property. Note that the number of subtours is arbitrary
and some of them may not include v0.

—LPCP: LP relaxation + cutting plane: first solve LP relaxation of the original
ILP with the subtour constraints for |S| = 2 case. Then, cutting plane method
is applied.
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—MaxCost: Trivial lower bound by 2max{maxi{c0i}− r, 0}. This is the smallest
possible cost to touch the communication range of the farthest node.

We need a different approach to use cutting plane method in LPCP. In the
original ILP formulation, we just needed to find invalid subtours in an intermediate
solution, add subtour constraints for them, and repeat that until we find a valid
solution. However, this does not work in LPCP because intermediate solutions are
generally fractional in the LP relaxation and thus cannot identify invalid subtours

directly. Instead, we regard the value of x
(k)
ij as the weight of edge (i, j) and add

the subtour constraints for the cycles with large mean weight.
Finding a cycle that has the maximum mean weight in a graph is done in poly-

nomial time [Karp 1978]. We modify the algorithm to find only the cycles with
length at least three and applied it iteratively by eliminating the vertices in the
cycle. Subtour constraints are added if they were not added previously. If no new
invalid subtours were found, or it reached the maximum number of iterations (set
to 10), the solution at that point is used.

The following theorem enables us to obtain a lower bound for k-DM case by
“scaling” the result for 1-DM case:

Theorem 4.3. For a given graph G and a lower bound LB1 of the 1-LCT prob-
lem for G, LB1/k ≤ OPTk, where OPTk is the optimal solution for the k-LCT
problem for G.

Proof. From any set of k-LCT subtours, by connecting each subtour, we can
make a 1-LCT tour. If there exists a set of k-LCT subtours whose maximum length
is strictly less than OPT1/k, the 1-LCT tour made by connecting these subtours
have length strictly less than OPT1, which is a contradiction. Therefore we have
LB1/k ≤ OPT1/k ≤ OPTk.

4.5 Performance Evaluation

We evaluate the performance of the approximation algorithm in Figure 10 in realis-
tic situations by simulation experiments. We first compare the path length by the
proposed algorithm with two other strategies and also with the lower bounds. Then,
we compare the travel time in these strategies by solving the 1-D DMS problem.

4.5.1 Method. We use Matlab for simulation. For simulations, nodes are de-
ployed at random locations in a circular area with the base station at the center.
Number of nodes is 40 and radius of deployment area is fixed to d = 600[m]. We
compute our results as the average of ten different node deployments. The number
of data mules is k = {1, 2, 3, 4} and communication range is r = {0, 50, 100, 150}[m].
Euclidean distance is used as the cost function c. We use Concorde TSP solver to
find an optimal TSP tour. For the 1-D DMS problem, we set maximum accelera-
tion of data mule amax to 1[m/s2] and maximum speed vmax to 10[m/s]. Execution
time is e = {10, 30, 60}[sec] for each node. We use the heuristic algorithm [Sugihara
and Gupta 2010a] to solve the 1-D DMS problem under acceleration constraint.

We have implemented the following three strategies for comparison:

—Proposed: Use k-LCT subtours obtained by the approximation algorithm (Fig-
ure 10).
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—Overlay: Use a 1-TSP tour for all k data mules and each data mule collects equal
amount of data from each node, i.e., symmetric schedule on identical paths. This
models the SIRA (single-route algorithm) strategy in [Zhao et al. 2005].

—Partition: Use k-TSP subtours and each data mule collects data only from
the nodes on the subtour it is assigned. This models the MURA (multi-route
algorithm) strategy in [Zhao et al. 2005].

4.5.2 Results. Figure 11 shows the maximum path length for different number
of data mules k and different size of communication range r. When k is changed,
the path length does not change for the overlay strategy, since it always uses 1-TSP
tours regardless of k. Both of the partition strategy and the proposed strategy
scale well with the number of data mules. When the size of communication range
r is changed, the path length did not change in either the overlay or partition
strategies, because both of them use (k-)TSP tours. In the proposed strategy, the
length decreased for larger communication range.

In comparing with the lower bounds, the average ratios of approximate solutions
to the lower bounds are less than two in the tested cases. We cannot guarantee
anything from these results, since we do not know how tight the lower bounds are
and how bad the ratio can be in other parameters. Nevertheless, this is useful
information to give estimates to the practical performance, since the bound by
Theorem 4.2 is very loose in many of the tested cases.

Figure 12 compares the maximum travel time of the three strategies. We have
tested three different execution time e to see the effect of the communication band-
width and/or the amount of data in each sensor node. In e = 10 case, the proposed
strategy yielded up to 30− 40% shorter travel time than other two strategies. As e
increases, which corresponds to less communication bandwidth or larger amount of
data in sensor nodes, the differences between the strategies shrink. This is because
the execution time becomes more dominant in determining the travel time than the
path length.

5. PATH SELECTION UNDER PARTIALLY KNOWN COMMUNICATION RANGE

The algorithms we have presented so far are based upon the assumption that the
communication range is entirely known. In this section, we relax this assumption
and assume the range is known only partially, which simulates realistic wireless
environments more closely. We first present hybrid connectivity model that con-
sists of known and unknown communication ranges. Then we present semi-online
algorithms that work under the hybrid connectivity model by combining offline
scheduling and opportunistic improvement at runtime. We use ns2 network simu-
lator10 for performance evaluation.

5.1 Preliminaries

5.1.1 Connectivity Model. A simple connectivity model is the circular, fixed-
range (i.e., “Unit Disk”) model. In this model, received signal strength at distance
is estimated by considering mean path loss, and the radius of the circle is determined
by thresholding the strength. Despite its appearance in many papers, it has been

10http://www.isi.edu/nsnam/ns/
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Fig. 11. Maximum path length: (left) For different k. Communication range is fixed to r = 100;
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Fig. 13. Hybrid connectivity model (left) and comparison with other models (right)

pointed out that this model does not reflect the reality of the wireless channel
[Ganesan et al. 2002; Kotz et al. 2003].

In contrast, probabilistic models takes shadowing and fading into account. In
these models, there is always a finite probability of communication failure. In
combinatorial frameworks used for solving the path and scheduling problems, this
results in excessively conservative assumptions such as “communication is possible
only at the exact location of each node” as in [Somasundara et al. 2007; Xing
et al. 2008] or “no knowledge about connectivity” as in [Somasundara et al. 2006].
Furthermore, a recent study shows empirically that probabilistic models are still
insufficient to model many realistic aspects [Lee et al. 2007]. Specifically, it is
pointed out in [Lee et al. 2007] that, in the Shadowing model implemented in ns2,
noises are assumed spatially independent and follow Gaussian, both of which are
not true in real environments.

Our hybrid connectivity model is based on the observation that, even though
the connectivity at distance fluctuates dramatically, there is a certain range in the
vicinity of node that we can guarantee the connectivity for sure. Figure 13 shows
the idea of the hybrid connectivity model. We have a fixed circular range called
known communication range around the node. Communication is always successful
in the known communication range. The size of known communication range needs
to be chosen accordingly, depending on the degree of uncertainty of channel and
the environments (indoor/outdoor, terrain, etc.).

A larger range that contains known communication range is unknown commu-
nication range. Although communication is always successful also in the unknown
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communication range, the shape is unknown and may change over time. This rep-
resents the uncertainty at distance, and because of this, it is not known in advance
if communication at a point outside of known communication range of a node will
succeed or not at certain time. We do not make any assumptions about the de-
terministic or probabilistic characteristics of the unknown communication range,
except that it always contains the known communication range. This is the biggest
difference from Quasi Unit Disk model [Kuhn et al. 2003] that assumes an inner
circle just like the known communication range in our model, but also an outer
circle to limit the maximum connectivity range.

Having the known communication range enables an offline algorithm that has a
performance guarantee. On the other hand, the performance is largely affected
by the size of communication range, as shown earlier in the paper. Thus the
opportunity that an offline algorithm misses becomes huge under more uncertain
environments, because there is a larger portion of unknown communication range
that offline algorithms cannot leverage. This motivates us to consider semi-online
algorithms, which are based on offline plans based on partial knowledge and try to
improve at runtime with new information.

5.1.2 Assumptions and Notations. The radius rK of known communication range
is same for all nodes and is known. The unknown communication range is not known
offline, but the data mule can tell whether its current location is in the unknown
communication range of each node (i.e., whether the data mule can collect data
from that node)11. There is only one data mule. The data mule knows its cur-
rent location and moves along a polygonal path starting and ending at the base
station. The data mule can change the speed in the range of [0, vmax] without any
acceleration constraint.

We use POff and SOff to denote the path and schedule by the offline algorithm,
respectively. A schedule is represented as a set of schedule entry s = (I, job, v),
where s(I) is the location interval on the path, s(job) is the job to execute (i.e.,
node to collect data from), and s(v) is the speed of data mule. The travel time by
schedule SOff is denoted as TOff .

In addition to the non-periodic case that a data mule travels the field only once,
we also consider the periodic case. In the periodic case of the problem, each node
continuously generates data at a given rate and the data mule travels the field
periodically to keep collecting the data and bringing them back to the base station.
We assume that the data mule needs to stop at the base station for a constant time
Tb in the end of each period. This is to account for the time for depositing all the
data to the base station, refueling the data mule, and so on.

5.2 Semi-Online Algorithms

We first present a semi-online algorithm for the non-periodic case, in which sensor
nodes have a fixed amount of data in advance and a data mule travels the field
once to collect all the data. Then we extend the algorithm for the periodic case,
in which sensor nodes generate data at a certain rate and a data mule periodically

11This is a strong assumption and will be removed when we design a communication protocol and

do simulations in ns2.
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Algorithm 1 Semi-online algorithm

1: S ← SOff ⊲ Copy offline schedule
2: repeat

3: if ∃s ∈ S. x ∈ s(I) then ⊲ x: current location
4: v ← s(v)
5: execute s(job)
6: if x = end of s(I) then

7: S ← S\s
8: end if

9: else

10: v ← vmax

11: Execute any available jobs
12: end if

13: Eliminate all s ∈ S s.t. s(job) is finished
14: if ∃s ∈ S. x ∈ s(I) then

15: dest← end of s(I)
16: else if S 6= ∅ then

17: dest← start of next(S) ⊲ Start of the next schedule entry in S
18: else

19: dest← BS ⊲ BS: base station
20: end if

21: until arrive at the BS

travels the field.

5.2.1 Non-Periodic Case. Algorithm 1 shows the pseudocode for the semi-online
algorithm. At first the data mule follows the offline path and schedule, and does
opportunistic data collection when there is no schedule entry to execute at the
current location (Lines 3-13). When one of the jobs finishes, the data mule takes
a shortcut to the location where the next schedule entry starts, moving at the
maximum speed (Lines 16-20). Figure 14 explains this. In the figure, the bold
lines (A-B-C, D-E) on the offline path POff represent the intervals covered by
offline schedule entries. Now, in the semi-online algorithm, assume that the data
collection from Node 1 finished at P, due to that some of the data have been collected
beforehand by opportunistic data collection. Then, the schedule entries covering
A-B-C are removed and the next schedule entry to execute is the one covering D-E.
So the data mule sets its destination to D and takes a shortcut path P-D. On P-D,
the data mule moves at the maximum speed and does opportunistic data collection.
Since the length of P-D is shorter than that of P-B-D and the speed is maximum,
we can further reduce the travel time.

The following theorem guarantees that the travel time is shorter than that of the
offline algorithm:

Theorem 5.1. TS ≤ TOff

Proof. Let Iidle, Ibusy denote the sets of location intervals that the data mule
is idle and busy in the offline schedule SOff , respectively.

Consider another offline schedule S′
Off that is exactly the same in all of Ibusy
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Fig. 14. Semi-online algorithm: (a) If the data collection from Node 1 finishes at P, the data mule
directly heads for D, where the next offline schedule entry starts; (b) Example of path by the

semi-online algorithm: path by offline schedule is also shown.

but takes a shortcut between the intervals in Ibusy, where the data mule moves at
the maximum speed. Let T ′

Off denote the travel time for S′
Off , then T ′

Off ≤ TOff

clearly holds.
In the semi-online algorithm, when the data mule does not fully cover one of the

intervals in Ibusy, it means that the job has finished before reaching the finishing
location as planned in SOff . Since the data mule can directly head to the start
of the next schedule entry, it may further reduce12 the total travel length from
S′

Off . As movements outside of Ibusy are always at the maximum speed, we have
TS ≤ T ′

Off and the theorem follows.

5.2.2 Periodic Case. We can use the algorithm for the non-periodic case to
design the one for the periodic case. The main change from the non-periodic case
will be in deciding whether to skip a schedule entry or not, because the data is
continuously generated and in a sense, a job can never be finished. Our idea is to
use a simple strategy: the data mule simply tries to collect from each node as much
data as possible according to the offline schedule: i.e., replace “s(job) is finished”
in Line 13 of Algorithm 1 with “node s(job) is empty.” When a node’s buffer once
becomes empty, the node is regarded as “finished” and the schedule entries for that
node are skipped throughout the current period.

We can construct a periodic offline algorithm in the following way. We use the
same path selection algorithm described in Figure 3 and solve the 1-D DMS prob-
lem for the periodic case. When there is no acceleration constraint, the periodic
1-D DMS problem is solved optimally either by a closed formula or by linear pro-
gramming [Sugihara and Gupta 2010b].

The following two lemmas state that the periodic semi-online algorithm collects
more data in shorter amount of time compared to the offline algorithm.

Lemma 5.2. Let T
(k)
Sp , TOff denote the travel time in the k-th period for the

periodic semi-online algorithm and the periodic offline algorithm. Then, for all k,

T
(k)
Sp ≤ TOff .

12Travel length is unchanged when the interval, the new destination, and the current location are

aligned on a line.

ACM Journal Name, Vol. V, No. N, Month 20YY.



24 · R. Sugihara and R. K. Gupta

Proof. Immediately follows from Theorem 5.1.

Lemma 5.3. Let c
(k)
i , cOff

i denote the amount of data collected from i-th node
in the periodic semi-online algorithm (in k-th period) and in the periodic offline

algorithm, respectively. Then, for any k and all i, either c
(k)
i ≥ cOff

i or i-th node’s
buffer becomes empty during k-th period.

Proof. If i-th node does not become empty during k-th period, all schedule
entries for i-th node are fully executed by the semi-online algorithm. Thus, at least
cOff
i is collected. In addition, the semi-online algorithm may collect more data

opportunistically.

Then the following theorem guarantees that the system is stable; i.e., the amount
of data in each node does not increase indefinitely:

Theorem 5.4. Assume there exists a feasible offline schedule for a given set of
nodes, data generation rate λi, stop time Tb, and vmax. After sufficiently large
number of periods, for the periodic semi-online algorithm, the amount of data in
each node is less than some constant.

Proof. For sufficiently large k, we show that the amount of data in each node is
not increasing. We consider the following three cases, classified by the travel time

and the amount of collected data: (i) T
(k)
Sp = TOff and c

(k)
i = cOff

i for all i, (ii)

T
(k)
Sp = TOff and ∃i.c(k)

i 6= cOff
i , and (iii) T

(k)
Sp < TOff . From Lemma 5.2, these

three cases enumerate all possibilities. In Case (i), for any node, the amount of
data generated and collected are the same. Thus the amount of data in each node

is not increasing. In Case (ii), for i’s that satisfy c
(k)
i 6= cOff

i , by Lemma 5.3, either

c
(k)
i > cOff

i or i-th node becomes empty during k-th period. For the first case,
the amount of data in the node will decrease. For the second case, the amount is
less than cOff

i , which is a constant. Finally in Case (iii), the theorem holds for
the nodes that become empty for the same reason as above. For other nodes, from
Lemma 5.3, the data mule collects more than cOff

i in the time strictly less than
TOff . Thus the amount of data in each node will decrease.

5.3 Communication Protocol

Let us consider how the data mule communicates with each node in either offline-
scheduled or opportunistic data collection. We design a simple request-response-
based communication protocol. In this protocol, communications are always initi-
ated by the data mule. This helps keep the implementation simple at the nodes,
which have only limited computational resources.

Note that the protocol design described here is one of the simplest examples. We
can possibly improve the throughput in several ways, for example by letting nodes
send multiple packets per single request and introducing a windowing scheme as in
TCP.

5.3.1 Basic Operation. Data from nodes is sent and acknowledged packet by
packet in the following way. The data mule sends a request packet that includes a
request ID and requested data size. The data mule keeps track of the latest request
ID for each node. When a node receives a request, it responds to the data mule by
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sending the data of the requested size with attaching the request ID. When the data
mule receives a packet with the newest request ID for that node, it increments the
request ID and sends the next request. If the data mule does not receive a response
for a request within the predetermined timeout period, it regards the packet was
lost and sends the previous request again.

5.3.2 Scheduled Data Collection. For the scheduled data collections in the offline
plan, the data mule sends a request only to the node designated in each schedule
entry. It continues to send requests until one of the following events happens:

(1) Amount of collected data reached the size designated in the schedule entry.

(2) The data mule arrived at the endpoint of the schedule entry.

(3) The buffer of the node became empty.

Ideally the first and second events happen at the same time, but they usually do
not, due to the error in estimating the effective bandwidth.

5.3.3 Opportunistic Data Collection. For the opportunistic data collection, a
practical issue is that the data mule cannot tell whether it is in the unknown
communication range of a node without actually communicating with it. This can
be accomplished by using advertisement packets. When the data mule tries to start
opportunistic data collection, it first broadcasts an advertise packet. When a node
receives an advertise packet, it responds to that by sending the size of data in its
buffer to the data mule. Then, when the data mule receives the response packet, it
sends a request to that node just as in the scheduled data collection. In this way,
the data mule can communicate with multiple available nodes in parallel and can
adapt dynamically to transient connectivity. To find new nodes in range, the data
mule issues advertisement packets periodically during opportunistic data collection.

5.4 Simulation Experiments

To evaluate the effect of introducing the hybrid connectivity model and the benefit
of using semi-online algorithms in realistic radio environments, we conduct simula-
tion experiments in ns2 with the Shadowing propagation model.

5.4.1 Methods. We have implemented the offline algorithm and the semi-online
algorithm for the DMS problem in the periodic data generation case. We imple-
mented the offline algorithm in Matlab and generated a Tcl script for ns2. The
semi-online algorithm along with the communication protocol are implemented as
the modules of ns2. We run the script on ns2 version 2.33.

To assess the performance, we measure the delivery latency for each data packet
from the time it is generated until the time the base station receives it. For each
test case, the simulation is repeated multiple periods until it reaches stability. We
consider it stable when the average delivery latency of the data received in the
current period is within ±1% of that of the previous period. If it is stable, we use
the data for the next period as the final results.

We use the Shadowing propagation model in ns2. In the Shadowing model,
the received power Pr(d) at distance d is derived as the ratio to that at reference
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Fig. 15. Simulation results: Average data delivery latency: 50 nodes, average of 10 experiments

for each case.

distance d0 as follows:

[

Pr(d)

Pr(d0)

]

dB

= −10β log

(

d

d0

)

+ XdB

where β is path loss exponent, XdB is a Gaussian random variable with zero mean
and standard deviation σdB, which is called the shadowing deviation. Based on
[Stuedi et al. 2005], we set d0 = 1.0, (β, σdB) = (3.0, 6.0) to simulate outdoor
environments. We set the size of known communication range rK to 20[m], where
the theoretical successful reception probability is 99.9%.

Other parameters are as follows. Fifty nodes are randomly placed in a circular
area of radius 200[m] (dense) or 500[m] (sparse). We generate 10 node deployments
for each. For all deployments, the base station is placed at the center of the circular
area and the data mule starts from and comes back to the base station. Data
generation rate λ at each node is 100 or 500[Bytes/sec]. In the communication
protocol, the request timeout is 200 msec and the period to issue advertisement
packet is 5 sec. In ns2, we use 802.11 MAC with RTS/CTS and bandwidth 2
Mbps. Packet size is set to 400 Bytes. We determined the effective bandwidth by
a simple experiment: the data mule and a node are placed 10 m apart and, using
the communication protocol above, the data mule tries to collect data as much as
possible within 10 sec. The average of 10 measurements with different seeds for
random number generator of ns2 was 402440 Bytes, which corresponds to 322.0
Kbps. Based on these results, we use 320 Kbps as the effective bandwidth.

5.4.2 Main Results. Figure 15 shows the average data delivery latency for each
of the four deployment cases. All tested cases reached the stability condition. Av-
erage number of periods until getting stable was 4.0 (min: 4, max: 4) for the offline
algorithm and 5.3 (min: 4, max: 8) for the semi-online algorithm, respectively. The
average data delivery latency was lower in the semi-online algorithm in all cases.
The decrease was larger in the dense deployments (38.9% and 20.6% for λ =100
and 500, respectively) than in the sparse deployments (15.4% and 17.4% for λ =100
and 500, respectively).
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Fig. 16. Simulation results: Effect of overestimating rK (size of known communication range).

5.4.3 Effects of Inaccurate Parameters. For the hybrid connectivity model and
the algorithms (both offline and semi-online) to work, we need to estimate two pa-
rameters: the size of known communication range (rK) and the effective bandwidth.
Larger rK implies better performance, but it is not clear about the consequences
when it is larger than the reality. We have a similar issue for effective bandwidth,
too, especially when the actual effective bandwidth fluctuates over time. Here we
see the effects of overestimating these parameters on both the offline and the semi-
online algorithms.

We use “collection rate” as the performance metric for these experiments. Col-
lection rate RC is calculated in each period and, for k-th period, it is defined as
follows:

R
(k)
C =

∑

i c
(k)
i

∑

i g
(k)
i

,

where g
(k)
i is the amount of data generated at i-th node in k-th period and c

(k)
i is

the amount of data collected by the data mule in k-th period. For the data to be
collected without any loss, RC needs to be 1 on average. On the other hand, if RC

is constantly lower than 1, data accumulates at each node over time and eventually
overflows, resulting in loss of data.

As in the previous experiments, we test each case on four deployments: com-
binations of two node densities (dense and sparse) and two data generation rates
(λ = 100 and 500). For the experiments on known communication range, we test
on rk = 20 (default), 30, 40, and 50. Theoretical probabilities of successful recep-
tion for these values are 99.9%, 98.4%, 93.6%, and 85.1%, respectively. For the
experiments on effective bandwidth, we test on 320 Kbps (default), 480 Kbps, and
640 Kbps.

Figure 16 shows the effect of overestimating rK . In the offline algorithm, the
average of RC for the deployments (from period 6 to 10) was 1.000, 0.991, 0.933,
0.762 for rK =20, 30, 40, 50, respectively. The average was higher in the semi-online
algorithm: 1.000, 0.999, 0.989, and 0.923, respectively.
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Fig. 17. Simulation results: Effect of overestimating the effective bandwidth.

Figure 17 shows the effect of overestimating the effective bandwidth. The average
of RC for the deployments (from period 6 to 10) was 1.000, 0.679, 0.509 for the 320
Kbps case, 480 Kbps case, 640 Kbps case, respectively. These values almost agree
with the ratio to the actual effective bandwidth (≈ 322 Kbps). For the semi-online
algorithm, the average of RC was much higher: 1.000, 0.989, 0.983 for the effective
bandwidth of 320 Kbps, 480 Kbps, 640 Kbps, respectively.

To summarize, the experiments with overestimated rK and effective bandwidth
showed that, in these cases, we can achieve higher collection rate in the semi-
online algorithm than in the offline algorithm. This suggests that the semi-online
algorithm is beneficial in terms of the robustness against inaccurate parameters, as
well as the performance improvements as demonstrated in the first experiments.

6. CONCLUSIONS

When using data mules in sensor networks for data collection, path selection has a
large impact on the latency of data delivery from when it is generated at a sensor
node until it is delivered to the base station. To find a short path with a reason-
able amount of computation, we have formulated the path selection problem as
the Label-Covering Tour (LCT) problem, in which we find the shortest path that
visits a subset of nodes and intersects with the communication ranges of all nodes.
We have shown that the LCT problem is NP-hard and designed an approximation
algorithm. We have also extended the problem and algorithm for the multiple data
mules case, where we gave an integer linear program formulation to obtain lower
bounds of the solution. Simulation experiments have demonstrated our formulation
and approximation algorithms successfully exploit large communication range and
perform better than previous methods. Finally we have considered the case in which
the communication range is only partially known. We have designed the semi-online
algorithms for this case and implemented them on ns2 network simulator. Com-
pared to the offline algorithms, the semi-online algorithms are shown to produce
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consistently better results and provide more robustness against uncertainty, both
of which are preferable for real deployments.
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