Accuracy-aware Data Modeling in Sensor Networks

Ryo Sugihara

Andrew A. Chien

Computer Science and Engineering Dept, Center for Networked Systems, University of California San Diego

{ryo, achien}@ucsd.edu

Motivation
- Accuracy of data in sensor networks
 - Should be under control of applications
- Existing approaches: best-effort
 - No guarantee on accuracy

Problem: Pick an efficient data representation that meets the specified accuracy requirement

Accuracy-aware data modeling

The Problem
- Assumptions
 - Sensor nodes are separated geographically into disjoint groups
 - Remote host communicates with all leaders and acts as a gateway to remote host to send data
 - Leader communicates with all sensors in the group

- Application is interested in an environmental attribute (e.g. temperature) over the entire space
- Application has an accuracy requirement
 - Expressed as an “Error bound”
- Optimization
 - Objective: Compact representation of data
 - (Coordinator)
 - Constraint: Must satisfy accuracy requirement
 - (Represented within the error bound ϵ)

Key Idea: Choose cutoff to meet accuracy requirement

Approach
- Hybrid: Regression Plane + Explicit Points

Data summarization and filtering

For each group: do iteratively (@ Leader)
1. Calculate regression plane for data $f_i(x,y) = ax + by + c$
 $\begin{align*}
 \sum_{i=1}^{n} & \left(z_i - (ax_i + by_i + c) \right)^2 \\
 \Rightarrow & \quad \min \\
 \Rightarrow & \quad a \text{ and } b \text{ and } c
 \end{align*}
 $
 \begin{align*}
 \Rightarrow & \quad a \text{ and } b \text{ and } c
 \end{align*}$

2. Filter out a data
 - Data with the maximum deviation $\delta = \max_{i} (|f_i(x,y)| - 1)$
 - $d_i \leq \delta$, break the loop
 - Otherwise eliminate sensor #m and repeat

Combining regression planes
- Iteratively combine regression planes (@ Coordinator)

Collecting explicit data
- Coordinator requests explicit data for each group leader
- Leader sends raw data back to coordinator

Simulation Experiment
- Simulation data:
 - Environmental data
 - Brightness temperature
 - 155 sensors, 16 groups

 - Resulting data representation:
 - ϵ (without summarization) produces more complex representation
 - $\epsilon_1.5$ (with summarization) produces efficient representation

Results
- Flexible tuning of accuracy
- Fairly good performance

Conclusion & Future Work
- Accuracy-efficiency trade-off
 - Assuring accuracy is first-priority
 - Previous approaches focus on efficiency only
 - Our approach provides a new spectrum of flexibility
- Future work
 - Scalability: Fully-distributed algorithm (Ongoing)

Supported in part by the National Science Foundation under awards NSF Cooperative Agreement ANI-0225642 (OptIPuter), NSF CER-0332446 (VGG-AD), NSF ACI 0095790, and NSF Research Infrastructure Grant EIA-0105622. Support from the UCSD Center for Networked Systems, BepKidsheets, and Fujitsu is also gratefully acknowledged. Support from IBM Japan is also gratefully acknowledged.