
UCSD CSE Technical Report CS2007-0911:

Data Mule Scheduling in Sensor Networks:

Scheduling under Location and Time Constraints

Ryo Sugihara (ryo@ucsd.edu)
Rajesh K. Gupta (rgupta@ucsd.edu)

Computer Science and Engineering,
University of California, San Diego

October 29, 2007

Contents

1 Introduction 3

2 Data Mule Scheduling Problem 5

2.1 Preliminaries . 5
2.1.1 Terminology and definitions . 5
2.1.2 Assumptions . 6

2.2 Problem statement . 6
2.2.1 Instance . 7
2.2.2 Objective . 7
2.2.3 Constraints . 8

2.3 Related work . 8

3 Related Real-time Scheduling Problem 10

3.1 Problem definition . 10
3.2 Related work . 10
3.3 Offline scheduling algorithm . 10

3.3.1 Processor-demand-based feasibility testing . 10
3.3.2 Linear programming formulation . 11

3.4 Non-existence of optimal online scheduling algorithm . 12

4 Data Mule Scheduling: Simple Cases 13

4.1 Constant speed . 13
4.1.1 Problem definition . 13
4.1.2 Polynomial time offline algorithms . 13

4.2 Variable speed . 15
4.2.1 Problem definition . 15
4.2.2 Polynomial time algorithms . 16

4.3 Similarity with speed scaling problem . 20
4.3.1 Constant speed . 20
4.3.2 Variable speed . 21

5 Data Mule Scheduling: General Case 23

5.1 Variable speed with acceleration constraint . 23
5.2 NP-completeness proofs . 24

5.2.1 Membership in NP . 25
5.2.2 NP-hardness: for fixed k ≥ 2 . 26
5.2.3 NP-hardness in the strong sense: for k arbitrary . 30

5.3 Relations with speed scaling problem . 31

6 Mathematical Formulation 33

6.1 Approach . 33
6.1.1 Relations between location, time, and speed . 33
6.1.2 Constructing an equivalent movement . 34

1

6.2 Quadratic programming formulation . 36
6.3 Finding lower bounds . 37

6.3.1 SDP (semidefinite programming) relaxation . 37
6.3.2 Another lower bound for simple location jobs . 38

7 Heuristic Algorithm 40

7.1 Approach . 40
7.1.1 Overview . 40
7.1.2 Structure . 40

7.2 Algorithm . 42
7.2.1 Identifying the tight interval . 43
7.2.2 Recursive maximization . 45
7.2.3 When endpoint speed is unconstrained . 49

7.3 Analysis . 50
7.3.1 Correctness proof . 50
7.3.2 Computational complexity . 50
7.3.3 Approximation ratio . 51

8 Experiments 53

8.1 Method . 53
8.1.1 Test case generation . 53
8.1.2 Evaluation metrics . 54

8.2 Results and discussion . 54
8.2.1 Quality . 54
8.2.2 Scalability . 57

9 Conclusion and Future Work 60

2

Chapter 1

Introduction

Sensor networks are rapidly growing for their large applicability to various purposes. From engineering perspec-
tives, one of the most critical issues in sensor networks is energy, because sensor networks are often deployed
in remote areas where line powers are hard to obtain. It forces the sensor nodes to rely on batteries, but re-
placing the batteries is also hard in many cases. Moreover, sensor network applications often require long-term
measurements over months. For these reasons, improving the energy efficiency is mandatory for sensor net-
works. Particularly, since wireless communication is one of the most energy-consuming operations on a sensor
node, people have been trying to reduce communication, for example by summarizing the information inside
the network.

A primary mode of communication in sensor networks is multi-hop communication, due to limited wireless
communication ranges. To collect sensor data at the base station, sensor nodes forward their data to other nodes
that are closer to the base station. However, multi-hop communication can be inefficient depending on how
densely the sensor nodes are deployed. When the node deployment is very sparse, each hop distance becomes
large and thus the large amount of energy is necessary for sending data over that distance. On the other hand,
when the node deployment is very dense, the nodes close to the base station need to forward the data from
many remote nodes and thus tend to run out of energy soon.

An alternative and relatively new approach for efficient data collection is to exploit the mobility. Particularly,
we consider collecting data from static sensor nodes using a “data mule” via wireless communication. A data
mule is a mobile node that has wireless communication capability and also a sufficient amount of storage to
store the data from the sensors in the field. Some recent sensor network applications use such data mules for
data collection, e.g., a robot in underwater environmental monitoring [VKR+05] and a UAV (unmanned aerial
vehicle) in structural health monitoring [TMF+07]. A data mule travels across the sensing field and collects
data from each sensor node when the distance is short, and later deposits all the data to the base station. In
this way, each sensor node can conserve a significant amount of energy, since it only needs to send the data over
a shorter distance and has no need to forward other sensors’ data all the way to the base station. In addition,
as data mules return to the base station after the travel, energy issue is usually not critical for data mules.

In this paper, we are interested in the following problem: “how to control a data mule such that it collects
data from all the nodes in the minimal amount of time”. We call it the data mule scheduling problem, as we
formulate it as a scheduling problem, viewing communication from each node as a job. We can control the
movement of the data mule (path, speed) as well as its communication (i.e., which node it collects data from at
certain time duration), where the latter corresponds to job allocation in classical scheduling problems. Despite
the similarities, one of most notable differences from real-time scheduling is that the data mule scheduling
problem has location constraints as well as time constraints. Availability of each job is determined by the range
of wireless communication, which primarily depends on the distance from a node and thus serves as a location
constraint. On the other hand, by assuming the bandwidth of wireless communication is constant, we also have
a time constraint for each node necessary for transmitting the data to a data mule. The movement of data mule
determines how the location constraints map to time constraints and produces different real-time scheduling
problems.

Our contributions in the paper are

• Defining the data collection in sensor networks using a data mule as a scheduling problem having both

3

location and time constraints

• Rigorous theoretical analysis on the computational complexity of the problem

• Formulating the problem as mathematical optimization problems using LP (linear programming), QP
(quadratic programming), and SDP (semidefinite programming) relaxation

• Proposing a heuristic algorithm and showing its effectiveness by numerical experiments

This paper is structured as follows. In Chapter 2 we define the data mule scheduling problem and introduce
related work. Chapter 3 discusses related real-time scheduling problems. In Chapter 4 we analyze two simple
cases of the data mule scheduling problem and point out their similarities with speed scaling problems such
as DVS (Dynamic Voltage Scaling). In Chapter 5 we discuss a more general case of the problem and prove
its NP-completeness. In Chapter 6 we formulate the general problem as a nonconvex quadratic programming
problem and find lower bounds of the optimal solution in two different ways including SDP relaxation. We
present an efficient heuristic algorithm for the general problem in Chapter 7. Chapter 8 shows some results
from numerical experiments and Chapter 9 concludes the paper.

4

Chapter 2

Data Mule Scheduling Problem

In this chapter we introduce the data mule scheduling problem. As we have already defined, a data mule is a
mobile node that moves inside the field and collects data from each sensor. The problem is how to control the
data mule so that it can collect data from the sensors in an optimal way, which we define later in the chapter.

As shown in Figure 2.1, we can decompose the problem into the following three subproblems:

1. Path selection: which trajectory the data mule follows

2. Speed control: how the data mule changes the speed during the travel

3. Job scheduling: from which sensor the data mule collects data at each time point

Path selection is to determine the trajectory of the data mule in the sensor field. To collect data from each
particular sensor, the data mule needs to go within the sensor’s communication range at least once. Depending
on the mobility capability of data mule, there can be some constraints on the path, such as the minimum turning
radius.

Speed control is the second subproblem. Once we choose the path, 2-D/3-D data mule scheduling problems
are reduced to 1-D data mule scheduling problem, in which the communication ranges of each node are given
as intervals on the location axis. Speed control is to determine how the data mule changes its speed along the
chosen path. The data mule needs to change the speed so that it stays within each node’s communication range
long enough to collect all the data from it. The objective in this problem is to find an optimal (we discuss the
optimality criteria later) time-speed profile while satisfying that constraint.

Final subproblem is job scheduling. Once the time-speed profile is determined, we get a mapping from each
location to time point. Thus we get a scheduling problem by regarding data collection from each sensor as a job.
Each job has one or more intervals in which it can be executed. Job scheduling is to determine the allocation
of time slots to jobs so that all jobs can be completed.

In this paper, we focus on the subproblems of speed control and job scheduling and leave path selection
problem to our future work. The primary reason is that these two subproblems constitutes 1-D data mule
scheduling problem and that is important in many cases.

2.1 Preliminaries

2.1.1 Terminology and definitions

First we define some basic terms in real-time scheduling.

• A job τ has an execution time e(τ) and a set I(τ) of feasible intervals, containing one or more feasible
intervals.

– A simple job is a job with one feasible interval. A general job can have multiple feasible intervals..

• A feasible interval I ∈ I(τ) is a time interval [r(I), d(I)], where r(I) is a release time and d(I) is a deadline.

5

Path selection Speed control

Speed

Time

Job scheduling

Communication range

node A

node B node C
Location

A

B

C

A

B

C

)(Ae
)(Be
)(Ce

Execution timeLocation job

Time

)(Ae
)(Be
)(Ce

)(Ae
)(Be
)(Ce

Execution time

A’

B’

C’

A’

B’

C’

Job

Time

A’

B’

C’
TimeTime

A’

B’

C’

A’

B’

C’

Figure 2.1: Subproblems of data mule scheduling

– A job can be executed only within its feasible intervals.

Then we define the counterpart terms in location-aware scheduling:

• A location job τL has an execution time e(τL) and a set I(τL) of feasible location intervals, containing
one or more feasible location intervals.

– A simple location job is a location job with one feasible location interval. A general location job can
have multiple feasible location intervals.

• A feasible location interval IL ∈ I(τL) is a location interval [r(IL), d(IL)], where r(IL) is a release location
and d(IL) is a deadline location.

– A location job can be executed only within its feasible location intervals.

We may omit “location” unless it is ambiguous, and we may add “time” to the terms in real-time scheduling
for clarity (e.g. “feasible time interval”).

For an interval I = [r, d] (also for a location interval), we define

• Length: |I| ≡ d− r. It is often called “relative deadline” for a simple job.

• Membership: x ∈ I if and only if r ≤ x ≤ d.

• Containment: I ⊆ I ′ if and only if r′ ≤ r and d ≤ d′ where I ′ = [r′, d′].

• Intersection: I ∩ I = ∅ if and only if there does not exist a point x such that x ∈ I and x ∈ I ′.

2.1.2 Assumptions

• All parameters are deterministic

• All location jobs are preemptible

• Communication bandwidth is constant within the communication range and zero out of the range.

• Each sensor has different amount of data to be collected, i.e., execution time of each location job differs.

2.2 Problem statement

We present the structure of the data mule scheduling problem in its basic form. In the following chapters we
will consider several variations of the problem and give more precise formal definitions.

6

A
B

Location

C

Location

Speed

Time

Time

A
B
C

1-D Data Mule Scheduling problem Time-Speed profile (Solution for the problem)

Corresponding Real Time Scheduling problem

Time

Time-Location profile (determined by Time-Speed profile)

)(Ae
)(Be
)(Ce

Execution time

)(Ae
)(Be
)(Ce

Execution time

Location job

Job

Figure 2.2: Main idea of data mule scheduling problem: A Time-Speed profile determines a Time-Location
profile, which maps the original data mule scheduling problem to a real-time scheduling problem.

2.2.1 Instance

Input of the problem is as follows:

• A set JL of location jobs, each location job τL ∈ JL has

– Execution time e(τL)

– A set I(τL) of feasible location intervals, each feasible location interval IL ∈ I(τL) has

∗ Release location r(IL)

∗ Deadline location d(IL)

• Total travel interval [Xs,Xd]

Each job corresponds to collecting data from each sensor node. Execution time represents the time duration
required to send the data from the sensor to the data mule.

2.2.2 Objective

The objective is to find a time-speed profile and a job allocation so that the total travel time is minimized.
Another possible criteria for optimality is to maximize the amount of collected data while the total travel

time is fixed. It fits a best-effort scenario that each sensor has a large amount of data and it is not possible
to collect all of them within the given travel time. While it may sound reasonable, we do not choose this
criteria because it has some problems in real-world scenarios. One of the main problems is that total amount

7

of collected data does not measure the quality appropriately. More specifically, there are many application
scenarios in which data collected from n different sensors are not as valuable as the same amount of data
collected from 2n sensors. On the other hand, when an application requires data to have a temporal resolution
higher than some threshold, collecting fewer amount of data from more sensors may not be a good strategy.
The quality of data heavily depends on each specific application scenario and cannot be measured solely by the
total amount.

It has been suggested and experimentally shown in [KSJ+04] that the speed of data mule does not affect
the data rate. That is correct under the assumption that each sensor node generates data at constant rate and
that the data mule periodically travels across the field. However, we argue that minimizing the total travel
time is essential in at least following two cases. One case is when the periodic assumption is not valid. For
example in an application scenario where sensors measure event-related data, total travel time directly affects
the delay of delivery. The other case is when each sensor has limited amount of buffer, even we assume periodic
travels. In that case, we need to collect data within certain period to avoid the buffers to overflow, and finding
the minimum travel time helps to assess the feasibility. The same argument holds when we try to configure the
data rate of each sensor so that all the data can be still collected by a data mule.

2.2.3 Constraints

The constraints for each subproblem are as follows. There will be more constraints imposed when we discuss
variations of the problem in the later chapters.

• For speed control:

– Data mule moves from the start to the destination

– One-way movement: data mule is not allowed to move backward

• For job allocation:

– Feasible interval: every job can be executed only within its feasible interval

– Job completion: every job is allocated time equal to its execution time

– Processor demand: data mule can collect data from only one node (i.e., execute only one job) at a
time

2.3 Related work

The term “data mule” was coined by Shah et al. in their paper in 2003 [SRJB03]. They proposed a three-tier
architecture having mobile nodes called Data MULEs (Mobile Ubiquitous LAN Extensions) in the middle tier,
between wired access points and stationary sensors. As we also assumed, Data MULEs collect data from sensors
when they are in close proximity and deposit it at wired access points. The difference is that they assumed Data
MULEs are not controllable and move randomly, and consequently their routing scheme is rather optimistic.

The use of controlled mobility in sensor networks has been studied in several papers. Kansal et al. [KSJ+04]
studied the case in which a data mule (which is called “mobile router” in the paper) periodically travels across
the sensor field along a fixed path. In their model, they can only change the speed of data mule, just like
our focus in this paper. They present an adaptive algorithm that changes the speed such that the amount of
collected data is maximized under the constraint of maximum latency (i.e. travel time for one period). The
main idea of the algorithm is to move slower when the quality of data collection is poorer and vice versa. The
data mule internally classifies the nodes into two classes (“good” and “bad”) depending on how much data has
been successfully received from each node in the earlier periods. They also design a communication protocol
based on directed diffusion [IGE00], in which the data mule issues interest messages to nodes. In this way
the data mule can collect data from the nodes that are not in the direct communication range. They evaluate
their algorithm on a prototype system consists of a mobile robot and motes. In some simple topologies, they
show the adaptive algorithm collects more data than the one uses constant speed. Our work gives a theoretical
background to their work about the computational complexity of the problem and the optimality of schedules.

Some papers discuss the path selection problem with more simplified assumptions compared to ours. For
example, Somasundara et al. [SRS04] assume each sensor produces data periodically but in a different rate

8

and the data mule needs to go to the node’s exact location to collect data (i.e. no remote communication, no
multihop communication). The objective is to find the path of data mule such that it can collect all the data
before the buffer of each sensor overflows. They show the problem is NP-hard by a reduction from Hamiltonian
cycle problem, and formulate it as an ILP (Integer Linear Programming) problem. They present some heuristic
algorithms based on EDF and evaluate them by simulation experiments in terms of how many nodes miss
the deadlines (i.e. buffer overflows). Ma and Yang [MY06] discuss the path selection problem in different
assumptions. Their objective is to maximize the network lifetime, which is defined as the time until the first
node dies (i.e. minimum of the lifetime of all nodes). Different from Somasundara et al.’s paper, they consider
remote wireless communication and also multihop communication among nodes. When the path of data mule is
given, they show the problem of maximizing the network lifetime is formulated as a flow maximization problem
that has a polynomial time algorithm. Choosing the path of data mule is done by their heuristic algorithm
that uses the divide and conquer approach and finds a near-optimal path for each part of the nodes. A notable
difference from our assumption is that they assume the time needed to transmit the data from each node to the
data mule is negligible. They evaluate the algorithm by simulation.

Jea et al. [JSS05] studied more specialized scenario in which multiple data mules are simultaneously on the
field. The paths of these data mules are fixed. Their main interest is in how to assign each sensor node to
each data mule and not in how to control the motion of the data mules. The objective is to balance the load
among the data mules. They assume each data mule can communicate with others by using powerful radios, and
propose a distributed algorithm for load balancing. They evaluate their algorithm by a simulation on TOSSIM.

In between random mobility and controlled mobility, we can consider predictable mobility, according to the
classification in [KSJ+04]. This applies to the case in which public transportation vehicles such as bus and
trains are used as data mules. Chakrabarti et al. [CSA03] analyzed the gain in power consumption of exploiting
predictable mobility for data collection. They modeled the data collection process as a queueing system and
showed a significant reduction in power consumption.

Other than these papers on mobility in sensor networks, there are a number of papers about mobility in the
context of mobile ad-hoc networks (MANETs). There are a lot of overlap between these two sets of work, but
we can roughly say that sensor networks consider many-to-one data collection and MANETs consider many-
to-many (i.e., peer-to-peer) communication as their objectives. Mobility in MANETs has been overcame and
exploited to improve data delivery rate between each node. In addition, each node is often assumed to be mobile
in MANETs, while it is usually static in sensor networks. Furthermore, a need for energy-efficiency tends to be
less stringent in MANETs compared to that in sensor networks.

The classification of mobility into random, predictable, and controlled also works for MANETs. Epidemic
Routing [VB00] is a routing protocol for MANETs consisting of the nodes with random mobility. It guar-
antees eventual message delivery by randomly exchange messages among mobile nodes. ZebraNet [JOW+02]
builds upon a similar idea to improve the rate of successfully collected data in a habitat monitoring applica-
tion. Though ZebraNet is usually considered a sensor network application, high mobility of nodes is closer to
MANETs applications. Message Ferrying [ZAZ04] assumes controllable mobile nodes that mediate communi-
cations between sparsely deployed nodes. They also analyze this model for multiple ferries case [ZAZ05] and
randomly moving nodes case [TAZ06].

9

Chapter 3

Related Real-time Scheduling Problem

Data mule scheduling problem is reduced to a real-time scheduling problem once we specify the time-speed
profile of the data mule. More specifically, if a schedule for the corresponding real-time scheduling problem is
valid, we can convert it to a valid schedule for the original data mule scheduling problem. In this chapter we
present some related issues in real-time scheduling problem, specifically about feasibility testing algorithm.

3.1 Problem definition

The problem is formally defined as follows:

PREEMPTIVE SCHEDULING FOR GENERAL JOBS

INSTANCE: Set J of general jobs, for each general job τ ∈ J , an execution time e(τ) ∈ Q+ and a
set I(τ) of feasible intervals, for each feasible interval I ∈ I(τ), a release r(I) ∈ Q+

0
and a deadline

d(I) ∈ Q+
0
.

QUESTION: Is there an one-processor preemptive schedule for J that satisfies the release time
constraints and meets all the deadlines, i.e., a one-to-one function σ : TS → Q+

0
where JS is a set of

subjobs when each general job τ ∈ J is subdivided into any number of subjobs τ1, ..., τk such that
∑k

i=1 e(τi) = e(τ), σ(τi+1) ≥ σ(τi) + e(τi), and there exists I ∈ I(τ) such that σ(τi) ≥ r(I) and
σ(τi) + e(τi) ≤ d(I) for 1 ≤ i ≤ k?

3.2 Related work

Preemptive scheduling for single processor has a long history of work. Liu and Layland [LL73] showed that
Earliest Deadline First (EDF) is optimal dynamic scheduling algorithm in the sense that EDF finds a feasible
schedule if and only if there is a feasible schedule.

When each job has multiple feasible intervals, however, there are only few studies. Simons and Sipser
[SS84] considered unit-length, non-preemptive jobs that have multiple feasible intervals, and showed the general
problem is NP-complete. More recently, Shih et al. [SLC03] showed NP-hardness in case of preemptive jobs,
but their assumption does not allow a job execution to continue over multiple feasible intervals: instead, partial
work is lost at the end of each feasible interval if a job is incomplete. Shih and colleagues [CWSK05] also present
approximation algorithms for a similar problem in which the objective is to maximize the number of completed
jobs both for preemptive and non-preemptive jobs, but they employ the non-continuation assumption above.

3.3 Offline scheduling algorithm

3.3.1 Processor-demand-based feasibility testing

Baruah et al. [BHR93] showed the following theorem for feasibility testing based on processor demand. They
considered one-processor preemptive scheduling problem for periodic tasks. Further, the relative deadline of each

10

task can be smaller than its period (i.e., arbitrary relative deadline). Under these assumptions, the following
theorem holds:

Theorem 3.1 (Baruah et al. [BHR93]). Let τ = {T1, ..., Tn} be a task system. τ is not feasible iff there exist
natural numbers t1 < t2 such that g(t1, t2) > t2 − t1

Processor demand g(t1, t2) is the sum of the length of the tasks whose feasible interval is completely contained
in the interval [t1, t2]. It gives the total amount of execution time required in the interval

g(t1, t2) =
∑

τi∈T

[ri,di]∈[t1,t2]

ei

Lemma 3.2. For any t1 < t2 satisfying g(t1, t2) > 0, there exist t′1 ∈ {ri} and t′2 ∈ {di} such that t1 ≤ t′1 <
t′2 ≤ t2, g(t1, t2) = g(t′1, t

′
2) .

Proof. Choose t′1, t
′
2 as follows:

t′1 = min
τi∈T,ri≥t1

{ri}

t′2 = max
τi∈T,di≤t2

{di}

Since there is no task released in interval [t1, t
′
1), g(t1, t2) = g(t′1, t2). Similarly, since there is no task having

a deadline in interval (t′2, t2], g(t′1, t2) = g(t′1, t
′
2). Therefore, g(t1, t2) = g(t′1, t

′
2) for these t′1, t

′
2. Further, since

g(t1, t2) > 0, [t1, t2] contains at least one task, and thus t1 ≤ t′1 < t′2 ≤ t2.

Lemma 3.3. For any t1 < t2 and t′1 < t′2 where t′1 ∈ {ri}, t′2 ∈ {di}, g(t1, t2) ≤ t2 − t1 if and only if
g(t′1, t

′
2) ≤ t′2 − t′1.

Proof. (“if” part) Proof by contrapositive. We first assume ∃t1 < t2, g(t1, t2) > t2 − t1 and prove ∃t′1 ∈
{ri},∃t′2 ∈ {di}, t′1 ≤ t′2 ∧ g(t′1, t

′
2) > t′2 − t′1. By Lemma 3.2, there exist t′1 ∈ {ri} and t′2 ∈ {di} such that

g(t′1, t
′
2) = g(t1, t2) > t2 − t1. Choose t′1 = minτi∈T,ri≥t1{ri} and t′2 = maxτi∈T,di≤t1{di}. Since t2 − t1 > 0,

g(t1, t2) > 0 and there is at least one task contained in interval [t1, t2]. Thus t′2 − t′1 > 0 and t2 − t1 ≥ t′2 − t′1.
Therefore, ∃t′1 ∈ {ri},∃t′2 ∈ {di}, t′1 ≤ t′2 ∧ g(t′1, t

′
2) > t′2 − t′1.

(“only if” part) Obvious from Lemma 3.2.

The following theorem follows immediately from Theorem 3.1 and Lemma 3.3.

Theorem 3.4. Taskset is feasible if and only if g(t′1, t
′
2) ≤ t′2− t′1 for any t′1 ∈ {ri}, t′2 ∈ {di} satisfying t′1 < t′2.

3.3.2 Linear programming formulation

Using Theorem 3.4, we formulate the scheduling problem by linear programming. Since there is a polynomial
time algorithm to solve linear programming, it is a polynomial time offline scheduling algorithm.

Without losing generality, assume the earliest release time of all jobs is at time 0 and the latest deadline is at
time T . We split the interval into k intervals [s0(= 0), s1], [s1, s2], ..., [sk−1, sk(= T)], where si ∈ Pr ∪ Pd, si ≤
si+1 and Pr, Pd are the set of release time and deadline, respectively. For every job τ ∈ J , consider variables
p1(τ), ..., pk(τ), in which pi(τ) represents the time allocated to job τ during the interval [si−1, si]. Suppose there
are n jobs and the total number of feasible intervals is w, the number of variables are O(nw).

We construct a linear programming problem to find pi(τ) for all jobs and all intervals satisfying following
constraints:

• (Feasible intervals) For all τ ∈ J , pi(τ) = 0 if [si−1, si] 6∈ I(τ).

• (Job completion) For all τ ∈ J ,
∑k

i=1 pi(τ) = e(τ).

• (Processor demand) For all 1 ≤ i ≤ k,
∑

τ pi(τ) ≤ si − si−1.

Note si’s are given constants and thus this is a linear programming problem. This construction is done in
polynomial time and linear programming problem is solvable in polynomial time. After obtaining a feasible
solution, we divide each interval [si−1, si] to each job τ such that τ is allocated for time pi(τ) within the interval.
The order of jobs within each interval is arbitrary.

11

job 1: e(1) = 1

job 2: e(2) = 1

Time

(job 3: e(3) = 1)

α+1
1 2 30

α+2

Figure 3.1: Counterexample for showing non-existence of optimal online algorithm for PREEMPTIVE
SCHEDULING FOR GENERAL JOBS.

3.4 Non-existence of optimal online scheduling algorithm

In offline scheduling, information of all jobs is given to the scheduler in advance before the processor starts
executing jobs. To be more practical, it would be preferable if there is an online scheduling algorithm that
is optimal, such as EDF algorithm for preemptive scheduling. To be clear, an online scheduling algorithm
determines the schedule solely based on the information of the jobs that are already released. We assume the
information of a job, including its execution time and all feasible intervals, gets available to the scheduler when
the job is first released. Unfortunately, the following theorem gives a negative result.

Theorem 3.5. There is no optimal online scheduling algorithm for PREEMPTIVE SCHEDULING FOR GEN-
ERAL JOBS.

Proof. Assume there exists such optimal online scheduling algorithm. We give an example set of jobs and show
that, for any job allocation until a certain time, an adversary can construct a job released later that leads to a
scheduling failure, yet the set of jobs as a whole remains feasible.

Figure 3.1 is a counterexample consisting of three jobs. Assume the optimal online algorithm allocates time
p and q (0 ≤ p, q ≤ 1, p + q ≤ 1) to job 1 and 2, respectively, within the interval [0, 1]. We assume q = 1 − p
since the algorithm is optimal. Note that, at time=1, the algorithm has no information about job 3, which is
released later. Assume job 3 has a feasible interval [1+α, 2+α] and the execution time is one. Since the length
of the interval is one, the whole interval needs to be allocated to job 3 to finish it. For 0 ≤ p < 1, we choose
α = 1 − p − ε, where ε is a small constant satisfying ε > 0, p + ε < 1. Then, job 1 cannot be finished because
it can be allocated up to 1 − p − ε within the interval [1, 2] and the total allocation to job 1 is 1− ε, which is
smaller than its execution time.

For p = 1, we choose α = ε and then job 2 cannot be finished for a similar reason. Clearly, the set of jobs
remains feasible and schedulable by an offline algorithm (we can finish all three jobs by allocating [0, α] to job
2, [α, 1 + α] to job 1 to finish, [1 + α, 2 + α] to job 3 to finish, and [2 + α, 3] to job 2). This is a contradiction
to the assumption that the algorithm is optimal.

12

Chapter 4

Data Mule Scheduling: Simple Cases

We start with two simple cases for location-aware scheduling. One is constant speed, where the data mule
moves at a constant speed from the start to the destination. The other is variable speed, where the data mule
can freely change the speed. We present optimal algorithms for each of the variations and see some interesting
similarities with speed scaling schemes such as dynamic voltage scaling (DVS).

4.1 Constant speed

4.1.1 Problem definition

The problem is formally defined as a decision problem as follows:

CONSTANT SPEED 1-D DATA MULE SCHEDULING

INSTANCE: Set JL of location jobs, for each location job τL ∈ JL, an execution time e(τL) ∈ Q+,
and a set I(τL) of “feasible location intervals”, for each feasible location interval IL ∈ I(τL), a
release location r(IL) and deadline location d(IL), a start Xs ∈ Q+

0
, a destination Xd ∈ Q+, and a

total travel time T ∈ Q+.
QUESTION: Is there a valid schedule for the corresponding PREEMPTIVE SCHEDULING FOR
GENERAL JOBS problem, if the data mule move at the constant speed v0 = Xd−Xs

T ? (i.e., Is a set
J of jobs schedulable, where, for each job τ ∈ J , an execution time e(τ) = e(τL) and a set Aτ of
feasible intervals, for each feasible interval a ∈ Aτ , a release time r(a) = r(IL)/v0 and a deadline
d(a) = d(IL)/v0, where IL ∈ I(τL) and τL is the corresponding location job in the original problem?)

In the optimization version of the problem, the objective is to minimize T , i.e., to maximize v0.

4.1.2 Polynomial time offline algorithms

When we assume the data mule cannot change the speed once it starts to move, there clearly does not exist an
optimal online scheduling algorithm. For example, suppose such an algorithm exists and determines the optimal
speed v0 for a certain set of location jobs. Then, since the algorithm by definition does not know about the jobs
released (for the first time) in the future, it cannot complete a job released in the future that has an execution
time e and a feasible location interval of length (v0 − ε)e (where ε > 0), which contradicts the assumption.

Accordingly, we provide two optimal offline scheduling algorithms, each for simple location jobs and general
location jobs, respectively.

Simple location jobs

When each location job has one feasible location interval, following simple algorithm (Find-Min-MaxSpeed)
finds the maximum possible v0 such that all location jobs can be completed. Find-Min-MaxSpeed applies
processor-demand based feasibility test (Theorem 3.4) for all possible pairs of a release location of one location
job and a deadline location of another location job.

13

Find-Min-MaxSpeed(JL)

1 for each location interval IL = [r(τ ′
L), d(τ ′′

L)] s.t. τ ′
L, τ ′′

L ∈ JL, r(τ ′
L) ≤ d(τ ′′

L)
2 do ⊲ Calculate processor demand for IL

3 d =
∑

τL∈JL,I(τL)⊆IL

e(τL)

4 u[IL]← |IL|
d

⊲ Maximum possible speed allowed for IL

5 return minIL
u[IL]

where I(τL) is the feasible location interval for job τL. Note we now consider the case in which each τL has only
one feasible interval. This algorithm runs in O(n3) time where n is the number of location jobs, but we can
improve the running time to O(n2) by computing the processor demand incrementally. Specifically, for each
starting location, by having a list of jobs sorted by their deadline locations, we can incrementally extend the
interval and calculate the processor demand in O(1) time. Then it takes O(n) time for each starting location,
and since there are at most n starting locations, it takes O(n2) as a whole.

This algorithm is correct and optimal for the following reasons. For correctness, Theorem 3.4 guarantees the
feasibility iff, for all possible pairs of release time and deadline, the processor demand for the interval is equal
or less than the length of the interval. In the algorithm, this condition is satisfied since we choose the minimum
of maximum possible speed for all pairs of release and deadline locations, and thus the corresponding set of
location jobs is feasible. Optimality is shown from the same argument: as the processor demand condition above
is both necessary and sufficient condition for feasibility, v0 chosen by the algorithm is the maximum possible
speed such that the corresponding set of location jobs remains feasible.

General location jobs

For general location jobs case that each job may have multiple feasible location intervals, we treat execution
time for each feasible location interval as a parameter and formulate the problem as a linear programming. The
formulation is quite similar to the one in Section 3.3.2, except that now we map the location to time. We solve
the optimization version of the problem by regarding v0 as a variable to maximize.

We split the location interval [Xs,Xd] into (2m+1) location intervals [l0(= Xs), l1], [l1, l2], ..., [l2m, l2m+1(=
Xd)] (li ≤ li+1), where m is the number of feasible location intervals of all location jobs, and each li is either
a release location or a deadline location of a feasible location interval. Then we map each location interval
to a time interval using si = li/v0, and obtain (2m + 1) non-overlapping time intervals [s0(= 0), s1], [s1, s2],
..., [s2m, s2m+1(= T)]. Note each si is a variable, since v0 is a variable. In the same way, we map each location
job in JL to a job by mapping each feasible location interval of the job to a feasible time interval, and obtain
a new set of jobs J .

For every job τ ∈ J , we consider variables p0(τ), ..., p2m(τ), in which pi(τ) represents the time allocated to
job τ during the time interval [si, si+1]. Equivalently, pi(τ) represents the time allocated to job τL within the
location interval [li, li+1].

We construct a linear programming problem as follows:

Constant speed, general location jobs

Variables

• v0: speed of data mule

• pi(τ) (0 ≤ i ≤ 2m): time allocated to job τ in interval [si, si+1] (or equivalently, time allocated to location
job τL in location interval [li, li+1])

Objective Maximize v0

14

Constraints

• (Positiveness) pi(τ) ≥ 0

• (Feasible intervals) For all τ ∈ J , if [li, li+1] 6∈ I(τL),

pi(τ) = 0 (4.1)

where τL ∈ JL is mapped to τ ∈ J .

• (Job completion) For all τ ∈ J ,

2m∑

i=0

pi(τ) = e(τ) (= e(τL)) (4.2)

• (Processor demand) For all 0 ≤ i ≤ 2m,
∑

τ∈J

pi(τ) ≤ si+1 − si

=
li+1 − li

v0
(4.3)

The constraint on processor demand is converted to a linear constraint by introducing a new variable u0 = 1
v0

instead of v0. This algorithm is correct and optimal from a similar argument as single feasible interval case
above.

4.2 Variable speed

4.2.1 Problem definition

Variable speed case of the data mule scheduling problem is formally defined as follows:

VARIABLE SPEED 1-D DATA MULE SCHEDULING

INSTANCE: Set JL of location jobs, for each location job τL ∈ JL, an execution time e(τL) ∈ Q+,
and a set I(τL) of “feasible location intervals”, for each feasible location interval IL ∈ I(τL), a
release location r(IL) and deadline location d(IL), a start Xs ∈ Q+

0
, a destination Xd ∈ Q+, a speed

range [vmin, vmax], and a total travel time T ∈ Q+.
QUESTION: Is there set S of speed changing points, consisting of 2m points where m is the total
number of feasible location intervals for all location jobs, that characterizes the travel from Xs to
Xd satisfying the speed constraint, such that there exists a satisfying schedule for the corresponding
PREEMPTIVE SCHEDULING FOR GENERAL JOBS problem? (i.e., Each speed changing point
s ∈ S is a tuple of a location x(s) ∈ Q+

0
, a time t(s) ∈ Q+

0
, and a speed v(s) ∈ Q+

0
satisfying vmin ≤

v(s) ≤ vmax. S is sorted by t(s) and satisfying x(si+1)−x(si) = v(si)(t(si+1)−t(si)) for 1 ≤ i < 2m.
Define time-speed profile v(t) by a piecewise constant function v(t) = v(sk) where k is an integer

satisfying t(sk) ≤ t < t(sk+1). Define time-location profile x(t) by x(t) =
∫ t

0
v(t)dt. For functions

f : Pr → Q+
0
, g : Pd → Q+

0
where Pr =

⋃

τL∈JL

⋃

IL∈I(τL) r(IL), Pd =
⋃

τL∈JL

⋃

IL∈I(τL) d(IL),

f(r(IL)) = minSt(r(IL)), g(d(IL)) = max St(d(IL)), and St(y) = {t|x(t) = y}, is a set J of
jobs schedulable, where, for each job τ ∈ J , an execution time e(τ) = e(τL) and a set I(τ) of
feasible intervals, for each feasible interval I ∈ I(τ), a release time r(I) = f(r(IL)) and a deadline
d(I) = g(d(IL)), where IL ∈ I(τL) and τL is the corresponding location job in the original problem?)

Functions f and g represent mapping functions from location to a time point. We need two separate functions
for release locations and deadline locations, since a single location can map to a time interval when the data
mule stops at the location. In this case, release location maps to the beginning of the time interval and deadline
location maps to the end of it.

We can restrict v(t) to be piecewise constant, since any speed change within an interval of neighboring two
points in Pr ∪ Pd can be replaced by a constant speed without affecting the corresponding real-time scheduling
problem and thus its feasibility.

15

4.2.2 Polynomial time algorithms

Simple location jobs

When vmin = 0, we show the following EDF-based algorithm is an optimal online algorithm that minimizes
the total travel time. In the algorithm, EDF-with-stop, the data mule moves at vmax while executing a job
having the earliest deadline, just in the same way as ordinary EDF algorithm. However, when a job is not
completed at its deadline, the data mule stops until the job is completed and moves at vmax again.

EDF-with-stop(JL)

1 ⊲ Init: Set of active jobs: JA, init with ∅
2 ⊲ Data mule’s speed: v, init with vmax

3 ⊲ Time allocated to jobs: a(τL) for all τL ∈ JL, init with zero
4 ⊲ Current location: xc, init with Xs

5 On ∃τL ∈ JA, d(τL) = xc ∧ a(τL) < e(τL): ⊲ Unfinished jobs at deadline
6 J0 ← {τL|τL ∈ JA, d(τL) = xc ∧ a(τL) < e(τL)}
7 v ← 0 ⊲ Stop
8 Complete each job in J0

9 JA ← JA \ J0

10 v ← vmax ⊲ Move at vmax again
11 τed ← arg minτL∈JA

d(τL) ⊲ Job with earliest deadline
12 Execute τed

13 On ∃τL ∈ JL, r(τL) = xc ⊲ Job released
14 JA ← JA ∪ {τL|r(τL) = xc}
15 τed ← arg minτL∈JA

d(τL)
16 Execute τed

17 On ∃τL ∈ JA, a(τL) = e(τL) ⊲ Job completed
18 JA ← JA \ τL

19 τed ← arg minτL∈JA
d(τL)

20 Execute τed

We have a following theorem about the optimality of EDF-with-stop.

Theorem 4.1. EDF-with-stop is optimal for VARIABLE SPEED 1-D DATA MULE SCHEDULING for
simple location jobs when vmin = 0

Proof. Every valid schedule that uses the speed between 0 and vmax can be converted to the one that only uses
0 and vmax. Thus, for a valid schedule, the time to stop is minimized if and only if the schedule is optimal.
Further, for a valid and reasonable schedule that does not have idle time while stopping, the idle time while
moving at vmax is minimized if and only if the schedule is optimal.

We consider another hard real-time scheduling problem in which we want to maximize the allocated time, or
equivalently to minimize the idle time. Since it is a hard real-time scheduling, we do not allow the processor to
execute a job after its deadline, and thus some jobs may be left unfinished. However, a non-standard assumption
is that partial job execution counts in this problem. We claim the following algorithm similar to EDF is optimal
for the problem:

Algorithm: At any time, allocate a job with the earliest deadline from the set of available jobs

Note this algorithm is identical to EDF when the system is underloaded. We show this algorithm minimizes the
idle time by converting from an optimal schedule. Let A and Aopt denote the allocation by the algorithm and
the optimal schedule, respectively. Allocation during time interval [ta, tb] is denoted as A(ta, tb). We compare
A and Aopt from the beginning and swap allocations in Aopt as follows when they differ:

• Case 1: Aopt(ta, tb) = τ1, A(ta, tb) = τ2, τ1 6= τ2

In this case, there exists a pair (t′a, t′b) such that t′a ≥ tb and Aopt(t
′
a, t′b) = τ2, since the time allocated to

16

location job 1: e(1) = 1

(location job 2: e(2) =)

Location
minv maxv0

min

minmax

v

vv −

Figure 4.1: Counterexample for showing non-existence of optimal online algorithm for VARIABLE SPEED 1-D
DATA MULE SCHEDULING for simple location jobs when vmin > 0.

τ2 by the time ta in Aopt is shorter by (tb− ta) than that in A, and thus τ2 is not finished yet in Aopt. For
the same reason, we can make a list of pairs L = {(t′a, t′b)} such that

∑

(t′
a
,t′

b
)∈L(t′b − t′a) = tb − ta. For all

pairs (t′a, t′b) in L, we swap the allocation and obtain Aopt(t
′
a, t′b) = τ1 and Aopt(ta, tb) = τ2, which makes

the allocation in (ta, tb) identical to A. It is possible because the time t′b is before the deadline of τ1, since
t′b ≤ d(τ2) ≤ d(τ1) (because of EDF-based allocation).

• Case 2: Aopt(ta, tb) = ∅, A(ta, tb) = τ
From the same argument as Case 1, job τ is not finished in Aopt at ta, and we can swap the allocation
to obtain Aopt(t

′
a, t′b) = τ1 and Aopt(ta, tb) = τ2 for a list of pairs L = {(t′a, t′b)} such that t′a ≥ tb,

Aopt(t
′
a, t′b) = τ , and

∑

(t′
a
,t′

b
)∈L(t′b − t′a) = tb − ta.

• Case 3: Aopt(ta, tb) = τ , A(ta, tb) = ∅
This does not happen for the following reason: since the allocation up to time ta is identical, τ is not
finished yet in A at ta. However, it is a contradiction, since τ is available at ta and the algorithm allocates
time to a job whenever there are any available jobs.

EDF-with-stop allocates exactly the same way as this algorithm when the data mule is moving (at vmax),
thus minimizes the idle time while moving. Therefore, EDF-with-stop minimizes the total travel time.

When vmin > 0, the following theorem states that there is no optimal online algorithm.

Theorem 4.2. There is no optimal online scheduling algorithm for VARIABLE SPEED 1-D DATA MULE
SCHEDULING for simple location jobs when vmin > 0

Proof. Assume there exists such optimal online algorithm. Figure 4.1 shows an example we use. We assume the
total travel interval is [0, vmax]. Let p denote the time the optimal algorithm spent on moving from location 0
to vmin. Since the range of speed is [vmin, vmax], vmin

vmax
≤ p ≤ 1. For an optimal algorithm, we can assume the

whole time is spent on processing location job 1, which is the only available job.
When p < 1, the adversary releases location job 2, which has feasible location interval [vmin, vmax] and

execution time vmax−vmin

vmin
. Since the data mule can spend at most vmax−vmin

vmin
seconds to move from vmin to

vmax, it needs to process location job 2 for the whole time to finish it, and thus it is impossible to finish both
job 1 and 2. The set of jobs is schedulable by an offline algorithm: moving at vmin all the time, processing job
1 until completion and then job 2.

When p = 1, the adversary does not release location job 2. Then the total travel time is at least 1+ vmax−vmin

vmax
,

which is strictly larger than 1 second. However, an optimal offline schedule can reduce the total travel time to
1 second, by moving at vmax all the time and finishing location job 1.

We have the following optimal offline algorithm, based on Yao et al.’s algorithm [YDS95] for dynamic voltage
scaling. The algorithm is based on processor-demand analysis and uses Find-Min-MaxSpeed (in Section 4.1.2)
internally.

17

1 repeat

2 vc ← Find-Min-MaxSpeed(JL)
3 if vc < vmin

4 then return INFEASIBLE
5 elseif vc > vmax

6 then Set vmax for all remaining intervals and Finish
7 else

8 Set vc for the current critical interval
9 Remove jobs within the critical interval

10 Compress remaining jobs (as in [YDS95])

Here is how this algorithm works. Find-Min-MaxSpeed finds a critical interval and the corresponding
speed. It is the minimum speed that makes the processor demand for all location intervals equal or less than
the time allocated to that interval. In other words, if the data mule moves at the speed more than vc, there is at
least one interval in which the time is less than the processor demand (thus violates the feasibility). Therefore,
if vc < vmin (Line 3), it is infeasible. In each iteration, vc is nondecreasing. This is shown by the same reasoning
as in [YDS95]. When vc reaches vmax, we cannot increase the speed of any remaining location intervals. Thus
we set the speed to vmax for all these intervals (Line 6).

This algorithm runs in O(n3) time, since each iteration takes O(n2) time by using the improved implemen-
tation of Find-Min-MaxSpeed and at least one job is removed at each iteration.

General location jobs

When a job may have multiple feasible location intervals, the following theorem states there is no optimal online
algorithm. It is proved in a similar way as Theorem 3.5.

Theorem 4.3. There is no optimal online scheduling algorithm for VARIABLE SPEED 1-D DATA MULE
SCHEDULING for general location jobs

Proof. Assume there exists such optimal online scheduling algorithm. We give an example set of location jobs
and show that, for any job allocation until a certain location, we can construct a location job released later that
makes the total travel time take longer than that of the optimal offline algorithm.

Figure 4.2 is an example consists of three location jobs. Assume the algorithm allocates time p and q
(p, q ≥ 0, p + q ≤ 1) to location job 1 and 2, respectively, within the location interval [0, vmax]. We assume
q = 1 − p since the algorithm is optimal and the speed is vmax all the time without any idle time in the
optimal offline algorithm, as we see later. Note that, at location vmax, the algorithm has no information
about location job 3, which is released afterwards. Assume location job 3 has a feasible location interval
[(1 + α)vmax, (2 + α)vmax] (0 < α ≤ 1) and the execution time is one. Since the length of the feasible location
interval equals to vmax, the whole location interval needs to be allocated to location job 3 to finish it while
moving in speed vmax.

The optimal (i.e., minimum) travel time in this example is 3 seconds. It is achieved by moving at speed
vmax all the time, while allocating in order as follows: α second to job 2, 1 second to job 1 to finish, 1 second
to job 3 to finish, and (1− α) second to job 2 to finish all the location jobs at location 3vmax.

For the optimal online algorithm we assume, however, an adversary can easily choose α such that the total
travel time is strictly greater than 3 seconds. Specifically, if the adversary chooses any value so that α 6= 1− p,
the data mule either needs to decrease the speed (to finish location job 1 or 2) or moves without executing
any jobs (because there is no unfinished location job available) in the location intervals [vmax, (1 + α)vmax]
and [(2 + α)vmax, 3vmax]. In either case, the total travel time is greater than 3 seconds, which contradicts the
assumption.

As for offline algorithms, we can achieve the optimality by using linear programming. We omit the details
of the formulation here, as it is quite similar to the one for constant speed case in the previous section, except
that we add the speed of data mule vi for each location interval [li, li+1] as variables.

When vmin > 0, we can construct a linear programming problem as follows:

Variable speed, general location jobs, vmin > 0

18

location job 1: e(1) = 1

location job 2: e(2) = 1

Location

(location job 3: e(3) = 1)

max)1(vα+

maxv max2v max3v0
max)2(vα+

Figure 4.2: Counterexample for showing non-existence of optimal online algorithm for VARIABLE SPEED 1-D
DATA MULE SCHEDULING for general location jobs.

Variables For each location interval [li, li+1] (0 ≤ i ≤ 2m),

• vi: speed of data mule

• pi(τ): time allocated to job τ

Objective Minimize the total travel time

2m∑

i=0

li+1 − li
vi

(4.4)

Constraints

• (Speed)

vmin ≤ vi ≤ vmax (4.5)

• (Feasible intervals) For all τ ∈ J , if [li, li+1] 6∈ I(τL)

pi(τ) = 0 (4.6)

where τL ∈ JL is mapped to τ ∈ J .

• (Job completion) For all τ ∈ J ,

2m∑

i=0

pi(τ) = e(τ) (4.7)

• (Processor demand)

∑

τ∈J

pi(τ) ≤ li+1 − li
vi

(4.8)

We can eliminate 1
vi

terms from (4.4) and (4.8) by introducing new variables ui = 1
vi

instead of vi. From (4.5),

the range of ui is 1
vmax

≤ ui ≤ 1
vmin

. Now the objective and all the constraints are linear to the variables. This
algorithm is correct and optimal from a similar argument as single feasible interval case above.

When vmin = 0, there is a subtle problem in the above formulation in its original form, since it contains
1
vi

terms. We can accommodate this case by using the variables di = li+1−li
vi

that represents the time to stay

within the interval [li, li+1]
1. Then we can change the formulation as follows:

1Strictly speaking, interpreting di as the time to stay within the interval is not correct. When li = li+1 and di > 0 (i.e., the data
mule stops at li), the actual time to stay within the interval [li−1, li] is (di−1 + di) if we include the boundary points. However,
this is only an issue of interpretation, and the formulation is correct due to the constant speed assumption within each interval.

19

• the objective is minimizing

2m∑

i=0

di (4.9)

• the speed constraint (4.5) is rewritten as

li+1 − li
vmax

≤ di (4.10)

Note we do not have an upper bound.

• the processor demand constraint (4.8) is rewritten as

∑

τ∈J

pi(τ) ≤ di (4.11)

Notice that, when vmin = 0, even a job only with zero-length feasible location intervals (i.e., r(I) = d(I) for all
I ∈ I(τL)) can be scheduled by making the data mule stop at the location to execute the job. We can handle
this situation as well by changing the formulation as above.

4.3 Similarity with speed scaling problem

In the data mule scheduling, we map each location to time point by determining the speed of the data mule and
obtain corresponding real-time scheduling problems. Location quantities such as release and deadline locations
are the variables dependent on the speed and time quantity (execution time) does not change. Conversely, we
can map time points to locations: release and deadline locations are unchanged and execution time changes
according to the speed of the data mule. Interestingly enough, the resulting problem is analogous to speed
scaling problem such as DVS (dynamic voltage scaling), which is a popular technique for power management
in embedded systems. Here we show the correspondence between data mule scheduling problems and speed
scaling problems.

4.3.1 Constant speed

The constant speed case corresponds to static speed scaling (SSS) scheme, which is defined as follows:
An instance of SSS problem is {JS , [smin, smax]}, where

• JS is a set of jobs, for each job τ in JS

– r(τ), d(τ): release time and deadline

– ec(τ): execution time in CPU cycle count. When the processing speed is s, execution time e(τ) is
ec(τ)/s.

• smin, smax: lower bound and upper bound of processing speed, represented in CPU cycles per unit time.
smax is usually determined by hardware limitation. smin is a sufficiently small value.

Assuming preemptive scheduling and that the processing speed is continuous, the objective is to find a
constant processing speed s0 (smin ≤ s0 ≤ smax) that keeps the set of jobs feasible, while minimizing the
energy consumption E(s0) defined as follows:

E(s0) =

∫ t1

t0

P (s0)dt (4.12)

where t0 is the time the first job released, t1 is the time the last job completes, and P is the power, i.e., the
energy consumed per unit time. When P is a convex function of the processor speed, as is generally assumed,
the objective is equivalent to minimizing s0.

20

Now let’s consider an instance of constant speed data mule scheduling problem {JL, [vmin, vmax]}, where
JL is a set of location jobs. When the speed is v0, a location job τL is mapped to a job τ that has a release

time r(τ) = r(τL)
v0

, a deadline d(τ) = d(τL)
v0

, and an execution time e(τ) = e(τL). The objective is to minimize
the total travel time, which is equivalent to maximizing the speed v0. By expanding the time axis by a factor
v0, we can convert the original problem to an equivalent problem {J ′, [v′

min, v′
max]}, where each job τ ′ in J ′

has a release time r(τ ′) = r(τL), a deadline d(τ ′) = d(τL), and an execution time e(τ ′) = v0e(τ). The speed
constraint becomes [1

vmax
, 1

vmin
] and the objective is unchanged: to maximize v0, or equivalently, to minimize

1
v0

, while keeping J ′ feasible.
Now we can see the similarity between the static speed scaling and the constant speed data mule scheduling:

s0 in the former problem corresponds to 1/v0 in the latter problem, and we can map an instance of one problem
to an instance of the other as follows:

• From constant speed data mule scheduling to SSS:

{{r(τL), d(τL), e(τL)}, [vmin, vmax]} →
{

{r(τL), d(τL), e(τL)},
[

1

vmax
,

1

vmin

]}

(4.13)

• From SSS to constant speed data mule scheduling:

{{r(τ), d(τ), ec(τ)}, [smin, smax]} →
{

{r(τ), d(τ), ec(τ)},
[

1

smax
,

1

smin

]}

(4.14)

4.3.2 Variable speed

A natural extension of the above argument is to compare the variable speed case with dynamic speed scaling
(DSS) scheme. However, the correspondence between these two are not as clear as the previous case.

An instance of a DSS problem is {JS , [smin, smax]}, which is same as SSS problem. The output is s(t), a
function representing the change of speed. Based on the discussion in [YDS95], we can constrain s(t) to be
pointwise constant with discontinuities only at the points in Pr ∪ Pd, where Pr, Pd are sets of release time and
deadline, respectively. Then we can represent s(t) as {si, ti}, meaning the processor runs at speed si for time
duration ti. Note ti’s are given constants. A DSS problem is an optimization problem defined as follows:

Dynamic speed scaling

Variables For each interval [Ti, Ti+1],

• si: processor speed in CPU cycles per unit time

• ai(τ): CPU cycle counts allocated to job τ

where Ti =
∑i

k=0 tk.

Objective Minimize the energy consumption:
∑

i

P (si)ti (4.15)

where P (x) is a function representing the power consumption for processor speed x.

Constraints

• (Minimum/maximum speed)

smin ≤ si ≤ smax (4.16)

• (Feasible interval) For all τ ∈ JS , if [Ti, Ti+1] ∈ I(τ)

ai(τ) = 0 (4.17)

21

• (Job completion) For all τ ∈ JS

∑

i

ai(τ) = ec(τ) (4.18)

• (Processor demand)

∑

τ∈JS

ai(τ) ≤ siti (4.19)

Similarly as the constant speed case, si in DSS problem corresponds to 1/vi in variable speed data mule
scheduling problem, when we set the power function P (s) = s. It implies that variable speed data mule
scheduling for simple location jobs is easier than general dynamic speed scaling problem, since the former
problem maps to a special case of the latter.

In dynamic speed scaling context, P (s) = s2 is often assumed (for example in [IY98]), by assuming that
the power is quadratically proportional to the supply voltage and that the frequency is linear to the supply
voltage. Some papers ([ZBSF04], for example) use more precise model of the relation between frequency and
supply voltage.

In fact, P (s) = s leads to a trivial result in dynamic speed scaling context, since no matter how we change s,
we can keep the total energy consumption unchanged. Especially when s can be 0, one simple optimal schedule
is to use highest speed until a job finishes and go to sleep. However, variable speed data mule scheduling problem
is not as easy as this case, since s = 0 in speed scaling problem implies infinite speed, which is impossible. In
addition, the case for general location jobs has not been studied in the context of dynamic speed scaling, as far
as we know.

Using the correspondence between variable speed data mule scheduling and dynamic speed scaling, we can
use Yao et al.’s optimal offline algorithm (Optimal-Schedule) [YDS95], since it only assumes P (s) to be a
convex function of s. Our algorithm presented in Section 4.2.2 for simple location jobs is based on Yao et al.’s
algorithm.

22

Chapter 5

Data Mule Scheduling: General Case

In the previous chapter, we have analyzed two simple cases of data mule scheduling problem. The first case,
constant speed case, is simple but does not fully exploit the data mule’s capability to change the speed dy-
namically. The second, variable speed case, is a better model in that sense, but is still not realistic, since it is
assumed that the data mule can change the speed instantly, which implies infinite acceleration.

In this chapter we consider a more general and realistic case of the data mule scheduling problem. Specifically,
we assume there is a constraint on the acceleration of data mule. This formulation is general in terms of that
it contains the two simple cases. We give a formal definition of the problem and show its NP-completeness.

5.1 Variable speed with acceleration constraint

The general case of the data mule scheduling problem is formally defined as follows:

GENERALIZED 1-D DATA MULE SCHEDULING

INSTANCE: Set JL of location jobs, for each location job τL ∈ JL, an execution time e(τL) ∈ Q+,
and a set IL of feasible location intervals, for each feasible location interval IL ∈ JL, a release
location r(IL) and deadline location d(IL), a maximum absolute acceleration amax ∈ Q+

0
, a start

Xs ∈ Q+
0
, a destination Xd ∈ Q+, and a total travel time T ∈ Q+.

QUESTION: Is there a set S of acceleration changing points, consisting of up to 6m + 4 points
where m is the total number of feasible intervals for all jobs, that characterizes the travel from Xs to
Xd satisfying the one-way movement constraint and the maximum acceleration constraint such that
there exists a valid schedule for the corresponding PREEMPTIVE SCHEDULING FOR GENERAL
JOBS problem? (i.e., Each acceleration changing point s ∈ S is characterized by a location x(s) ∈
Q+

0
, a time duration z(s) ∈ Q+

0
, a speed v(s) ∈ Q+

0
, and an acceleration a(s) ∈ Q, satisfying v(s) ≥ 0

and −amax ≤ a(s) ≤ amax. S is sorted by x(s) and, for 1 ≤ i < |S|, v(si+1) − v(si) = a(si)z(si)
and x(si+1) − x(si) = 1

2a(si)z(si)
2 + v(si)z(si). Define time-speed profile v(t) by a continuous

function v(t) = v(sk) + a(sk)(t − tk) over t ∈ [0, T] where ti =
∑i−1

j=1 z(sj) and k is an integer

satisfying tk ≤ t ≤ tk+1. Define time-location profile x(t) by x(t) =
∫ t

0
v(t)dt. For functions

f : Pr → Q+
0
, g : Pd → Q+

0
where Pr =

⋃

τL∈JL

⋃

IL∈I(τL) r(IL), Pd =
⋃

τL∈JL

⋃

IL∈I(τL) d(IL),

f(r(IL)) = minSt(r(IL)), g(d(IL)) = max St(d(IL)), and St(y) = {t|x(t) = y}, a set J of jobs
is schedulable, where, for each job τ ∈ J , an execution time e(τ) = e(τL) and a set I(τ) of
feasible intervals, for each feasible interval I ∈ I(τ), a release time r(I) = f(r(IL)) and a deadline
d(I) = g(d(IL)), where IL ∈ I(τL) and τL is the corresponding location job in the original problem?)

where Q is the set of rational numbers. Q+
0

means nonnegative rational numbers and Q+ means positive
rational numbers. When amax = 0, it is the constant speed case. Similarly, when amax = +∞, it is the variable
speed case.

The constraint on the size of S comes from the following lemma:

Lemma 5.1. For any satisfying set S′ of acceleration changing points for a given instance of GENERALIZED
1-D DATA MULE SCHEDULING, there exists a satisfying set S of acceleration changing points that satisfies

23

Location

Speed

Time

Time

Location

Speed

Time

Time

Location

Speed

Time

Time

Location

Speed

Time

Time

Location

Speed

Time

Time

Location

Speed

Time

Time

(i) Constant speed (ii) Variable speed (iii) Variable speed with
acceleration constraint

Figure 5.1: Comparison of different variations of the problem: (i) Constant speed (Section 4.1), (ii) Variable
speed (Section 4.2), and (iii) Variable speed with acceleration constraint (this chapter)

S ≤ 6m + 4, where m is the total number of feasible location intervals for all jobs.

Proof idea. Since each feasible interval has a release location and deadline location, |Pr ∪ Pd| ≤ 2m. Let’s
call Xs, Xd, and these locations “constrained points” in the sense that time and speed at these locations are
uniquely determined by S′. There are up to 2m + 2 constrained points. Moreover, if any two travels agree time
and speed at all these constrained points, they are “equivalent”: i.e., they map the original problem to the same
Preemptive Scheduling with Multiple Feasible Intervals problem. By considering an equivalent movement (See
Section 6.1.2 for details), any valid partial travel between two locations has an equivalent partial travel that
has up to two acceleration changing points in between (edge points excluded) and acceleration is either amax,
−amax, or 0. By converting a travel in this way, the resulting travel has up to 6m + 4 acceleration changing
points.

For convenience, we list some physics formula that we use afterwards. Let the initial speed v0 at location x0.
After moving in an acceleration a for time t, the data mule has the speed v at location x. Then the following
relations hold:

• Speed and time: v = at + v0

• Location and time: x = 1
2at2 + v0t + x0

• Location and speed: v2 − v2
0 = 2a(x− x0) (i.e., v =

√

v2
0 + 2a(x− x0))

5.2 NP-completeness proofs

Obviously there is no optimal online algorithm for GENERALIZED 1-D DATA MULE SCHEDULING by
considering a location job having a zero-length feasible location interval. As for offline algorithms, we show
in this section that the problem is NP-complete for general location jobs1. We first show the membership in
NP and then prove NP-hardness for general location jobs, particularly when k, the number of feasible location
intervals per task, is fixed (k ≥ 2) and arbitrary. The NP-hardness proofs are by reductions from PARTITION
and 3-PARTITION, respectively. Although the constructions are different for each case, they are based on
similar ideas as listed below:

1Complexity for simple location jobs is open as for now.

24

• Map each binary choice in the original problems to a “stop/skip” choice in the data mule scheduling
problem.

– Use a location job with two zero-length feasible location intervals at separate locations: the data
mule needs to stop at one of these locations.

– Note the data mule can still stop at both locations, but this is eliminated by the next idea.

• Set the total travel time to an appropriate minimum value.

– If the data mule stops more often, it takes more time due to additional acceleration and deceleration.

– We choose the value such that it is achievable only when the data mule stops the smallest possible
times. This enforces the binary choices.

5.2.1 Membership in NP

Lemma 5.2. GENERALIZED 1-D DATA MULE SCHEDULING is in NP.

Proof. We show we have a polynomial time verifier for the problem. A solution consists of a set S of acceleration
changing points and a set T of job allocation. An acceleration changing point s ∈ S is represented as a quadruple
{x(s), z(s), v(s), a(s)}, where x(s) ∈ Q+

0
is the current location, z(s) ∈ Q+

0
is the duration, v(s) ∈ Q+

0
is the

current speed, and a(s) ∈ Q is the acceleration. Without loss of generality, we assume S is sorted by x(s)
(current location) in the ascending order. Tie breaking is arbitrary but s with nonzero a(s) must be the last of
tuples with same x(s). An allocation t ∈ T is represented as a triple {ts(t), te(t), id(t)}, where ts(t), te(t) are
the start and end of the duration, respectively, and id(t) is the ID of the job that the duration is allocated.

We first verify that S represents a valid travel. By “valid travel”, we mean that the data mule can make
continuous movements by following S in order. For example, a travel is not valid if the location/speed of an
acceleration changing point specified in S is different from actual location/speed after the data mule moved as
instructed in the previous acceleration changing point. The following procedures verifies S is valid:

• Repeat for all s ∈ S:

– Calculate x′, v′ as follows: x′ ← x(s) + 1
2a(s)z(s)2 + v(s)z(s), v′ ← v(s) + a(s)z(s)

– For the next s′ ∈ S, check if x(s′) = x′ and v(s′) = v′. If not, INVALID.

After verifying the travel is valid, we get a mapping from location to time, i.e., the functions f and g in the
problem definition. Thus we can construct a set J of jobs where each job τ ∈ J has an execution time e(τ) and
a set of feasible intervals I(τ), in which each feasible interval I ∈ I(τ) has a release time r(I) and a deadline
d(I).

For J , we verify the job allocation T is valid by the following procedures:

• Initialize s(τ)← 0 for all τ ∈ J .

• Repeat for all t ∈ T :

– For job τ with ID id(t), check if ∃I ∈ I(τ). ts(t) ≥ r(I), te(t) ≤ d(I). If not, INVALID.

– Update s(τ)← s(τ) + (te(t)− ts(t))

• For all τ ∈ J , check if s(τ) = e(τ). If not, INVALID.

The verification procedures for S and T and the construction of J are done in time polynomial in the size
of S and T . Since S and T are polynomial size in the length of the problem instance, it is a polynomial time
verifier for GENERALIZED 1-D DATA MULE SCHEDULING.

25

5.2.2 NP-hardness: for fixed k ≥ 2

Theorem 5.3. GENERALIZED 1-D DATA MULE SCHEDULING with k feasible location intervals is NP-hard
for any fixed k ≥ 2.

Proof. We show a reduction from PARTITION for k = 2 case. It is easily extended for k > 2 cases as well.
One way is to add to each location job a sufficient number of “padding intervals”: zero-length feasible location
intervals, all of which are located at the deadline location of the final feasible interval of the job.

Let A = {a1, ...an} be the set of variables and s(ai) ∈ Z+ be the size for each ai ∈ A in an arbitrary instance
of PARTITION. For simplicity we assume s(ai) = ai in the rest of the proof.

Figure 5.2 shows an instance of GENERALIZED 1-D DATA MULE SCHEDULING problem we construct.
Each job contains two feasible location intervals. The set JL of location jobs consists of following three types.
Each location job is denoted as {(set of feasible location intervals), (execution time)}.

• Type-I: Subset choices:

JL,1 =

n+1⋃

i=1

{

{[Li−1 + pi], [Ln + Li−1 + pi]}, 1
}

• Type-II: Stop points:

JL,2 =

2n⋃

i=0

{

{[Li]}, 1
}

• Type-III: Equalizers:

JL,3 = {{[0, Ln]}, 3S} ∪ {{[Ln, 2Ln]}, 3S}

and JL = JL,1 ∪ JL,2 ∪ JL,3, where

Li =

i∑

k=1

(pk + qk), S =

n∑

i=1

ai

pi =
9

16
amax · a2

i , qi = amax · a2
i

and [z] is the short notation for a zero-length feasible location interval [z, z]. We set the maximum absolute
acceleration amax = 1 and the total travel interval [Xs,Xd] = [0, 2Ln]. Type-II and III jobs need one padding
interval (defined above) for each, but it is omitted from the above definition for clarity.

Intuitively, each of type-I jobs corresponds to one variable in PARTITION. A type-I job has two zero-length
feasible location intervals at points Vi in Range #1 and V ′

i in Range #2. Since both intervals are zero-length,
the data mule needs to stop at either Vi or V ′

i (or both) to execute the job. The central idea of this reduction
is: at which of Vi or V ′

i the data mule stops (and executes the job) corresponds to which of the subsets A′ or
A−A′ contains the variable ai in PARTITION2. Type-II jobs restrict possible movements of the data mule by
forcing it to stop at certain locations. A type-II job has one zero-length feasible location interval3. To execute
the job, the data mule needs to stop at the location. We call these locations “stop points” afterwards.

Figure 5.3 is an excerpt related to a decision on one variable. It shows three possible travels to finish all
Type-I and II jobs in these ranges. The data mule must stop at points A, B, C, and D where we have type-II
jobs. To execute type-I job (job I-i), the data mule also needs to stop either at Vi (case A) or V ′

i (case B), or
both (case C). To minimize the travel time between two stop points, say points A and B in Figure 5.3, the data
mule should accelerate in the maximum acceleration (amax = 1) first, then at the middle of A and B, decelerate
at the negative maximum acceleration (−amax). In Figure 5.3, there are three possible distances to make such

2Later we will eliminate the possibility that the data mule stops at both Vi and V ′

i
.

3Each type-II job also has one padding interval.

26

Location

(I) Subset choices

(II) Stop points

(III) Equalizers

I-1

I-2

I-n

II-1

II-2

II-3

II-(n+1)

II-(n+2)

II-(n+3)

II-(2n+1)

III-1

III-2

2V nV 1V ′ 2V ′ nV ′
1p 1q nq2p 2q 1p 1q nq2p 2q

1V1V

Range #1 Range #2

()∑ += iin qpL 22()∑ += iin qpL
0

Location job

Figure 5.2: Reduction from PARTITION: Each row corresponds to one job. For type-I and type-II jobs, all
feasible location intervals are zero-length and the execution time is one. Type-III jobs have feasible location
intervals with the length of Ln.

jumps: pi, qi, and (pi + qi), and we denote the fastest time of these jumps by tS,i, tM,i, and tL,i, respectively.
Then we have pi = amax

4 t2S,i, qi = amax

4 t2M,i, pi + qi = amax

4 t2L,i, and thus

t2S,i + t2M,i = t2L,i (5.1)

For cases (A) and (B), the travel for the ranges AB and CD consists of one short jump, one mid jump, and one
long jump, and thus it takes (tS,i + tM,i + tL,i) seconds in total, excluding the time to execute the jobs. For
case (C), it uses two short jumps and two mid jumps, and thus takes 2(tS,i + tM,i) seconds, which is longer than
in cases (A) and (B). We choose pi and qi such that the fastest travel time with one short jump plus one mid
jump is slower exactly by ai seconds than the time with one long jump. Then we have

tS,i + tM,i = tL,i + ai (5.2)

One of the solutions for Equations 5.1 and 5.2 is (tS,i, tM,i, tL,i) = (3
2ai, 2ai,

5
2ai). We use these parameters and

obtain pi = 9
16a2

i , qi = a2
i .

Type-III jobs works as equalizers: they force the data mule to spend equal time in each range. Each type-III
job has a feasible location interval covering the whole range4. For a little while, we focus the discussion on the
time the data mule is in motion and ignore the time it stops and executes the jobs. The fastest travel for each
of two ranges takes

∑

i tL,i(=
5
2S) seconds, when the data mule only uses long jumps. However, as discussed

above, the data mule needs to stop either at Vi or V ′
i for each i, and it additionally takes at least

∑

i ai(= S)

4Each type-III job also has one padding interval at the end of the first feasible location interval.

27

Location
ip iq

(A) Aai ′∈

(B) AAai ′−∈

ip

A

iq

Short jump

Time

Speed

seciSt ,

ip
2

,iSt

Short jump

Time

Speed

seciSt ,

ip
2

,iSt

Mid jump

Time

Speed

seciMt ,

2
,iMt

iq

Mid jump

Time

Speed

seciMt ,

2
,iMt

iq

(C) valid but slow

B C DiV iV ′

Location job I-i

Range #1 Range #2

Type-II location jobs

seciLt ,

Long jump

Time

Speed

2
,iLt

ii qp +

Long jump

Time

Speed

2
,iLt

ii qp +

short midshort mid

short midshort mid short midshort mid

short midshort midlong

long

Figure 5.3: Possible travels and corresponding choices for i-th variable. The values of pi, qi are determined such
that one short jump plus one mid jump (tS,i + tM,i) take longer than one long jump (tL,i) exactly by ai seconds,
excluding the time the data mule is not moving.

seconds between the start and the destination. Thus, excluding the time to stop and execute type-I and II jobs,
the data mule takes at least 2

∑

i tL,i + S(= 6S) seconds to move from the start to the destination. Each of
type-III jobs has the execution time equal to the half of this (= 3S), and thereby we make the data mule spends
the same time in each range.

Let TM , TS denote the total time the data mule is moving and stopping, respectively. As we discussed above,
TM ≥ 6S. For TS , we need to consider type-I and type-II jobs only, and get TS ≥ n + 2n + 1 = 3n + 1. To
enforce the fastest possible travel, we set TS = 3n + 1 and TM = 6S. It eliminates the possibility of case (C) in
Figure 5.3 and also the possibility of other “wasteful” movements5.

Finally, since the total travel time T = TS + TM , we set T to its minimum possible value:

T = 3n + 1 + 6S (5.3)

The construction above is done in time polynomial to the size of the original PARTITION problem.
(⇒) For correctness, we first construct a set of acceleration changing points S and a job allocation schedule,

from a satisfying partition for the set A, denoted by A′ ⊆ A. An acceleration changing point s is represented
as a quadruple {x(s), z(s), v(s), a(s)}, where x(s) ∈ Q+

0
is the current location, z(s) ∈ Q+

0
is the duration,

v(s) ∈ Q+
0

is the current speed, and a(s) ∈ Q is the acceleration. We prepare a set SS of acceleration changing

5Examples of wasteful movements include: not moving in the maximum possible speed, stopping at locations without zero-length
feasible location intervals, not accelerating/decelerating at the maximum acceleration, etc.

28

points for stopping to execute type-I and type-II jobs as follows. Note the speed and acceleration are all zero
for these.

S2 =
2n+1⋃

i=1

{Li−1, 1, 0, 0}

S1+ =
⋃

1≤i≤n

ai∈A′

{Li−1 + pi, 1, 0, 0}

S1− =
⋃

1≤i≤n

ai∈A−A′

{Ln + Li−1 + pi, 1, 0, 0}

SS = S2 ∪ S1+ ∪ S1−

S2 corresponds to type-II jobs and S1+ ∪ S1− corresponds to type-I jobs.
Next we construct a set SM of acceleration changing points for movements as follows:

SM+ =
⋃

1≤i≤n

ai∈A′

{Li−1,
tS,i

2
, 0, 1} ∪ {Li−1 +

pi

2
,
tS,i

2
,
tS,i

2
,−1}

︸ ︷︷ ︸

Short jump (Range #1)

∪{Li−1 + pi,
tM,i

2
, 0, 1} ∪ {Li−1 + pi +

qi

2
,
tM,i

2
,
tM,i

2
,−1}

︸ ︷︷ ︸

Mid jump (Range #1)

∪{Ln + Li−1,
tL,i

2
, 0, 1} ∪ {Ln + Li−1 +

pi + qi

2
,
tL,i

2
,
tL,i

2
,−1}

︸ ︷︷ ︸

Long jump (Range #2)

SM− =
⋃

1≤i≤n

ai∈A−A′

{Li−1,
tL,i

2
, 0, 1} ∪ {Li−1 +

pi + qi

2
,
tL,i

2
,
tL,i

2
,−1}

︸ ︷︷ ︸

Long jump (Range #1)

∪{Ln + Li−1,
tS,i

2
, 0, 1} ∪ {Ln + Li−1 +

pi

2
,
tS,i

2
,
tS,i

2
,−1}

︸ ︷︷ ︸

Short jump (Range #2)

∪{Ln + Li−1 + pi,
tM,i

2
, 0, 1} ∪ {Ln + Li−1 + pi +

qi

2
,
tM,i

2
,
tM,i

2
,−1}

︸ ︷︷ ︸

Mid jump (Range #2)

SM = SM+ ∪ SM−

where SM+ and SM− correspond to the cases (A) and (B) in Figure 5.3, respectively.
Then we construct a set S = SS ∪ SM . S is a valid schedule, since SM makes a valid movement and assures

the data mule to stop at every location included in SS . It also satisfies the one-way movement constraint and
the maximum acceleration constraint. Let ||S|| denote the time it takes to finish all the schedules in the set S.
Then, since S2, S1+, S1−, SM+, SM− are exclusive to each other, ||S2|| = 2n + 1, ||S1+ ∪ S1−|| = n, ||SS || =
||S2|| + ||S1+ ∪ S1−|| = 3n + 1, ||SM || = ||SM+ ∪ SM−|| = 6S and thus ||S|| = ||SS || + ||SM || = 3n + 1 + 6S.
Finally, all jobs can be completed by this schedule. Specifically, execute type-II jobs at the stop points and
type-I jobs at the points representing variables if the data mule stops there, and while moving, execute type-III
jobs. Therefore, S is a satisfying movement schedule for GENERALIZED 1-D DATA MULE SCHEDULING
problem characterized by the set JL of location jobs, the maximum absolute acceleration amax = 1, the start
Xs = 0, the destination Xd = 2Ln, and the total travel time T = 3n + 1 + 6S.

(⇐) Next, we construct a satisfying partition for A from a satisfying schedule for GENERALIZED 1-D
DATA MULE SCHEDULING problem above. We can immediately construct one as follows:

ai ∈
{

A′ if the travel stops at Vi

A−A′ if the travel stops at V ′
i

From the discussion on Figure 5.3, the data mule stops and executes the type-I job at either Vi or V ′
i (1 ≤ i ≤ n)

but not both, which makes the above construction valid. In addition, it stops at every stop point and execute

29

Location

(I) Subset choices

(II) Stop points

(III) Equalizers

0
mmL3

()∑
=

+=
m

i
iim qpL

3

1
3

I-1

I-3m

II-1

II-2

II-(3m+1)

III-1

III-2

)1(
3mV)2(

1V

1p 1q mq3 1p
)(

3
m

mV

1p 1q mq3

mL32 mLm 3)1(−

III- m

Range #1 Ranges #3-)1(−m Range #m

)2(
3mV

1q mq3

Range #2

II-(3m+2)

)1(
1V)(

1
mV

)132(-II +⋅ m

)13)1((-II +⋅− mm
)23)1((-II +⋅− mm

)13(-II +⋅ mm

Location job

Figure 5.4: Reduction from 3-PARTITION: Each row corresponds to one job. For type-I and type-II jobs, all
feasible location intervals are zero-length and the execution time of jobs is one. Type-III jobs have feasible
location intervals with the length of Ln.

a type-II job. From the conditions that both of the type-III jobs are completed, the movement of the data
mule takes S

2 seconds6 additional to the fastest possible travel, which is realized by using long jumps only.
Since the additional moving time incurred by stopping at each Vi or V ′

i is equal to ai, it means
∑

ai∈A′ ai =
∑

ai∈A−A′ ai = S/2, which is a valid partitioning.

The following corollary immediately follows:

Corollary 5.4. GENERALIZED 1-D DATA MULE SCHEDULING with k feasible location intervals is NP-
complete for any fixed k ≥ 2.

5.2.3 NP-hardness in the strong sense: for k arbitrary

Theorem 5.5. GENERALIZED 1-D DATA MULE SCHEDULING with k feasible location intervals is NP-hard
for k arbitrary.

Proof. We show a reduction from 3-PARTITION. Let A = {a1, ..., a3m} be the set of variables, B ∈ Z+ be the
bound, and s(ai) ∈ Z+ be the size for each ai ∈ A such that B/4 ≤ s(ai) ≤ B/2 and

∑

ai∈A s(a) = mB in an
arbitrary instance of 3-PARTITION. For simplicity we assume s(ai) = ai.

6Note it only accounts for the moving time, i.e., time to execute type-I jobs at the variable points is excluded.

30

Figure 5.4 shows an instance of GENERALIZED 1-D DATA MULE SCHEDULING we construct. The
location axis is divided into m ranges, each of which is analogous to the one used in the proof for k ≥ 2 case.
The set JL of location jobs consists of following three types of job.

• Type-I: Subset choices:

JL,1 =
m−1⋃

k=0

{{
3m⋃

i=1

[kL3m + Li−1 + pi]

}

, 1

}

• Type-II: Stop points:

JL,2 =

m−1⋃

k=0

3m⋃

i=1

{

{[kL3m + Li−1]}, 1
}

∪ {{[mL3m]}, 1}

• Type-III: Equalizers:

JL,3 =

m−1⋃

k=0

{

{[kL3m, (k + 1)L3m]},
(

5

2
m + 1

)

B

}

and JL = JL,1 ∪ JL,2 ∪ JL,3, where

Li =

i∑

k=1

(pk + qk), B =
1

m

3m∑

i=1

ai

pi =
9

16
amax · a2

i , qi = amax · a2
i

and [z] is the short notation for a zero-length feasible location interval [z, z]. We set the maximum absolute
acceleration amax = 1 and the total travel range [Xs,Xd] = [0,mL3m]. Choices of pi and qi are based on exactly
same discussion as the proof for k ≥ 2 case. For the fastest travel, the data mule needs to stop at only one of

V
(k)
i , and stopping at V

(k)
i takes additional ai seconds compared to skipping it, excluding the time to execute

a type-I job.
Similarly as the k ≥ 2 case, the fastest travel for each range takes

∑
tL,i = 5

2mB. For the whole range,
it takes additional

∑
ai = mB to execute all type-I jobs. Thus, the data mule spends m · 5

2mB + mB =
(5
2m2 + m)B to move from the start to the destination. For the total time the data mule stops (denoted TS),

since there are 3m type-I jobs and 3m2 + 1 type-II jobs, TS = 3m2 + 3m + 1 seconds in total. Therefore we get
T = 3m2 +3m+1+(5

2m2 +m)B. The construction above is done in time polynomial to the size of the original
3-PARTITION problem.

Correctness is proved in a similar way as k ≥ 2 case.

The following corollary immediately follows:

Corollary 5.6. GENERALIZED 1-D DATA MULE SCHEDULING with k feasible location intervals is NP-
complete in the strong sense for k arbitrary.

5.3 Relations with speed scaling problem

As discussed in Chapter 4, we can regard the speed v(t) of data mule corresponds to the inverse of the processor
speed s(t) in a special case of dynamic speed scaling (DSS) problem, in which power function P (s) = s. When
we constrain the acceleration to amax, it corresponds to a constraint on the rate of processor speed change in
DSS problem.

There are a few papers on DSS that adopts the assumption of constrained rate of processor speed change.
Hong et al. [HQPS98] assumes constant maximum rate of processor speed change (i.e., |dS(t)/dt| ≤ K, where
S(t) is processor speed function and K is a constant). They analyze possible speed changes under this constraint

31

and present some findings about the relation among processor speed, incurred time delay and workload, which
are directly applicable to the data mule scheduling problem. For example, Theorem 2 in [HQPS98] corresponds
to our discussion on “equivalent movement” appears later (in Section 6.1.2), which we use for formulating the
problem as an mathematical optimization problem. In a subsequent paper, Yuan and Qu [YQ05] classify the
models of DVS into “ideal”, “multiple”, and “feasible”. “Ideal” allows continuous voltage levels and “multi-
ple” only allows discrete levels. “Feasible” allows continuous levels but the maximum voltage change rate is
constrained. It is further classified into “optimistic feasible” and “pessimistic feasible”. A prominent difference
between these two models is whether a task can be processed during transition to the new voltage level: it is
allowed in “optimistic feasible” model and not in “pessimistic feasible” model. Hong et al.’s work [HQPS98]
uses the “optimistic feasible” model and the data mule scheduling problem also corresponds to it.

However, these constraints on the acceleration of data mule and processor speed are not identical. We can
describe the acceleration constraint as |v1 − v0| ≤ amaxt, where v0 is the initial speed and v1 is the speed after
t seconds. In the same way, the constraint on processor speed is described as |s1 − s0| ≤ Kt. We can convert it
to | 1s1

− 1
s0
| ≤ Ks0s1t, remembering that v0, v1 corresponds to 1

s0
, 1

s0
, respectively. This constraint is different

from our acceleration constraint, since the maximum rate depends on the start and finishing speed.

32

Chapter 6

Mathematical Formulation

In this chapter we formulate the general case of data mule scheduling as a quadratic programming (QP) problem.
For the QP problem, we also present two ways of finding a lower bound of the optimal solution. One way is
by SDP (semidefinite programming) relaxation, and the other is by more problem-specific analysis and only for
simple location jobs.

6.1 Approach

We formulate only the speed control subproblem here, as we can formulate the job scheduling subproblem as
a linear program, as we saw in 3.3.2. For speed control, we use the feasibility test based on processor demand
[BHR93] and formulate the problem of minimizing total travel time as a quadratic program.

6.1.1 Relations between location, time, and speed

Figure 6.1 shows the relationship between time and speed when the acceleration is constrained. Suppose the
data mule moves from location li to li+1. At location li, time is ti and the speed is vi, and at li+1 we have ti+1

and vi+1.
Let’s focus on Case (a) in the figure. A change of speed over time is expressed as a curve in a time-speed

graph. Under the constraint on maximum absolute acceleration, all possible changes of speed over time interval
[ti, ti+1] are confined in the rectangle CFDE. As the area between the curve and the time axis corresponds to
the distance, we have the following relationship:

li+1 − li ≥ S(ACEDB) (6.1)

li+1 − li ≤ S(ACFDB) (6.2)

where S(·) is the area. These areas are calculated as follows:

S(ACDB) =
1

2
(vi + vi+1)zi (≡ α) (6.3)

S(CDE) =
1

4

{

amaxz2
i −

(vi+1 − vi)
2

amax

}

(≡ β) (6.4)

S(ACEDB) = S(ACDB)− S(CDE) = α− β (6.5)

S(ACFDB) = S(ACDB) + S(CFD) = S(ACDB) + S(CDE) = α + β (6.6)

As for Case (b) in Figure 6.1, since we assume the movement is one-way, the speed must be nonnegative at
any time. Thus, the change of speed along C’-E’-D’ as in Figure 6.1 is impossible. Instead, the speed change
along C’-G’-H’-D’ realizes the shortest travel distance, which is equal to S(A′C ′G′) + S(H ′D′B′). In this case,
in addition to (6.2), there is a following constraint:

li+1 − li ≥ S(A′C ′G′) + S(H ′D′B′)

=
v2

i + v2
i+1

2amax
(6.7)

33

Time

Speed

it 1+it

iv

1+iv

A B

C
D

E

F

iz Time

Speed

it 1+it

iv

1+iv

A’ B’

C’
D’

G’ H’
E’

F’

G

Case (a) Case (b)

Figure 6.1: Time and speed under constrained acceleration: All possible transitions from point C (ti, vi) to D
(ti+1, vi+1) are confined in the rectangle CFDE in case (a) or the pentagon C’F’D’H’G’ in case (b). The lines
CF, ED, C’F’, H’D’ represent maximum acceleration (i.e., the slope is amax) and CE, FD, C’G’, F’D’ represent
maximum deceleration (i.e., the slope is −amax).

Now we consider the constraints for general case. Since the vertical coordinate of point E is

zi

2
− vi+1 − vi

2amax
(6.8)

we can summarize the constraints as follows:

li+1 − li ≥ α− β (6.9)

li+1 − li ≤ α + β (6.10)

li+1 − li ≥ v2
i + v2

i+1

2amax
(if amaxzi − (vi+1 − vi) ≤ 0) (6.11)

where

α =
1

2
(vi + vi+1)zi (6.12)

β =
1

4

{

amaxz2
i −

(vi+1 − vi)
2

amax

}

(6.13)

Note (6.9) is a constraint for both cases, since (6.11) is a stronger constraint than (6.9) for Case (b).

6.1.2 Constructing an equivalent movement

After we obtain a time-speed profile that satisfies the constraints, we need to interpolate this to generate a
continuous time-speed change. Specifically, we will connect two points (ti, vi), (ti+1, vi+1) on the time-speed
graph. In addition to these two points, the distance (li+1− li) that the data mule travels in time range [ti, ti+1]
is also given. Recall that the distance is the area between time-speed curve and the time axis. Clearly, there are
infinite number of “equivalent” movements that start from (ti, vi), end at (ti+1, vi+1), and travel the distance
(li+1 − li) under the maximum acceleration constraint.

We can construct one of the simplest movements among these equivalent movements as follows. The move-
ment consists of up to three line segments having a slope of either amax,−amax or 0. In addition, the change of
the slope of the segments is in the form of “(±amax, 0,±amax)”, where each of these may be omitted. In other
words, the movement changes the acceleration at up to two points and these points have the same speed.

Figure 6.2 shows the movements we construct. Let ri, si denote the time at which we change the acceleration
and ui denote the speed at these points. Depending on the parameters, there are three types of movements.

34

Time

Speed

it 1+it

iv

1+iv

A B

C

D

E

F

P

Q

(I)

(II)

(III)

iz

Case (I)

Case (II)

Case (III)

Figure 6.2: Constructing a simple equivalent movement: Depending on the distance (li+1− li) to move between
time ti and ti+1, we can construct a movement in either of three types. Note the constructed movements consist
of only maximum acceleration/deceleration and constant speed.

We define p as follows:

p = CQ = PD

= zi −
∣
∣
∣
∣

vi+1 − vi

amax

∣
∣
∣
∣

(6.14)

The parameters for each equivalent movement are as follows:

• Case (I): If S(ACPDB) ≤ li+1 − li ≤ S(ACFDB)

Acceleration change is Accel-Const-Decel.

(ri, si) =

{
(ti+1 − p + q1, ti+1 − q1) if vi ≤ vi+1

(ti + q1, ti + p− q1) if vi > vi+1
(6.15)

ui = max(vi, vi+1) + amaxq1 (6.16)

where

q1 =
1

2

p−
√

p2 − 4((li+1 − li)− S(ACPDB))

amax

 (6.17)

• Case (II): If S(ACQDB) ≤ li+1 − li < S(ACPDB)

Acceleration change is Accel-Const-Accel if vi < vi+1 and Decel-Const-Decel if vi > vi+1. When vi = vi+1,
the movement degenerates to constant speed.

(ri, si) =

{
(ti + q2, ti + p + q2) if vi ≤ vi+1

(ti+1 − q2 − p, ti+1 − q2) if vi > vi+1
(6.18)

ui = min(vi, vi+1) + amaxq2 (6.19)

where

q2 =
1

2

p−
√

p2 − 4((li+1 − li)− S(ACQDB))

amax

 (6.20)

35

• Case (III): If S(ACEDB) ≤ li+1 − li < S(ACQDB)

Acceleration change is Decel-Const-Accel.

(ri, si) =

{
(ti + q3, ti + p− q3) if vi ≤ vi+1

(ti+1 − p + q3, ti+1 − q3) if vi > vi+1
(6.21)

ui = min(vi, vi+1)− amaxq3 (6.22)

where

q3 =
1

2

p−
√

p2 − 4(S(ACQDB)− (li+1 − li))

amax

 (6.23)

6.2 Quadratic programming formulation

Variables For each location li (i = 0, ..., 2m + 1),

• vi: speed of data mule

and for each location interval [li, li+1] (i = 0, ..., 2m),

• zi: time to stay in the interval1

• pi(τL): time allocated to location job τL

Objective Minimize

2m∑

i=0

zi (6.24)

Constraints

• (One-way movement)

zi ≥ 0 (6.25)

vi ≥ 0 (6.26)

• (Job completion) For all τL ∈ JL

2m+1∑

i=0

pi(τL) = e(τL) (6.27)

• (Feasible interval) For all τL ∈ JL, if ∀I ∈ I(τL), [li, li+1] 6∈ I,

pi(τL) = 0 (6.28)

• (Processor demand)

∑

τL∈JL

pi(τL) ≤ zi (6.29)

1Strictly speaking, this interpretation is not appropriate when li = li+1, but the formulation remains valid.

36

• (Maximum absolute acceleration)

α− β ≤ li+1 − li ≤ α + β (6.30)

v2
i + v2

i+1

2amax
≤ li+1 − li (if amaxzi − (vi+1 − vi) ≤ 0) (6.31)

|vi+1 − vi| ≤ amaxzi (6.32)

where

α =
1

2
(vi + vi+1)zi (6.33)

β =
1

4

{

amaxz2
i −

(vi+1 − vi)
2

amax

}

(6.34)

The constraint (6.31) is not quadratic since it is conditioned, but it is replaced by equivalent quadratic constraints
using additional variables bi and wi as follows:

bi(1− bi) = 0 (6.35)

bi(amaxzi − (vi+1 − vi)) ≥ 0 (6.36)

(1− bi)(amaxzi − (vi+1 − vi)) ≤ 0 (6.37)

(1− bi)(wi − 2amax(li+1 − li)) ≤ 0 (6.38)

v2
i+1 + v2

i = wi (6.39)

6.3 Finding lower bounds

We presented a formulation of data mule scheduling problem in the previous section. Since it is a nonconvex
quadratic program (QP), global optimization is often hard even for a small size input. In this section we present
two methods to find a lower bound of the global optimal solution. One is by SDP (semidefinite programming)
relaxation, which is a generic method for nonconvex QP problems. The other is only for simple location jobs
and exploits the characteristics of the problem by calculating the maximum possible speed at each location.

6.3.1 SDP (semidefinite programming) relaxation

We construct a SDP relaxation problem to this nonconvex QP problem. The domain of a relaxation problem
contains that of the original problem, so the minimum value in the relaxation problem gives the lower bound of
the original problem, assuming it is a minimization problem. We first omit constraint (6.31) for simplification
and then apply SDP relaxation. SDP is convex programming and thus solved efficiently (see [BV04] etc.).

Consider the following quadratic programming problem:

minimize xT A0x + bT
0 x + c0

subject to xT Aix + bT
i x + ci ≤ 0 (i = 1, ...,m)

(6.40)

with a variable x ∈ Rn and parameters Ai ∈ Sn, bi ∈ Rn, and ci ∈ R for i = 1, ...,m, where Sn,Rn,R are the
sets of symmetric n× n matrices, real n-vectors, and real numbers, respectively. When Ai � 0 for all i, i.e., all
Ai’s are positive semidefinite, (6.40) is semidefinite program and can be solved efficiently.

In SDP relaxation, we introduce a new variable X ∈ Sn to replace quadratic terms xixj . Then the problem
(6.40) is rewritten as an equivalent QP problem as follows:

minimize A0 ·X + bT
0 x + c0

subject to Ai ·X + bT
i x + ci ≤ 0 (i = 1, ...,m)

X = xxT
(6.41)

where A ·B ≡∑

i,j AijBij . SDP relaxation replaces the equality constraint X = xxT by a positive semidefinite-

ness constraint X − xxT � 0. Further, by using the Schur complement, we obtain the following SDP problem

37

that is a relaxation of the original QP problem:

minimize A0 ·X + bT
0 x + c0

subject to Ai ·X + bT
i x + ci ≤ 0 (i = 1, ...,m)

[
X x
xT 1

]

� 0
(6.42)

In our formulation, (6.30) is the only quadratic constraint after we omit (6.31). We introduce a matrix
variable X ≡ xxT where x = [vT |zT]T and replace (6.30) with linear constraints as follows:

α′ − β′ ≤ li+1 − li ≤ α′ + β′ (6.43)

where

α′ =
1

2
(Xi,n+i + Xi+1,n+i) (6.44)

β′ =
1

4

{

amaxXn+i,n+i −
1

2
(Xi+1,i+1 − 2Xi,i+1 + Xi,i)

}

(6.45)

Then we add the positive semidefiniteness constraint:
[

X x
xT 1

]

� 0 (6.46)

6.3.2 Another lower bound for simple location jobs

For simple location jobs having only one feasible location interval for each, we can obtain another lower bound
in a different way by exploiting the properties of the problem. The main idea of the procedure, which we call
LB-MaxSpeed procedure, is to calculate the maximum possible speed at each release or deadline locations
(denoted li in the previous formulations) and find the fastest possible travel that satisfies these speed constraints.

LB-MaxSpeed procedure finds the minimum travel time that satisfies both of the following two constraints:

1. Maximum speed constraint at each li

2. Minimum time constraint for each interval [li, lj]

Both of them are based on processor demand analysis.
The first constraint is about the maximum speed at each li. For each location interval consisting of a release

location and a deadline location, processor demand determines the maximum possible speed within the interval.
Maximum speed at li is upper bounded by the above maximum speed for each interval. The details of the
procedure is described by the following pseudocode. In lines 4-6, vb is the maximum possible speed at the edge
of the location interval I, assuming the constant acceleration at amax within the interval. Line 6 corresponds to
the case when the constant acceleration within I is not possible because the speed must always be nonnegative.
Lines 8-11 calculate an upper bound of the speed at li when the maximum speed at the edge of I is vb. In Line
12, the maximum speed at each li is determined by the lowest of all the upper bounds.

1 for each li
2 do for each location interval I = [r(τ), d(τ ′)] s.t. τ ′

L, τ ′′
L ∈ JL, r(τ ′

L) ≤ d(τ ′′
L)

3 do g(I)← Processor-Demand(JL, I)

4 if
|I|

g(I)
− aMg(I)

2
> 0

5 then vb ←
|I|

g(I)
+

aMg(I)

2
6 else vb ←

√

2aMg(I)
7 if li 6∈ I
8 then d← max {|low[I]− li|, |high[I]− li|}
9 vi[I]←

√

v2
b + 2aMd

10 else d← min {li − low[I], high[I]− li}
11 vi[I]←

√

max{0, v2
b − 2aMd}

12 vi ← minI vi[I]

38

The second constraint is about the minimum time for each interval [li, lj](i < j), which is determined by the
processor demand for the interval. By using variables zi to represent the time to stay in the interval [li, li+1],
we can obtain a set of linear constraints.

From the first constraint, we can obtain the lower bound of the time the data mule takes to travel each
interval [li, li+1]. Then we can combine these two sets of constraints to formulate the problem as a linear
program as follows:

Variables

• zi: time to stay in the location interval [li, li+1]

Objective Minimize

2m∑

i=0

zi (6.47)

Constraints

• (Maximum speed)

zi ≥
2

aM

√

aM (li+1 − li) +
v2

i + v2
i+1

2
− vi + vi+1

aM
(6.48)

The right hand side is the minimum travel time starting from li at the speed vi and finishing at li+1 at
the speed vi+1. This is a linear constraint since there is no variable on the right hand side.

• (Processor demand) For each location interval I = [r(τ), d(τ ′)] s.t. τ, τ ′ ∈ JL, r(τ) ≤ d(τ ′),

∑

τL∈JL,I(τL)∈I

e(τL) ≤
∑

[li,li+1]∈I

zi (6.49)

39

Chapter 7

Heuristic Algorithm

In the previous chapter, we presented a formulation of GENERALIZED 1-D DATA MULE SCHEDULING as
a quadratic programming problem. Since it is not a convex optimization, finding the global optimum is hard
in general and thus not realistic. In this chapter, we present an alternative approach. We design a heuristic
algorithm that gives a good solution in a reasonable amount of time. We also analyze the algorithm on its
computational complexity and approximation ratio.

7.1 Approach

7.1.1 Overview

Figure 7.1 shows the idea of the heuristic algorithm1. The algorithm works recursively, and in each recursion, we
confine ourselves to the following 3-phase speed changing profile: first accelerate at the maximum acceleration,
then move at the constant speed, and finally decelerate at the maximum negative acceleration. We call each of
these intervals accel interval, plateau interval, and decel interval, respectively. All of these are actually location
intervals, but we omit “location” for simplicity. Further we call the speed in the plateau interval as plateau
speed.

As shown in the middle of Figure 7.1, the main idea of the algorithm is to maximize the plateau speed until
we have a tight interval, which is defined as an interval whose length (in time) is equal to the processor demand
for that interval. We can naturally extend the definition to define tight location interval, when we give the speed
of data mule for the interval. We simply call it a “tight interval”, too.

For the intervals in the plateau interval but not in the tight interval, we can still increase the speed without
destroying the feasibility. As shown in the bottom of Figure 7.1, we recursively apply the maximization procedure
to them until there is no such region.

7.1.2 Structure

The heuristic algorithm consists of following four steps:

Step 1: Simplify Convert all general location jobs to simple location jobs. For each general location job
having k feasible location intervals, we create k simple location jobs. The execution time is distributed to each
feasible location interval proportionally to its length. If all feasible location intervals of a general location job
are zero-length, we just distribute the execution time equally to them.

Step 2: Maximize Find the maximum plateau speed and a tight interval. For each interval of a release
location and a deadline location, calculate the plateau speed that makes it a tight interval. Maximum plateau
speed is the minimum of these plateau speeds for all intervals. From Theorem 3.4, this procedure does not

1We design the heuristic algorithm for the case where the speed is constrained to be zero at Xs and Xd, but we can also use it
for an unconstrained case by considering a hypothetical travel interval, as discussed later.

40

Location

Speed

Location

Speed

Location

Speed

Tight interval

Accel
interval

Decel
interval

Plateau interval

Recursively maximize

Figure 7.1: The idea of the heuristic algorithm: (Top) Increase the plateau speed. Two curves show the
acceleration/deceleration for the fastest possible travel covering the whole interval. Bold lines mean the speed
for the interval is already maximized. (Middle) A tight interval found. This is the maximum plateau speed,
since we cannot increase it due to this tight interval. Feasible location intervals of the jobs are trimmed so
that they don’t contain the tight interval as well as accel/decel intervals. (Bottom) Recursively maximize the
plateau speed for the remaining unconstrained intervals. Repeat the recursion until there’s no such interval.

destroy the feasibility, since the processor demand is equal or less than the time given for each location interval
of a release location and a deadline location.

Step 3: Trim Trim feasible location intervals of each (simple) location job. We first process the accel interval
and the decel interval, and then the tight interval.

Figure 7.2 explains the details of trimming. For the accel interval, we simulate EDF algorithm to see how
much time is allocated to each job within the interval. Let ai denote the allocated time to job τi. A job
completely contained in the interval (τ1) will be completed in the interval (i.e., ai = τi). For a job intersects
with the interval (τ2), we trim off the feasible location interval at the edge of the accel interval, and decrease
the execution time to e2 − a2. For the decel interval, it works in the same way except we simulate LRT (latest
release time) algorithm instead of EDF. LRT algorithm schedules jobs backwards, treating release times as
deadlines, and is also known to be optimal [Liu00].

The tight interval is processed in a little different way. In the tight interval, by its definition, time is allocated
only to the jobs that are completely contained in the interval. Thus, for the jobs that intersect the tight interval
but not completely contained (τ6 and τ7), we trim off the feasible location interval and their execution times
are unchanged. For a job that completely contains the tight interval (τ8), we divide it into two jobs (τ8L and
τ8R), one before the tight interval and the other after that. How to distribute the execution time to these two
jobs without destroying the feasibility is not a trivial problem. As one of the simplest ways, we simulate EDF
for the location interval from the end of the accel interval to the beginning of the tight interval2. Assuming

2Alternatively we could simulate LRT for the location interval from the end of the tight interval to the end.

41

Location

Location

Location

Location

1e

2e
)0(

22 ae −

Location

Accel
Location

DecelDecel

Tight

Accel

Decel

Tight

Accel

DecelDecel

Tight

3e

4e

5e

6e

7e

8e

1τ
2τ

3τ
4τ

5τ
6τ
7τ
8τ

)0(

44 ae −

)0(

6e

7e

8a 88 ae −L8τ R8τ

Figure 7.2: Trimming feasible location intervals

time a8 is allocated to job τ8 within that interval, we assign the execution time a8 to job τ8L and e8 − a8 to
τ8R. When a8 is zero, τ8L is not created. Similarly for τ8R.

Step 4: Recursion By the previous step, all remaining jobs are separated into two groups. One group of jobs
populates the location interval from the end of accel interval to the beginning of the tight interval, and the other
populates the location interval from the end of the tight interval to the beginning of the decel interval. The
speed for these intervals are not fixed yet, i.e., there may still be some room for increasing the speed without
destroying the feasibility. Thus, we recursively maximize the speed by repeating from Step 2 for these intervals.
The number of recursions varies from zero to two depending on the configuration of the tight interval.

7.2 Algorithm

The procedure Approx-MotionPlan is the main routine of the algorithm.

Approx-MotionPlan(J ,Xs,Xd)

1 J ′ ← Simplify-Jobset(J)
2 return Maximize-Plateau-Speed(J ′, [Xs,Xd], 0)

Given a set J of location jobs3, the procedure Simplify-Jobset splits each general location job (i.e., with
multiple feasible location intervals) into multiple simple location jobs, and return a new set of location jobs.
Execution time of new jobs is determined proportionally to the length of their feasible location intervals, so
that the total execution time of all the jobs equals to the original general location job. In case a location job
only has zero-length feasible location intervals, the execution time is equally distributed to each of them.

3For simplicity, we omit the subscript “L” for location jobs and location intervals afterwards.

42

Approx-MotionPlan

Maximize-Plateau-Speed

Max-Speed

Recursive-Maximize

Max-Speed-SameSide

Max-Speed-DiffSide

Processor-Demand

Trim-Accel-Interval

Trim-Decel-Interval EDF-AccelLRT-Decel

Divide-Jobs

Stop-Time

Simplify-Jobset

Divide-Jobs-Zero

Divide-Jobs-NonZero

Figure 7.3: Call graph of procedures

Simplify-Jobset(J)

1 ⊲ Init: J ′ ← ∅
2 for each location job τ ∈ J
3 do if

∑

I∈I(τ) |I| > 0

4 then for each feasible location interval I ∈ I(τ)

5 do J ′ ← J ′ ∪
{

I,
|I|

∑

I∈I(τ) |I|
e(τ)

}

6 else for each feasible location interval I ∈ I(τ)

7 do J ′ ← J ′ ∪
{

I,
1

N(τ)
e(τ)

}

⊲ N(τ) = #(τ ’s feasible location intervals)

8 return J ′

Given a set J of location jobs, a baseline interval I0, and a baseline speed v0, the procedure Maximize-

Plateau-Speed recursively maximizes plateau speed. It returns a list of acceleration changing points, each of
which consists of four elements: location interval, initial speed, acceleration, and time duration until the next
acceleration changing point.

Maximize-Plateau-Speed(J , I0, v0)

1 for each location interval I = [r(τ), d(τ ′)] s.t. τ, τ ′ ∈ J , r(τ) ≤ d(τ ′)
2 do u[I]←Max-Speed(J , I)
3 vp ← minI{u[I]} ⊲ Maximum plateau speed
4 if vp 6= +∞
5 then It ← arg minI(u[I]) (If multiple, arbitrarily pick one) ⊲ Tight interval
6 else It ← ∅
7 Ip ← [low[I0] + (v2

p − v2
0)/2amax, high[I0]− (v2

p − v2
0)/2amax] ⊲ Plateau interval

8 Ia ← [low[I0], low[Ip]] ⊲ Accel interval
9 Id ← [high[Ip], high[I0]] ⊲ Decel interval

10 return Recursive-Maximize(J , I0, Ia, Id, It, v0, vp)

7.2.1 Identifying the tight interval

Given a set J of location jobs and an interval I, the procedure Max-Speed returns the maximum plateau
speed that J remains feasible in the interval. In other words, Max-Speed returns the speed that makes I a
tight interval.

43

Speed

Location0v

lv1

hv1 lv2

hv2
mv

Location0v

lv1

hv1

lv2

hv2

I

0I
I

0I

()][2 0max
2
0 Ilowxavv −+=()xIhighavv −+=][2 0max

2
0

(A) Different side (B) Same side

Figure 7.4: Notation in Max-Speed

Max-Speed(J , I, I0, v0)

1 g ← Processor-Demand(J , I)

2 v1l ←
√

v2
0 + 2amax(low[I]− low[I0])

3 v1h ←
√

v2
0 + 2amax(high[I0]− low[I])

4 v2l ←
√

v2
0 + 2amax(high[I]− low[I0])

5 v2h ←
√

v2
0 + 2amax(high[I0]− high[I])

6 v1 ← min{v1l, v1h}, v2 ← min{v2l, v2h}
7 va ← min{v1, v2}, vb ← max{v1, v2}
8 xm ← (low[I0] + high[I0])/2
9 if xm ∈ I

10 then return Max-Speed-DiffSide(g, I, v0, va, vb)
11 else return Max-Speed-SameSide(g, I, v0, va, vb)

Given a set J of location jobs and an interval I, the procedure Processor-Demand returns the processor
demand in the interval.

Processor-Demand(J , I)

1 ⊲ Init: d← 0
2 for each location job τ ∈ J
3 do if I(τ) ∈ I ⊲ Note each τ is a simple location job
4 then d← d + e(τ)
5 return d

The procedures Max-Speed-DiffSide and Max-Speed-SameSide determine the maximum possible plateau
speed to preserve the feasibility condition for an input interval I. As shown in Figure 7.5, depending on the
processor demand g, maximum possible speed va and vb at the edge of the interval I, and the baseline speed
v0, we can classify the configuration into four (when xm ∈ I) or three (when xm 6∈ I) cases.

44

av bv

v
av bv

v

vv

av
bvmv

v
av

bvmv

vv

Max

plateau
speed

(B)
Same
side

(A)
Different

side

Case 1 Case 2 Case 4Case 3

Max

plateau
speed

(B)
Same
side

(A)
Different

side

Case 1 Case 2 Case 4Case 3

g

I
v

||=
+∞=v

()
()

()22
max4

max3

4
2
33

||2

2
2

1

ba

ba

vvIac

gavvc

cccv

++⋅=

⋅++=

−−=

2
max2

max1

2
2
11

||2

a

a

vIac

gavc

cccv

+⋅=

⋅+=
−−=

vv
vv

g : processor demand
for interval I

Figure 7.5: Possible cases for plateau speed in (A) Max-Speed-Diffside and (B) Max-Speed-Sameside.
Same equations hold for mirror-reversed cases.

Max-Speed-DiffSide(g, I, v0, va, vb)

1 t1 ← |I|/va

2 if g > t1
3 then return |I|/g ⊲ Case 1

4 vm ←
√

v2
0 + amax|I|

5 t2 ← (2vm − va − vb)/amax

6 if g ≤ t2
7 then return +∞ ⊲ Case 2: No constraint
8 t3 ← |I|/vb + (vb − va)2/2amaxvb

9 if g > t3
10 then c1 ← va + amax · g
11 c2 ← 2amax|I|+ v2

a

12 return c1 −
√

c2
1 − c2 ⊲ Case 3

13 else c3 ← (va + vb) + amax · g
14 c4 ← 2amax|I|+ (v2

a + v2
b)

15 return (c3 −
√

c2
3 − 2c4)/2 ⊲ Case 4

Max-Speed-SameSide(g, I, v0, va, vb)

1 t1 ← |I|/va

2 if g > t1
3 then return |I|/g ⊲ Case 1
4 t2 ← (vb − va)/amax

5 if g ≤ t2
6 then return +∞ ⊲ Case 2
7 c1 ← va + amax · g
8 c2 ← 2amax|I|+ v2

a

9 return c1 −
√

c2
1 − c2 ⊲ Case 3

7.2.2 Recursive maximization

After maximizing the plateau speed by identifying a tight interval, we further attempt to increase the speed
for the free intervals in the original interval. We recursively perform the maximization procedure for these free
intervals until there are no such intervals.

Given a set J of location jobs, a baseline interval I0, accel/decel intervals Ia, Id, a tight interval It, base-
line speed v0, plateau speed vp, and stop time ts, the procedure Recursive-Maximize returns a list of ac-

45

celeration changing points. Internally, the procedure identifies the free intervals and then recursively calls
Maximize-Plateau-Speed for them. As shown in Figure 7.6, there are five possible configurations of free
intervals and the number of recursive calls varies from zero to two depending on them.

Recursive-Maximize(J , I0, Ia, Id, Ip, It, v0, vp)

1 tf ←
√

v2
0 + 2amax|Ia| − v0

amax
2 s1 ← {Ia, v0, amax, tf}, s2 ← {Id, vp,−amax, tf}

⊲ No recursion
3 if It = ∅ ⊲ Case 0-1
4 then return {s1, s2}
5 elseif Ip ∈ It ⊲ Case 0-2
6 then return {s1, {Ip, vp, 0, |Ip|/vp}, s2}

⊲ One recursion
7 JA ← Trim-Accel-Interval(J , [low[Ia],min{high[Ia], low[It]}], v0)
8 JAD ← Trim-Decel-Interval(JA, [max{low[Id], high[It]}, high[Id]], v0)
9 if Ia ∩ It 6= ∅ and Id ∩ It = ∅ ⊲ Case 1-1

10 then If ← [high[Ia], high[It]], Ir ← [high[It], low[Id]]
11 return { s1,

{If , vp, 0, |If |/vp},
Maximize-Plateau-Speed(JAD, Ir, vp),
s2 }

12 elseif Ia ∩ It = ∅ and Id ∩ It 6= ∅ ⊲ Case 1-2
13 then If ← [low[It], low[Id]], Ir ← [high[Ia], low[It]]
14 return { s1,

Maximize-Plateau-Speed(JAD, Ir, vp),
{If , vp, 0, |If |/vp},
s2 }

⊲ Two recursions
15 if Ia ∩ It 6= ∅ and Id ∩ It 6= ∅ ⊲ Case 2
16 then Ir ← [high[Ia], low[It]], Ir′ ← [high[It], low[Id]]
17 {Jr,Jr′} ← Divide-Jobs(JAD, Ir, It, vp)
18 if vp = 0
19 then ts ← Stop-Time(JAD, It)
20 else ts ← |It|/vp

21 return { s1,
Maximize-Plateau-Speed(Jr, Ir, vp),
{It, vp, 0, ts},
Maximize-Plateau-Speed(Jr′ , Ir′ , vp),
s2 }

22 else ⊲ Unreachable

The procedure Trim-Accel-Interval allocates the accel interval Ia to the available jobs. It then changes
the feasible location intervals of the jobs so that none of them overlaps the accel interval, and returns the
modified set of location jobs. Job allocation is based on EDF algorithm.

Trim-Accel-Interval(J , Ia, v0)

1 ⊲ Init: JA ← ∅
2 aA ← EDF-Accel(J , Ia, v0, amax) ⊲ Simulate EDF. aA: list of allocated time in Ia

3 for each location job τ ∈ J
4 do τ ′ ← {[max{r(τ), high[Ia]}, d(τ)], e(τ)− aA(τ)} ⊲ Trim
5 if e(τ ′) > 0
6 then JA ← JA ∪ τ ′

7 return JA

46

Location0v

accel decel

tight

Case 1-2: ∅≠∩∅=∩ tdta IIII and

Location0v

accel decel

tight

Location0v

accel decel

tight

Case 1-1: ∅=∩∅≠∩ tdta IIII and

Location0v

accel decel

Location0v

accel decel

Case 0-1: ∅=tI

Location0v

accel decel

tight

Location0v

accel decel

tight

Case 2: ∅=∩∅=∩ tdta IIII and

accel decel

Location0v

tight

Case 0-2: tp II ∈
accel decel

Location0v

tight

accel decel

Location0v

tight

Case 0-2: tp II ∈Case 0-2: tp II ∈

No recursion One recursion Two recursions

Figure 7.6: Possible cases in Recursive-Maximize

Similarly, the procedure Trim-Decel-Interval allocates the decel interval Id to the available jobs. How-
ever, allocation is based on LRT (latest release time) algorithm [Liu00]. LRT algorithm, or “reverse EDF
algorithm”, schedules the jobs backwards from the end of the interval in priority-driven manner. Contrary to
EDF, priorities are based on the release times of jobs.

Trim-Decel-Interval(J , Id, v0)

1 aD ← LRT-Decel(J , Id, v0, amax) ⊲ Simulate LRT. aD: list of allocated time in Id

2 for each location job τ ∈ J
3 do τ ′ ← {[r(τ),min{d(τ), low[Id]}], e(τ)− aD(τ)} ⊲ Trim
4 if e(τ ′) > 0
5 then JD ← JD ∪ τ ′

6 return JD

The procedure EDF-Accel applies EDF algorithm for the set J of location jobs within an interval I,
assuming the data mule moves at the speed v0 at the start of the interval and accelerates at a toward the end
of the interval. It returns the list of time duration that each job was allocated within the interval.

EDF-Accel(J , I, v0, a)

1 ⊲ Init: a(τ)← 0 for each location job τ ∈ J , J ′ ← J
2 xc ← max{low[I],minτ∈J r(τ)} ⊲ Current location
3 while xc < high[I] and J ′ 6= ∅
4 do τc ← arg minτ∈J ′,r(τ)≤xc

d(τ)
5 x1 ← min{minτ∈J ′\τc

r(τ), high[I]} ⊲ Location where next job released

6 vc ←
√

v2
0 + 2a(xc − low[I]) ⊲ Speed at xc

7 x2 ← amax · e(τ)2/2 + vc · e(τ) + xc ⊲ Location where τc completes
8 if x1 < x2

9 then v1 ←
√

v2
c + 2a(x1 − xc)

10 e(τc)← e(τc) + (v1 − vc)/a
11 xc ← x1

12 else v2 ←
√

v2
c + 2a(x2 − xc)

13 a(τc)← a(τc) + (v2 − vc)/a
14 J ′ ← J ′\τc

15 if J ′ 6= ∅
16 then xc ← minτ∈J ′ r(τ)
17 else xc ← high[I] ⊲ End
18 return a ⊲ List of allocated time

47

Similarly, the procedure LRT-Decel applies LRT algorithm for the set J of location jobs within an interval
I, assuming the data mule moves at the speed v0 at the start of the interval and decelerates at a (i.e., accelerates
at −a) toward the end of the interval. Internally it is implemented using EDF-Accel by reversing the location
axis.

LRT-Decel(J , I, v0, a)

1 ⊲ Init: Jrev ← ∅
2 for each location job τ ∈ J ⊲ Make “reversed” set of jobs
3 do τ ′ ← {[−d(τ),−r(τ)], e(τ)}
4 Jrev ← Jrev ∪ τ ′

5 return EDF-Accel(Jrev, [−high[I],−low[I]], v0, a)

Given a set J of location jobs, an interval Il, the tight interval It, and the plateau speed vp, the procedure
Divide-Jobs returns two sets Jl and Jr of location jobs. This procedure is called only when the tight interval
does not overlap with accel/decel intervals (Case 2 in Figure 7.6) and thus there are two free intervals before
and after the tight interval (denoted Il and Ir, respectively: only Il is given as an input). Jl and Jr only
contain jobs whose feasible location interval is contained in Il and Ir, respectively.

Internally, it calls either Divide-Jobs-Zero or Divide-Jobs-NonZero, depending on the plateau speed.
Divide-Jobs-Zero is called when the plateau speed is zero and thus the tight interval degenerates to a point
(denoted xt). Jobs in J are divided into Jl and Jr at the point xt. Specifically, the jobs before xt are added to
Jl and the ones after xt are added to Jr. Jobs that have a zero-length feasible interval on xt are not added to
either Jl or Jr. When a job’s feasible interval contains xt, it is divided into two jobs at xt and each added to Jl

and Jr. The execution time is divided to these two jobs proportionally to the length of their feasible location
intervals.

When the plateau speed is greater than zero, Divide-Jobs-NonZero is called. In this procedure, jobs in
J are divided into Jl and Jr by simulating the scheduling by EDF algorithm within Il. When a job is finished
in Il (i.e., allocated time is equal to the execution time), it is added to Jl. When a job is not scheduled in Il, it
is added to Jr. Otherwise, when a job is scheduled in Il but not finished yet, it is divided into two jobs, each
of which is added to Jl and Jr, respectively. In that case, the execution time of these two jobs are determined
according to the time duration allocated to the job in Il.

Divide-Jobs(J , Il, It, vp)

1 if vp = 0
2 then xt ← low[It] (= high[It]) ⊲ Tight interval degenerates to a point
3 return Divide-Jobs-Zero(J , xt)
4 else return Divide-Jobs-NonZero(J , Il, It, vp)

Divide-Jobs-Zero(J , xt)

1 ⊲ Init: Jl ← ∅, Jr ← ∅
2 for each location job τ ∈ J
3 do if r(τ) < xt and d(τ) ≤ xt

4 then Jl ← Jl ∪ τ
5 elseif xt ≤ r(τ) and xt < d(τ)
6 then Jr ← Jr ∪ τ
7 elseif r(τ) < xt and xt < d(τ)
8 then I1 ← [r(τ), xt], I2 ← [xt, high(τ)]

9 e1 ←
|I1|
|I(τ)|e(τ), e2 ←

|I2|
|I(τ)|e(τ) ⊲ Proportionally distribute

10 Jl ← Jl ∪ {I1, e1}, Jr ← Jr ∪ {I2, e2}
11 else ⊲ Do nothing for zero-length jobs at xt

12 return {Jl,Jr}

48

Divide-Jobs-NonZero(J , Il, It, vp)

1 ⊲ Init: Jl ← ∅, Jr ← ∅
2 a← EDF-Accel(J , Il, vp, 0) ⊲ Simulate EDF for Il (acceleration=0)
3 for each location job τ ∈ J
4 do if a(τ) = e(τ) ⊲ Finished in Il

5 then τ ′ ← {[r(τ),min{d(τ), low[It]}], e(τ)}
6 Jl ← Jl ∪ τ ′

7 elseif a(τ) = 0 ⊲ Not started in Il

8 then τ ′ ← {[max{r(τ), high[It]}, d(τ)], e(τ)}
9 Jr ← Jr ∪ τ

10 else ⊲ Dividing into two jobs
11 τl ← {[r(τ), low[It]], a(τ)}
12 τr ← {[high[It], d(τ)], e(τ)− a(τ)}
13 Jl ← Jl ∪ τl, Jr ← Jr ∪ τr

14 return {Jl,Jr}

Given a set J of location jobs and a tight interval It, the procedure Stop-Time returns the time duration
the data mule stops at the tight interval It. It is called only when It degenerates to a single point (and the
plateau speed vp is zero), where some of the jobs has a zero-length feasible location interval. To execute these
jobs, the data mule needs to stay at the point for the time equal to the total execution time of these jobs.

Stop-Time(J , It)

1 ⊲ Init: ts ← 0
2 for each location job τ ∈ J
3 do if I(τ) ∈ It

4 then ts ← ts + e(τ)
5 return ts

7.2.3 When endpoint speed is unconstrained

Although our heuristic algorithm assumes the speed at both Xs and Xd is constrained to zero, we can use it
also for the unconstrained case in the following way. The idea is to run the algorithm for a hypothetical travel
interval [X ′

s,X
′
d] so that we can freely change the speed at Xs and Xd.

1. Simplify the set of location jobs by Simplify-Jobset

2. Identify one tight location interval It by using the algorithm for CONSTANT SPEED 1-D DATA MULE
SCHEDULING (in Section 4.1.2); let gt denote the processor demand for It.

3. Calculate maximum possible speed ve at the edge of It. We can achieve the maximum speed when the
data mule constantly increases speed within It. Therefore we have the relation v2

e − v′2
e = 2amax|It| and

ve = v′
e + amaxgt, and obtain

ve =
amaxgt

2
+
|It|
gt

(7.1)

4. Calculate maximum possible speed at Xs and Xd. Let vs and vd denote the maximum speed for Xs and
Xd, respectively. Assuming there is no other tight interval except It, vs is achieved when the speed at
low[It](≡ xl) is ve. Similarly vd is achieved when the speed at high[It](≡ xh) is ve. Then we have the
relations v2

s − v2
e = 2amaxxl and v2

d − v2
e = 2amax(Xd − xh). We solve them and obtain

vs =
√

v2
e + 2amaxxl (7.2)

vd =
√

v2
e + 2amax(Xd − xh) (7.3)

49

5. Calculate hypothetical travel interval [X ′
s,X

′
d]. We set X ′

s sufficiently far from Xs so that the data
mule can take any speed below vs at Xs. Similarly for X ′

d. Then we have v2
s = 2amax(Xs − X ′

s) and
v2

d = 2amax(X ′
d −Xd) and obtain

X ′
s = Xs −

v2
s

2amax
(7.4)

X ′
d = Xd −

v2
d

2amax
(7.5)

For the hypothetical travel interval [X ′
s,X

′
d], we run Maximize-Plateau-Speed and recursively maximize the

speed, as in the constrained case. Then we trim off the speed changes outside of [Xs,Xd] from the output. Note
all of Equations (7.1) to (7.5) are closed-form solutions, and so we can calculate X ′

s and X ′
d efficiently once we

obtain It and gt.

7.3 Analysis

7.3.1 Correctness proof

Claim 1. For any valid input, Approx-MotionPlan halts.

Proof idea. For every recursion, a tight interval contains at least one job. Thus, in Divide-Jobs, the
size of (i.e., number of jobs in) Jl and Jr are strictly less than that in J . When the size of J is zero,
Recursive-Maximize returns without recursive calls. Therefore, Approx-MotionPlan halts.

Claim 2. For any valid input, Approx-MotionPlan produces a valid output, i.e., for the motion plan the
algorithm produces, the corresponding PREEMPTIVE SCHEDULING FOR GENERAL JOBS problem is fea-
sible.

Proof idea. Since every problem of GENERALIZED 1-D DATA MULE SCHEDULING is feasible, we show
every procedure in the algorithm preserves the feasibility condition.

One iteration of Maximize-Plateau-Speed maximizes the plateau speed until there is a tight interval.
Since no interval of [r(τ), d(τ ′)] becomes infeasible in this procedure, if the initial motion plan represents a
feasible set of location jobs, the output motion plan is also feasible.

The validity of Trim-Accel-Interval, Trim-Decel-Interval, and Divide-Jobs is due to the optimality
of EDF and LRT algorithms. For any given motion plan that is feasible, the corresponding time-domain schedul-
ing problem is schedulable by EDF. Trim-Accel-Interval emulates EDF algorithm from the start to a certain
location and trim the feasible intervals of jobs according to the result. Since the remaining set of location jobs
is also schedulable by EDF and thus feasible, the procedure preserves the feasibility. Trim-Decel-Interval

do the same thing backwards from the end and emulate LRT algorithm, which also works backwards. After
running EDF for the accel interval and LRT for the decel interval, it is obvious that the remaining set of location
jobs for the plateau interval is also feasible. Divide-Jobs-NonZero applies EDF to the plateau interval left of
the tight interval. As we discussed, the remaining set of location jobs on the right of the tight interval continues
to be feasible. Finally, for Divide-Jobs-Zero, we can divide the feasibility intervals of the jobs arbitrarily
without violating feasibility, since the plateau speed is still zero.

7.3.2 Computational complexity

To analyze the computational complexity of the algorithm, we look into the recursive portions of the algorithm.
In each recursive step, the most time-consuming operations take O(m2) time, where m is the number of jobs in J .
In Maximize-Plateau-Speed, finding a tight interval (lines 1-2) takes O(m3) time in a naive implementation,
since we need to calculate the processor demand for O(m2) different location intervals. However, we can do
the computation incrementally for each starting location and reduce the time to O(m2). Specifically, for each
starting location, by having a list of jobs sorted by their deadline locations, we can incrementally extend the
interval and calculate the processor demand in O(1) time. Then it takes O(m) time for each starting location,
and since there are O(m) starting locations, the whole process of finding a tight interval takes O(m2).

50

Note we convert the original set of location jobs to a set of simple location jobs in Simplify-Jobset, so
m is at most nk, where n is the number of location jobs and k is the maximum number of feasible location
intervals of a location job.

We analyze the worst case complexity. For that purpose, we can focus on the case having two recursive calls
in Recursive-Maximize. Since there is at least one location job contained in the tight interval, the following
recurrence holds:

T (m) = m2 + max
0≤s≤m−1

(T (s) + T (m− s− 1))

We show T (m) = O(m3) by showing there is a constant c, c0 such that T (m) ≤ cm3 for c > c0.

T (s) + T (m− s− 1) ≤ c(s3 + (−s + (m− 1))3)

= c(m− 1) (3s2 + 3s(m− 1) + (m− 1)2)
︸ ︷︷ ︸

max at s = 0 or s = m− 1

≤ c(m− 1)3

T (m) ≤ m2 + c(m− 1)3

= cm3 + (−3c + 1)

(

m +
3c

2(−3c + 1)

)2

− c(3c− 4)

4(3c− 1)

≤ cm3 − c(3c− 4)

4(3c− 1)
(for c > 1

3)

≤ cm3(for c > 4
3)

7.3.3 Approximation ratio

We show the approximation ratio for k ≥ 2 case is not bounded by a constant factor. Figure 7.7 shows an
example. Let ε be a small positive value satisfying 2ε≪ L

n . Assume the length of each task is E
n , where E is a

constant. Let Topt, Tapprox denote the time to finish all the tasks and reach the destination in case of optimal
algorithm and the approximation algorithm, respectively.

Tapprox

Topt
→

n · 2
√

L/n
amax

+ E

2
√

L
amax

+ E
(ε→ 0)

=
2
√

n
√

L
amax

+ E

2
√

L
amax

+ E

→ +∞ (n→ +∞)

51

Location

Location

0
1

2

Location

3

Speed

Speed

L
4

1
L

4

2
L

4

3
L0

(a) Optimal

(b) Heuristic

Do all jobs here, then starts to move

Do job 0Do job 0 Do job 1Do job 1 Do job 2Do job 2 Do job 3Do job 3

������ +−
24

1
,

24

1 εε
LL

Location job

Figure 7.7: An example to show the approximation ratio is unbounded when k ≥ 2: Case of n = 4 location
jobs. All feasible location intervals at x = 0 are zero-length. All other feasible location intervals have the length
of ε. (a) The optimal (i.e., fastest) travel is to first execute all the jobs at x = 0 and then start to move. (b)
The solution the heuristic algorithm yields. For job 1 to (n − 1), the algorithm assigns all the execution time
to the latter feasible location intervals, and thus the data mule needs to stop at each x = i

nL.

52

Chapter 8

Experiments

In this chapter, we evaluate the heuristic algorithm for the general case of data mule scheduling problem by
numerical experiments.

8.1 Method

We implemented the quadratic program formulation, its relaxation, and the heuristic algorithm in MATLAB
with YALMIP interface [Löf04]. We developed and ran the programs on MATLAB 7.4.0 (R2007a) and used
SeDuMi [Stu99] version 1.1 for SDP solver.

8.1.1 Test case generation

We randomly generate test cases in the following way. In Figure 8.1, the horizontal dotted line in the middle
of the rectangle represents the path of data mule. L is the total travel length. We put circles of diameter d
so that each circle has its center inside the rectangle. A circle represents the communication range of a sensor
node and the center is its location. In this way, we can make the circle intersect with the path of data mule.
This intersection corresponds to a feasible location interval. The length of each feasible location interval is
between 0 and d. We put nk circles, where n is the number of location jobs and k is the number of feasible
location intervals per each location job. As a result, each location job has at most k feasible location intervals.
The number can be less than k, since location intervals from multiple circles may overlap and become one long
location interval.

For the experiments, we use d = 5 and vary n, k, and L. We define “length factor” f and set L = fn so
that we can keep the density of nodes unchanged for different n’s. We set the execution time for each location
job to 10.

0

1

Location job

L

d

Path of data mule

Figure 8.1: Generating test cases: two location jobs with two feasible location intervals per each

53

0

0.5

1

1.5

2

���	
� ��
�	
� ����	
� �	
�	
� ����
� ���
� ����
�
(Number of location jobs, Length factor)

T
o
t
a
l

t
r
a
v
e
l

t
i
m

e

(
n
o
r
m

a
l
i
z
e
d
) ����� ����� ����� ����� ����� ����� !�"����

Figure 8.2: Comparison of lower bounds from SDP relaxation and MaxSpeed

8.1.2 Evaluation metrics

We use the following two metrics to evaluate the results:

• Quality: total travel time

• Scalability: elapsed time to compute the schedule

Since global optimal solutions are hard to obtain for nonconvex quadratic optimization problem like this,
we evaluate the heuristic algorithm by comparing it with the lower bounds. Hence, a lower bound should be as
tight as possible for the evaluation to be more accurate. In Figure 8.2, we compare the lower bound from SDP
relaxation (Section 6.3.1) with the one from LB-MaxSpeed (Section 6.3.2). From the figure, we can observe
LB-MaxSpeed constantly yields higher (thus tighter) lower bound for all cases. Thus, for simple location jobs,
we compare LB-MaxSpeed with the heuristic algorithm. We use the SDP relaxation for general location jobs,
as LB-MaxSpeed is only for simple location jobs.

We repeat each experiment for 100 times on each case and calculate average and standard deviation.

8.2 Results and discussion

Figures 8.3 and 8.4 are the results for the same problem from the quadratic program and the heuristic algorithm.
The parameter of the problem are: number of location jobs n = 5, length factor f = 20 (i.e. total travel length
L = 20n), and number of feasible location intervals per job k = 2. Note that the result from quadratic program
is not necessarily the global optimal solution, as there is no analytical way to test the global optimality in general
for nonconvex optimization problems. Also note that we cannot have figures like these for SDP relaxation and
LB-MaxSpeed, since they only give lower bounds and do not produce feasible schedules.

8.2.1 Quality

To compare the total travel time, we first normalize the travel time by the sum of execution time of all jobs,
which serves as the trivial lower bound. By this normalization, we can roughly estimate the relative quality of
solution of the heuristic algorithm for different test cases.

Figure 8.5 shows the effect of varying number of location jobs from n = 5 to 20. We use k = 1 (simple
location jobs) and length factor f = 20. For this range, the schedules from the heuristic algorithm have around
1.15 times longer total travel time than those from LB-MaxSpeed. The ratio slightly increases (1.13 for n = 5,

54

0 10 20 30 40 50 60
0

1

2

3

4

time

sp
ee

d

(b) Time−Speed profile

0 10 20 30 40 50 60
0

50

100

time

lo
ca

tio
n

(d) Time−Location profile

0 20 40 60 80 100
0

1

2

3

4

location

sp
ee

d

(c) Location−Speed profile

0 20 40 60 80 100

1

2

3

4

5

10

10

10

10

10

location

ta
sk

(a) Data Mule Scheduling problem

0 10 20 30 40 50 60

1

2

3

4

5

time

ta
sk

(e) Corresponding Real−Time Scheduling problem

0 10 20 30 40 50 60

1

2

3

4

5

time

ta
sk

(f) Job schedule

Figure 8.3: Optimal solution (5 jobs, 2 feasible location intervals): total travel time is 68.2948sec. (a) original
data mule scheduling problem. number represents the execution time of each location job; (b) a time-speed
profile for (a); (c) location-speed profile generated from (b); (d) time-location profile generated from (b); (e)
real-time scheduling problem generated from (a) and (d), each thin bar represents the execution time; (f) job
schedule for (e)

55

0 20 40 60
0

1

2

3

4

5

time

sp
ee

d

(b) Time−Speed profile

0 20 40 60
0

50

100

time

lo
ca

tio
n

(d) Time−Location profile

0 20 40 60 80 100
0

1

2

3

4

5

location

sp
ee

d

(c) Location−Speed profile

0 20 40 60 80 100

1

2

3

4

5

10

10

10

10

10

location

ta
sk

(a) Data Mule Scheduling problem

0 20 40 60

1

2

3

4

5

time

ta
sk

(e) Corresponding Real−Time Scheduling problem

0 20 40 60

1

2

3

4

5

time

ta
sk

(f) Job schedule

Figure 8.4: Heuristic solution (5 jobs, 2 feasible location intervals): total travel time is 71.8353sec. The legend
is same as in Fig 8.3

56

1.15 for n = 20), but it does not imply the heuristic algorithm performs poorer for larger n, since we don’t
know how close the lower bound is to the optimal solution.

Figure 8.6 shows the effect of varying density by changing the length factor from f = 10 to 40. Smaller
length factor means higher node density. We use the number of location jobs n = 5 and k = 1 (simple location
jobs). The ratio to the lower bound varies from 1.09 (f = 10) to 1.17 (f = 40), but we cannot conclude the
heuristic algorithm performs poorer for less node density for the same reason as above.

Figure 8.7 shows the effect of varying number of feasible location intervals from k = 1 to 3. We use the
number of location jobs n = 5 and f = 20. For the cases of k = 2 and 3, we use the lower bound from
SDP relaxation. When the number of feasible location interval k is 1, the ratio to the lower bound from
LB-MaxSpeed is 1.13 and that for the SDP relaxation is 1.29. As k increases, the ratio decreases (1.23 for
k = 2, 1.16 for k = 3, both to the SDP relaxation).

All these results suggest that the heuristic algorithm produces reasonably good schedules for all the test
cases, though we cannot make a strong assertion about the performance from the numerical experiments without
having the optimal solution.

8.2.2 Scalability

Figure 8.8 shows the computation time of the heuristic algorithm for the problems of different size. We use
k = 1 (simple location jobs) and length factor f = 20, and varied the number of location jobs from n = 5 to
n = 200. We have ran our code on MATLAB (HW: Intel Pentium 4 2.8GHz (RAM:1.5GB), OS: Linux (kernel
2.6.20)). On average, the heuristic algorithm takes 0.7 second for 100 location jobs and 2.5 seconds for 200
location jobs. It is reasonably fast, considering the SDP relaxation takes more than 20 minutes on average to
compute the lower bound for n = 20 case (data not shown). Moreover, the curve suggests the average case time
complexity is much better than O(m3), which is the worst case complexity.

57

0

0.5

1

1.5

2

5 10 15 20

Number of location jobs

T
o
t
a
l

t
r
a
v
e
l

t
i
m

e

(
n
o
r
m

a
l
i
z
e
d
) #$%&'()'* +,-$& .,%/0 1+2345678$$09

Figure 8.5: Effect of number of location jobs

0

0.5

1

1.5

2

2.5

10 20 30 40

Length factor

T
o
t
a
l

t
r
a
v
e
l

t
i
m

e

(
n
o
r
m

a
l
i
z
e
d
) :;<=>?@>A BCD;= EC<FG HBIJKLMNO;;GP

Figure 8.6: Effect of density: node density is less for larger length factor

58

0

0.5

1

1.5

2

1 2 3

Number of feasible location intervals (per job)

T
o
t
a
l

t
r
a
v
e
l

t
i
m

e

(
n
o
r
m

a
l
i
z
e
d
) QRSTUVWUXYZ[RT \ZS]^ _`abcYZ[RT \ZS]^ _Ydefgh`iRR^c

Figure 8.7: Effect of number of feasible location intervals

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200 250

Number of location jobs

E
l
a
p
s
e
d

t
i
m

e

(
s
e
c
)

Figure 8.8: Computation time for varying number of location jobs

59

Chapter 9

Conclusion and Future Work

Unlike traditional multi-hop forwarding, exploiting mobility in collecting data from sensor networks is an al-
ternative way to achieve high energy-efficiency. A mobile node, or “data mule”, travels across the sensor field,
collects data from each sensor when they are close to each other, and thereby helps reducing energy consumption
at each sensor node by avoiding communication over long distance that possible contains multiple hops.

In this paper, we have formulated the problem of planning an optimal movement of data mule as a scheduling
problem. This data mule scheduling problem is unique, since it has both time constraints and location constraints
characterized by wireless communication range of each sensor node. After reviewing related real-time scheduling
problem, we analyzed two simple cases and one general case of data mule scheduling problem. For two simple
cases, namely constant speed and variable speed, we presented for each subproblem either an efficient optimal
algorithm or a proof of non-existence of an optimal algorithm. Further we pointed out their similarities with
speed scaling problems such as DVS. For general case that includes two simple cases as special cases, we proved
NP-completeness for general location jobs. We formulated it as a nonconvex quadratic program and then its
SDP relaxation to obtain a lower bound. We designed a heuristic algorithm for the general case and showed
by numerical experiments that it yields good solutions compared to the lower bound in a reasonable amount of
time.

Table 9.1: Summary of complexity results

Simple (location) jobs General (location) jobs

Offline Online Offline Online

Real-time preemptive
scheduling

EDF [LL73] LP (§3.3.2)
Non-existent
(Theorem 3.5)

Data
mule
sche-
duling
(DMS)

Constant speed
(§4.1)

O(n2) Non-existent LP (§4.1.2) Non-existent

Variable speed
(§4.2)

O(n3) (§4.2.2)

(vmin = 0)
EDF-with-Stop

LP (§4.2.2)
Non-existent
(Theorem 4.3)(vmin > 0)

Non-existent
(Theorem 4.2)

Generalized
(§5)

Open (∈ NP)
(Lemma 5.2)

Non-existent

NPC (fixed k ≥ 2)
(Corollary 5.4)

Non-existentStrong NPC
(k arbitrary)
(Corollary 5.6)

60

Our study on the data mule scheduling problem is still in its infancy and there remains a huge amount
of future work. First of all, there are some open problems. One is the complexity for GENERALIZED 1-D
DATA MULE SCHEDULING for simple location jobs. We showed it is in NP but do not know whether it is
NP-complete or not. Another open problem is the approximation ratio for the heuristic algorithm. In addition
we have left the whole problem of path selection out of focus of this paper. Path selection can be a difficult
problem by itself and is even more difficult when it is not clearly separable from other subproblems: for example,
when a constraint on turning radius depends on the speed at the time.

Other than these theoretical problems, there are a number of practical issues to resolve when we apply these
results in the real-world environment. One is nondeterminism, which we have completely omitted in this paper.
Wireless communication can be transient and has fluctuating bandwidth, implying any of the parameters of
each location job are in fact nondeterministic. Although we can still see our results as the worst-case analysis,
it would be much better if we can design an online heuristic that exploits the uncertainty for improving the
quality of the scheduling. Another real-world issue is about overheads. We assumed preemptive scheduling,
but it is likely that there is some overhead to initiate the communication for each preemption. There may be
additional overhead and other implementation issues when we try to implement the algorithm using conventional
communication protocols like ZigBee.

More fundamentally, we can consider a different model for the problem of controlling data mule. For
example, we can think of a hybrid of multi-hop approach and data mule approach, as discussed in [MY06].
Combination of these two approaches would reduce the total travel length and the number of jobs, yet each
job has longer execution time and energy consumption at each sensor may be higher. We need a different way
of formulating the problem, employing another definition of optimality. On higher level of the system, we also
need a mechanism for coordinating such communication patterns.

61

Bibliography

[BHR93] Sanjoy K. Baruah, Rodney R. Howell, and Louis E. Rosier. Feasibility problems for recurring tasks
on one processor. Theoretical Computer Science, 118(1):3–20, 1993.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, New
York, NY, USA, 2004.

[CSA03] Arnab Chakrabarti, Ashutosh Sabharwal, and Behnaam Aazhang. Using predictable observer mo-
bility for power efficient design of sensor networks. In IPSN ’03: Proceedings of the 2nd international
symposium on Information processing in sensor networks, pages 129–145, 2003.

[CWSK05] Jian-Jia Chen, Jun Wu, Chi-sheng Shih, and Tei-Wei Kuo. Approximation algorithms for scheduling
multiple feasible interval jobs. In RTCSA ’05: 11th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, pages 11–16, 2005.

[HQPS98] Inki Hong, Gang Qu, Miodrag Potkonjak, and Mani B. Srivastava. Synthesis techniques for low-
power hard real-time systems on variable voltage processors. In RTSS ’98: Proceedings of the 19th
IEEE international Real-Time Systems Symposium, pages 178–187, 1998.

[IGE00] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Directed diffusion: a scalable
and robust communication paradigm for sensor networks. In MobiCom’00: Proceedings of the 6th
annual international conference on Mobile computing and networking, pages 56–67, 2000.

[IY98] Tohru Ishihara and Hiroto Yasuura. Voltage scheduling problem for dynamically variable voltage
processors. In ISLPED ’98: Proceedings of the 1998 international symposium on Low power elec-
tronics and design, pages 197–202, 1998.

[JOW+02] Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi, Li-Shiuan Peh, and Daniel Ruben-
stein. Energy-efficient computing for wildlife tracking: design tradeoffs and early experiences with
ZebraNet. In ASPLOS-X: Proceedings of the 10th international conference on Architectural support
for programming languages and operating systems, pages 96–107, 2002.

[JSS05] David Jea, Arun A. Somasundara, and Mani B. Srivastava. Multiple controlled mobile elements (data
mules) for data collection in sensor networks. In DCOSS ’05: Proceedings of the 1st international
conference on Distributed Computing in sensor systems, pages 244–257, 2005.

[KSJ+04] Aman Kansal, Arun A. Somasundara, David D. Jea, Mani B. Srivastava, and Deborah Estrin.
Intelligent fluid infrastructure for embedded networks. In MobiSys ’04: Proceedings of the 2nd
international conference on Mobile systems, applications, and services, pages 111–124, 2004.

[Liu00] Jane W.S. Liu. Real-time systems. Prentice Hall, 2000.

[LL73] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time
environment. Journal of the ACM, 20(1):46–61, 1973.

[Löf04] Johan Löfberg. Yalmip : A toolbox for modeling and optimization in MATLAB. In Proceedings of
the CACSD Conference, Taipei, Taiwan, 2004.

62

[MY06] Ming Ma and Yuanyuan Yang. SenCar: An energy efficient data gathering mechanism for large
scale multihop sensor networks. In DCOSS ’06: Proceedings of the 2nd international conference on
Distributed Computing in sensor systems, pages 498–513, 2006.

[SLC03] Chi-sheng Shih, Jane W.S. Liu, and Infan Kuok Cheong. Scheduling jobs with multiple feasible
intervals. In Real-Time and Embedded Computing Systems and Applications (LNCS 2968), pages
53–71, 2003.

[SRJB03] Rahul C. Shah, Sumit Roy, Sushant Jain, and Waylon Brunette. Data MULEs: modeling a three-tier
architecture for sparse sensor networks. In Proceedings of the First IEEE International Workshop
on Sensor Network Protocols and Applications, pages 30–41, 2003.

[SRS04] Arun A. Somasundara, Aditya Ramamoorthy, and Mani B. Srivastava. Mobile element scheduling for
efficient data collection in wireless sensor networks with dynamic deadlines. In RTSS ’04: Proceedings
of the 25th IEEE international Real-Time Systems Symposium, pages 296–305, 2004.

[SS84] Barbara Simons and Michael Sipser. On scheduling unit-length jobs with multiple release
time/deadline intervals. Operations Research, 32(1):80–88, 1984.

[Stu99] Jos F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones.
Optimization Methods and Software, 11–12:625–653, 1999.

[TAZ06] Muhammad Mukarram Bin Tariq, Mostafa Ammar, and Ellen Zegura. Message ferry route design
for sparse ad hoc networks with mobile nodes. In MobiHoc ’06: Proceedings of the 7th ACM
international symposium on Mobile ad hoc networking and computing, pages 37–48, 2006.

[TMF+07] Michael Todd, David Mascarenas, Eric Flynn, Tajana Rosing, Ben Lee, Daniele Musiani, Sanjoy
Dasgupta, Samori Kpotufe, Daniel Hsu, Rajesh Gupta, Gyuhae Park, Tim Overly, Matt Nothnagel,
and Chuck Farrar. A different approach to sensor networking for SHM: Remote powering and
interrogation with unmanned aerial vehicles. In Proceedings of the 6th International workshop on
Structural Health Monitoring, 2007.

[VB00] Amin Vahdat and David Becker. Epidemic routing for partially-connected ad hoc networks. Duke
University Technical Report, CS-2000-06, 2000.

[VKR+05] I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. Corke. Data collection, storage, and retrieval
with an underwater sensor network. In SenSys ’05: Proceedings of the 3rd international conference
on Embedded networked sensor systems, pages 154–165, 2005.

[YDS95] Frances Yao, Alan Demers, and Scott Shenker. A scheduling model for reduced cpu energy. In
FOCS ’95: Proceedings of the 36th Annual Symposium on Foundations of Computer Science, pages
374–382, Washington, DC, USA, 1995. IEEE Computer Society.

[YQ05] Lin Yuan and Gang Qu. Analysis of energy reduction on dynamic voltage scaling-enabled systems.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 24(12):1827–
1837, 2005.

[ZAZ04] Wenrui Zhao, Mostafa Ammar, and Ellen Zegura. A message ferrying approach for data delivery
in sparse mobile ad hoc networks. In MobiHoc ’04: Proceedings of the 5th ACM international
symposium on Mobile ad hoc networking and computing, pages 187–198, 2004.

[ZAZ05] Wenrui Zhao, Mostafa Ammar, and Ellen Zegura. Controlling the mobility of multiple data trans-
port ferries in a delay-tolerant network. In INFOCOM ’05: Proceedings of the 24th Annual Joint
Conference of the IEEE Computer and Communications Societies, pages 1407–1418, 2005.

[ZBSF04] Bo Zhai, David Blaauw, Dennis Sylvester, and Krisztian Flautner. Theoretical and practical limits
of dynamic voltage scaling. In DAC ’04: Proceedings of the 41st annual conference on Design
automation, pages 868–873, 2004.

63

