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Abstract—Localizability of network or node is an important
subproblem in sensor localization. While rigidity theory plays
an important role in identifying several localizability conditions,
major limitations are that the results are only applicable to
generic frameworks and that the distance measurements need
to be error-free. These limitations, in addition to the hardness
of finding the node locations for a uniquely localizable graph,
miss large portions of practical application scenarios that require
sensor localization. In this paper, we describe a novel SDP-based
formulation for analyzing node localizability and providing a
deterministic upper bound of localization error. Unlike other
optimization-based formulations for solving localization problem
for the whole network, our formulation allows fine-grained
evaluation on the localization accuracy per each node. Our
formulation gives a sufficient condition for unique node localiz-
ability for any frameworks, i.e., not only for generic frameworks.
Furthermore, we extend it for the case with measurement errors
and for computing directional error bounds. We also design an
iterative algorithm for large-scale networks and demonstrate the
effectiveness by simulation experiments.

I. INTRODUCTION

Location is a central concept in sensor networks for most ap-

plication scenarios. In general, however, knowing the location

of sensor nodes is not an easy task. GPS-based localization is

usually too expensive both in terms of cost and energy for

sensor networks and possible only in outdoor applications.

More practical solution is to obtain distance information based

on distance measurement between sensor nodes by using

acoustic signals, signal strength, and so on; for more details

on various ranging techniques see e.g., [1]. The problem of

estimating the location of each sensor node from distance

information between nodes is usually referred to as the sensor

localization problem.

A number of studies on sensor localization have improved

average accuracy of location estimation. What is less studied,

however, is about the guarantee on accuracy. Depending on the

application scenario, having the worst-case accuracy guarantee

is as important as having good average performance. For

example, in secure localization [2]–[5], where a prover makes

a claim about its location against a group of remote verifiers

and the verifiers check if the claim is valid or not, error

of each verifier’s location directly affects the reliability of

a protocol. By providing a guarantee on accuracy, we can

compute the region that the verifiers can assert the validity of

the claim. Furthermore, by having a deterministic guarantee,

we can adapt to applications that have hard requirements on

reliability, which is often the case in security applications like

this.

A. Limitations of Rigidity Theory

Localization accuracy is closely related to whether a node

can be uniquely localized or not. The unique localizability in

the sensor localization problem is studied mostly in the context

of rigidity theory. In rigidity theory, to discuss rigidity as a

property of graph instead of that of each framework1, people

usually consider generic frameworks, meaning the vertex

coordinates are algebraically independent over the rationals,

which roughly equals to “without degeneracy”, i.e., no three

points on the same line, no three lines go through the same

point, etc. The reason is, even though frameworks are almost

always rigid for a certain graph, some non-rigid frameworks

can exist for the same graph. By assuming generic frameworks,

we can rule out such cases as rare special cases. Specifically, it

is shown that the probability of such cases for any reasonable

probability distribution on node positions is zero [6]–[8].

However, we claim that sensor nodes are often deployed

in an “unnatural” way. For example in two dimensional

deployment, nodes are often placed at grid points, resulting

in more than three nodes on a single line. Moreover in three

dimensional deployment, nodes are very likely to be installed

on the floor and ceiling, resulting in more than four nodes on

a single plane2. Both of these are violations of genericness

and it is irrelevant to discuss localizability based on the graph

rigidity for these cases.

Figure 1(a) shows a simple example of such non-generic

framework. When the node and two anchors are aligned on

a single line, the node is uniquely localizable if the distance

information is exact. However, a case like this is usually left

out in an analysis of unique localizability based on rigidity

theory. On the other hand, the node is not uniquely localizable

in Figure 1(b) due to reflection, but the distance between two

possible locations are not large. Depending on the application’s

requirement, even if a node is not uniquely localizable, it may

suffice if all possible locations of the node are guaranteed to be

within certain bound. Meanwhile in rigidity theory, uniquely

1i.e., an embedding of a graph in Euclidean space. Also called “realization”
or “point formation.”

2For instance, variable-length mounts are used to avoid this situation in [9].



Fig. 1. Examples: Circles are nodes and squares are anchors: (a) Uniquely
localizable case with two anchors; (b) Not uniquely localizable, but localiza-
tion error determined by the distance between two possible locations is small;
(c-1,2) Both nodes are uniquely localizable in error-free case, but the error
will be larger in (c-2) under measurement errors.

localizable or not is the main question and the amount of

possible localization error is not discussed.

Another limitation of rigidity theory arises when distance

measurements are not accurate. Most results including unique

localizability established through graph rigidity assume exact

distance measurements. However, it is almost always the case

in practice that distance measurements are not accurate, espe-

cially when they are obtained by each sensor node with limited

hardware equipments. What is more problematic is, localiza-

tion error due to inaccurate measurements is quite different

depending on node configuration. For example, Figure 1(c-1)

and (c-2) are two possible realizations of a graph. Although the

node is uniquely localizable in both cases, the upper bounds of

localization error under imprecise measurements are actually

very different.

B. This Paper

In this paper we present semidefinite programming (SDP)

formulations for computing an upper bound of localization

error of each node in sensor network localization. The upper

bounds are guaranteed to be correct, thus serving as a deter-

ministic accuracy guarantee. While there are several papers

on SDP formulations of sensor localization as we will review

later, our formulation is unique in giving this strong accuracy

guarantee.

The formulations are general in that they are not limited to

generic frameworks. Nevertheless it provides some interesting

connections with rigidity theory regarding unique localizabil-

ity. We can also handle large scale networks through the

iterative algorithm we design.

Our contributions in this paper are as follows:

• Presenting a new SDP formulation that gives determinis-

tic accuracy guarantees for sensor node localization,

• Analyzing the error bound and unique localizability con-

dition that are not restricted to generic frameworks,

• Extending the formulation for the case with inaccurate

distance and for computing directional error bounds, and

• Designing an iterative algorithm appropriate for large-

scale networks and demonstrating the effectiveness by

simulations.

The rest of this paper is organized as follows. In Section II

we present the SDP formulation for computing the localization

error bound. Its analytical properties including the condition

for unique localizability are discussed in Section III. In Section

IV we extend the formulation for the case with measurement

errors. For large-scale networks, we design an iterative algo-

rithm in Section V. We show simulation results in Section

VI. Related work is reviewed in Section VII and Section VIII

concludes the paper.

II. PROBLEM FORMULATION

In this section we give an SDP formulation for computing an

upper bound of localization error, which is referred to as “error

bound” hereafter. We first present a related SDP formulation

for network localization problem by Biswas et al. [10] and

describe how we extend that to evaluate a deterministic error

bound for each node.

Throughout this section, we assume the distance information

is exact. We also assume that network is realizable, i.e., there

exists at least one feasible solution.

A. Preliminary: Network Localization

We are given a graph G = (Vn∪Va, En∪Ea) and consider

its embedding in D-dimensional Euclidean space. Vn is the

set of nodes whose locations are unknown and Va is the set of

anchors whose locations are known (denoted ak ∈ RD×1 for

k-th anchor). En is the set of edges between nodes and, for

each edge (i, j) ∈ En, we are given the distance dij . Similarly,

Ea is the set of edges between a node and an anchor and the

distance djk is given for each edge (j, k) ∈ Ea. The problem

is to find the location (denoted xi ∈ RD×1 for i-th node)

of all nodes in D-dimensional space such that all distance

constraints

||xi − xj ||
2 = d2

ji,∀(i, j) ∈ En, (1)

||xj − ak||
2 = d2

jk,∀(j, k) ∈ Ea (2)

are satisfied, where || · || denotes the Euclidean norm.

This problem is formulated as an optimization problem. Let

matrix X = [x1, x2, ..., xN ] ∈ RD×N , Y ∈ RN×N ,

find X,Y
s.t. Y •Q(eij) = d2

ij ∀(i, j) ∈ En
[

ID X
XT Y

]

•Q([ak;−ej ]) = d2
jk ∀(j, k) ∈ Ea

Y = XT X,

(3)

where A•B = Tr(AT B), Q(v) = vvT , ID is a D-dimensional

identity matrix, ei ∈ RN×1 is a vector with all zeros except

its i-th entry being one, and eij = ei − ej .

Since (3) is a nonconvex optimization problem, we obtain an

SDP relaxation by replacing the quadratic equality constraint

Y = XT X with a positive semidefiniteness constraint Y �
XT X . Using Schur complement, we obtain the relaxed SDP

problem as follows:

find X,Y
s.t. Y •Q(eij) = d2

ij ∀(i, j) ∈ En
[

ID X
XT Y

]

•Q([ak;−ej ]) = d2
jk ∀(j, k) ∈ Ea

[

ID X
XT Y

]

� 0.

(4)



Fig. 2. Formulation idea: To calculate an upper bound of localization error
of p-th node, consider two realizations of a graph and the distance between
two locations xp and x′

p
.

B. Localization Error Bound and Node Localizability

Following the similar idea, we modify the formulation

to maximize the distance between two corresponding nodes

in two different realizations of a graph (Figure 2). Specif-

ically, we consider two sets of node locations by having

X ∈ RD×N ,X ′ ∈ RD×N , Y ∈ R2N×2N as variables. For

analyzing the localizability of p-th (1 ≤ p ≤ N ) node, the

objective is to maximize d2
p, where dp is the distance between

p-th node in two realizations given by the following equation:

||xp − x′
p||

2 = d2
p (5)

In a matrix form, this is expressed as:

Z •Q([0; ep;−ep]) = d2
p, (6)

where

Z =





ID X X ′

XT

Y
X ′T



 . (7)

Distance constraints between anchor and node are given by

||xj − ak||
2 = d2

jk and ||x′
j − ak||

2 = d2
jk, or alternatively,

Z •Q([ak;−ej ;0]) = d2
jk, (8)

Z •Q([ak;0;−ej ]) = d2
jk. (9)

Similarly, distance constraints between two nodes are ||xi−
xj ||

2 = d2
ij and ||x′

i − x′
j ||

2 = d2
ij . Alternatively we have

Z •Q([0; eij ;0]) = d2
ij , (10)

Z •Q([0;0; eij ]) = d2
ij . (11)

Finally, Y is an inner product matrix of [X,X ′], i.e., Y =
[X,X ′]T [X,X ′], but this is relaxed as Y � [X,X ′]T [X,X ′].
By Schur complement, this is equivalent to Z � 0.

To wrap up, the SDP formulation for computing the error

bound for p-th node is as follows:

max
Z

Z •Q([0; ep;−ep])

s.t. Z •Q([ak;−ej ;0]) = d2
jk ∀(j, k) ∈ Ea

Z •Q([ak;0;−ej ]) = d2
jk ∀(j, k) ∈ Ea

Z •Q([0; eij ;0]) = d2
ij ∀(i, j) ∈ En

Z •Q([0;0; eij ]) = d2
ij ∀(i, j) ∈ En

Z1:D,1:D = ID

Z � 0

(12)

Let dp denote the square root of the optimal value and d∗p
denote the true localization error. Since (12) is a relaxation

and a maximization problem, we have d∗p ≤ dp, i.e., dp is an

upper bound of localization error for p-th node. If we have a

feasible solution of the problem (3) and x̃p is the location of

the p-th node in the solution, the true location x∗
p is guaranteed

to satisfy ||x∗
p − x̃p|| ≤ dp, i.e., x∗

p is in the circle centered at

x̃p with radius dp. Moreover, since the optimal value of (12) is

nonnegative, if we have dp = 0, we immediately obtain d∗p =

0, i.e., unique localizability of the node. Therefore dp = 0
serves as a sufficient condition for unique node localizability.

However, there are two issues in practice. First, we need x̃p

for the error bound to be useful, but it is not easy to compute

a feasible solution for (3) to obtain x̃p. Note that feasible

solutions for (4) or (12) usually do not suffice, since the

relaxation of the equality condition eliminates the constraint

on dimension and as a result, the SDP formulation yields a

solution in higher dimensional space [10], [11]. In fact finding

a feasible solution for (3) is known to be NP-hard for error-

free case [12]–[14], but we seek for a heuristic algorithm that

works well in practice for the case with measurement errors,

as we discuss later. The second issue is that, due to numerical

errors, it is hard to show dp = 0 by solving (12) to establish

the unique localizability. Instead, we will discuss a special case

where dp = 0 is shown analytically by using dual problem.

C. Note on Quantitative Evaluation of Accuracy

It has been proposed that we can evaluate the accuracy of

node location by the SDP formulation for network localization

(4) [11], [15], [16]. Specifically, individual trace Yjj−||xj ||
2 =

0 is used as an indicator for node j to be uniquely localizable.

While it gives a sufficient condition for unique localizability, it

does not give quantitative information about localization error

when a node is not uniquely localizable. Furthermore, it is

not useful for the case with measurement errors, as is stated

in [11]. Our formulation (12) can handle both of these cases

and always give deterministic bounds on localization accuracy.

III. ANALYSIS OF LOCALIZATION ERROR BOUND AND

UNIQUE LOCALIZABILITY

The dual of the SDP problem (12) is given as the following

SDP problem:

min
V,w,w′,y,y′

ID • V

+
∑

(j,k)∈Ea

(wjk + w′
jk)d2

jk

+
∑

(i,j)∈En

(yij + y′
ij)d

2
ij

s.t. Q([0; ep;−ep])−

[

V 0

0 0

]

−
∑

(j,k)∈Ea

(

wjkQ([ak;−ej ;0])

+ w′
jkQ([ak;0;−ej ])

)

−
∑

(i,j)∈En

(

yijQ([0; eij ;0])

+ y′
ijQ([0;0; eij ])

)

� 0

(13)



where V ∈ RD×D and w,w′, y, y′ are scalars. Unlike the case

in [11], there is no trivial feasible solution.

If there is a dual feasible solution such that the dual function

becomes zero, we immediately know from duality theorem that

there exists a primal feasible solution that makes the value

zero, i.e., the node is uniquely localizable, since the primal

function is the square of maximum localization error and thus

nonnegative. This is also a case that the SDP relaxation solves

the problem exactly. Unfortunately it is not very easy to find

the conditions for such case in general, but we give results for

a few simple cases.

First we start with the simplest setting where a node is

directly connected with an anchor. In this case, we can

analytically obtain the tight upper bound:

Claim 1. If node p is only connected to one anchor k, the
upper bound of localization error is 2dpk.

Proof: We set wpk = w′
pk = 2, V = 0 and all other

w,w′, y, y′ to zero. Then the dual constraint becomes




−4akaT
k 2akeT

p 2akeT
p

2epa
T
k −Epp −Epp

2epa
T
k −Epp −Epp



 � 0 (14)

where Epp is a n×n matrix filled with zero except the element

at (p, p), which is one. Since the rank of this matrix is one

and the sole nonzero eigenvalue is −4||ak||
2 − 2 < 0, the

constraint is satisfied.

The dual value for this solution is 4d2
pk, and from the duality

theorem, the primal optimal value is equal to or less than

this. Since the primal optimal value is the square of maximum

localization error, we have the bound dp ≤ 2dpk.

Second we give a unique localizability result:

Claim 2. For node p, if there exists {ck} (k = 1, ..., |Va|) such
that

∑

k ck 6= 0,
∑

k:(p,k)∈Ea

ckak = 0, then it is uniquely

localizable.

Proof: Since
∑

ck 6= 0, there exists a constant α such

that α
∑

ck = −2. Using α, we set wpk = w′
pk = −αck for

each k : (p, k) ∈ Ea and V = 2α
∑

k:(p,k)∈Ea

ckakaT
k . All

other w,w′, y, y′ are set to zero. Then the dual constraint is




0 0 0

0 −Epp −Epp

0 −Epp −Epp



 � 0. (15)

This inequality is satisfied (eigenvalues are -2 and 0) and

the value of the dual objective function is

2α
∑

k:(p,k)∈Ea

ck||ak||
2 − 2α

∑

k:(p,k)∈Ea

ckd2
pk

= 2α
∑

k:(p,k)∈Ea

ck(||ak||
2 − d2

pk)

= 2α



2xT
p

∑

k:(p,k)∈Ea

ckak − ||xp||
2

∑

k:(p,k)∈Ea

ck





= 4||xp||
2

where the transformation between the second and third lines

is by the law of cosines.

This value depends on ||xp||, the distance between the origin
O and node p. However, the unique localizability (or maximum

localization error) of node p should not be affected by the

choice of O. In other words, duality theorem always holds for

any choice of O and thus the primal optimal value needs to

be equal to or less than the minimum possible value of the

dual objective function, which is zero when xp = 0. Since

the primal value is nonnegative, it is also zero and node p is

uniquely localizable.

This claim may look trivial but has several important

implications. First is the unique localizability in a trilateration

graph [13]. When a node is directly connected to (D + 1)
or more anchors, it is uniquely localizable since there always

exists satisfying {ck}. Since we can consider such uniquely

localizable node as an anchor, we can iteratively reformulate

the problem to enumerate all nodes on a trilateration graph.

Second point is about the case when a node is only

connected with less than (D + 1) anchors. When the node

is directly connected to m(< D + 1) anchors, for satisfying

{ck} to exist, O must be chosen such that the dimension of the

space spanned by {ak} is less than or equal to m. This means,

when m = 2, O must be on the same line with the two anchors,

and when m = 3, O must be on the same plane with the three

anchors. Since xp = 0 is necessary to make the dual solution

zero, node p needs to satisfy the same constraint as O. This

case shows a unique localizability of non-generic framework

shown in Figure 1(a), which is a case explicitly avoided in

localizability analysis based on graph rigidity theory.

IV. EXTENSIONS

In this section we give two extensions for the SDP problem

(12). One is for the case when the distance information is not

exact, and the other is for computing the error bound for a

particular direction or a directional range.

A. Case with Measurement Errors

In the case with measurement errors, the assumption is that

we are given with an interval that is guaranteed to contain the

true distance. Other than that, we do not assume any statistical

properties of error. We assume such guarantee is given for each

measurement technique as a part of the specification.

1) Error Model: Biswas et al. [10] presented two error

models for distance measurements: stochastic model and

interval-based model. In the stochastic model each measure-

ment follows Gaussian distribution around the true value.

While this model is more amenable for analytical approaches

such as maximum likelihood estimation, it is often hard to

justify the Gaussian noise model. For example, when any

ranging techniques based on signal propagation time (e.g.,

ultrasound) are used, erroneous measurements due to multipath

effect are always larger than the true value obtained from

signal via the direct path. For this reason we use the interval-

based model that we described above.



2) Formulation: Given a distance interval [d, d] that satis-
fies d ≤ d ≤ d for unknown true distance d, the network

localization problem that corresponds to (3) is as follows:

find X,Y

s.t. dij
2 ≤ Y •Q(eij) ≤ dij

2
∀(i, j) ∈ En

djk
2 ≤

[

ID X
XT Y

]

•Q([ak;−ej ]) ≤ djk

2

∀(j, k) ∈ Ea

Y = XT X.

(16)

We also have an SDP relaxation of this problem by replacing

Y = XT X with Y � XT X .

Similarly we replace each of the equality constraints in

(12) by inequalities and obtain a modified SDP problem for

computing the localization error bound as follows:

max
Z

Z •Q([0; ep;−ep])

s.t. djk
2 ≤ Z •Q([ak;−ej ;0]) ≤ djk

2
∀(j, k) ∈ Ea

djk
2 ≤ Z •Q([ak;0;−ej ]) ≤ djk

2
∀(j, k) ∈ Ea

dij
2 ≤ Z •Q([0; eij ;0]) ≤ dij

2
∀(i, j) ∈ En

dij
2 ≤ Z •Q([0;0; eij ]) ≤ dij

2
∀(i, j) ∈ En

Z1:D,1:D = ID

Z � 0

(17)

B. Directional Error Bounds

By formulating the problem in a slightly different way, we

can calculate the error bound for a specific direction or the

directional error characteristics. They are useful in several

cases; for example to choose a pair of nodes to add a distance

measurement to reduce the error bound of certain node.

Here we discuss the two dimensional (D = 2) case only,

but it is easy to extend it to D = 3 case. The directional

constraint can be expressed by (xp − x′
p)

T rθ = ||xp − x′
p||,

where rθ = [cos θ; sin θ]. Using Z we have

Z •





0 rθe
T
p −rθe

T
p

epr
T
θ 0

−epr
T
θ



 = 2dp, (18)

which is added to the constraint and the objective is changed

to maximize dp in (12) or (17). Note that θ is a given constant

and not a variable.

To calculate the accuracy guarantee for a small angle range

θmin ≤ θ ≤ θmax (θmax − θmin ≤ π/2), we replace (18)

with the following inequality:

Z •





0 rαeT
p −rαeT

p

epr
T
α

0
−epr

T
α



 ≥ 2dp cos β, (19)

where α = (θmin + θmax)/2 and β = (θmax − θmin)/2.

V. ITERATIVE ALGORITHM FOR LARGE NETWORKS

The SDP formulations (12) and (17) give an upper bound of

localization error, but the size of the problem tends to be large.

For instance, (12) has 2N(D + 2N) variables with 2|En +
Ea| + 2 constraints, while the ordinary network localization

(4) has N(D + N) variables with |En + Ea|+ 1 constraints,

where N is the number of nodes. As a result, it is hard to solve

it for relatively small (∼ 50 nodes) network due to memory

limitation.

To deal with large problems, we design an algorithm that

iteratively solves a small SDP problem for a subgraph of the

original graph. Since these small problems are relaxations

of the original problem, every intermediate solution also

gives an upper bound, albeit looser than the solution of the

original problem. In this section we focus on the case with

measurement errors, which generalizes the error-free case.

A. Techniques for Scalability

1) Safe Elimination: Upon computing the error bound for

a node, some nodes may not affect the bound at all. We call

it a safe elimination when we can eliminate nodes or edges

without affecting the error bound. There are some conditions

that we can safely eliminate nodes and all incident edges from

computation as follows:

Proposition 1. If all paths from node v to node w contain

at least one anchor, w and all incident edges can be safely

eliminated without affecting the localization error of v.

Proposition 2. Node w can be safely eliminated if for all

a ∈ Va, all paths from w to anchor a contain node v.

Unfortunately, except for very artificial graphs, there are

not so many nodes safely eliminated by these conditions. In

practice we need to reduce the problem size further and the

notion of pseudo-anchors is useful for that purpose.

2) Pseudo-anchors: In the error-free case, a node can be

uniquely localized when it has (D + 1) directly connected

anchors. Then the node can work as an anchor itself and this

is how we can efficiently localize a trilateration graph.

In the case with measurement errors, however, localization

error remains even for the nodes that were uniquely localizable

in the error-free case. Thus they cannot be used for establishing

unique localizability of other nodes. Nonetheless, since their

errors are smaller than those for other nodes that are not

uniquely localizable even without errors, their contribution for

reducing the error tends to be large. Therefore we use these

nodes that are uniquely localizable in the error-free case as

“pseudo-anchors.”

We can incorporate the computed error bounds of pseudo-

anchors into the error calculation of a new node. This is done

by adding ||x̃p − xp||
2 ≤ dp

2
and ||x̃p − x′

p||
2 ≤ dp

2
to the

problem, where x̃p is the location obtained from a feasible

solution of (16).

One caveat about the use of pseudo-anchors is that obtaining

x̃p is not easy in general, which we discuss in detail in the

next subsection. Here we describe that we can use different

subgraphs for obtaining a feasible solution and for calculating

an upper bound of localization error. In particular, we have

the following proposition:

Proposition 3. Let dp be an upper bound of localization error

of node p obtained by solving (17) for G′ = (V ′
n∪V ′

a, E′
n∪E′

a)



s.t. p ∈ V ′
n, G′ ⊆ G. If x̃p is a feasible solution of (16) for G′′

s.t. G′ ⊆ G′′ ⊆ G, true location xp satisfies ||xp − x̃p|| ≤ dp.

This is clear from that we can see the problem (16) on G′

as a relaxation of the same problem on G′′. Note that this

guarantee does not hold in general when G′ 6⊆ G′′.

B. Finding a Feasible Solution

The SDP formulation (17) provides an upper bound of

localization error, but not the node location itself. To find

the node location, we need to solve (16), a nonconvex op-

timization problem. In fact, even if we can determine the

unique localizability of a graph, finding a realization for the

graph is NP-hard in general [12], except for certain subsets of

uniquely localizable graphs such as trilateration graphs [13]

and universally rigid graphs [17]. Despite the hardness, we

have a practical necessity for finding a feasible solution. The

error bound of a node is not very meaningful without its

location, and moreover, we need the location of a node to

use it as a pseudo-anchor.

When we consider the case with measurement errors, the

feasible space (i.e., the set of solutions that satisfy all the

constraints) of the network localization problem (16) is larger

than that of the error-free case (3). This suggests it is easier in

practice to find a solution for (16). Although we do not have a

guarantee, we can use local search to find a feasible solution.

We use a method based on gradient descent until reaching

a point that satisfies all constraints. Using gradient descent for

SDP solutions to improve the quality of estimation has been

proposed in several works [10], [18], [19]. The difference from

normal gradient descent is that we only consider the gradient

of the violated constraints and not of the satisfied constraints.

Note that we do not try to find the “center” in the feasible set:

we just want one feasible point, since for any feasible point,

it is guaranteed that the true location is in the circle with the

error upper bound as the radius from that point.

In each iteration, xi is updated based on the following rule:

xi ← xi + η
(

∑

(i,j)∈En

g(xi, xj , dij , dij)

+
∑

(i,k)∈Ea

g(xi, ak, dik, dik) + g(xi, x̃i,−∞, di)
) (20)

where η is a positive constant and

g(x, y, d, d) =











x−y
||x−y|| if ||x− y|| < d

− x−y
||x−y|| if ||x− y|| > d

0 Otherwise

. (21)

The last term applies when node i already has a feasible

solution x̃i and error bound di.

Algorithm 1 summarizes the procedures for finding a fea-

sible solution. In line 3, a node i is randomly chosen from

the nodes not in Ṽn, the set of nodes with feasible solution.

In line 4 and 5, we add all anchors and nodes within k-hop
distance from node i, where k is a constant and is set to k = 3
in the simulation experiments. In line 6, we use maximum

Algorithm 1 Finding a feasible solution

1: Ṽn ← ∅ ⊲ Set of nodes with feasible solution

2: while |Ṽn| < N do

3: Randomly choose node i ∈ Vn − Ṽn

4: Vi,n ← {v|v ∈ Vn,H(i, v) ≤ k} ⊲ H : hop distance

5: Vi,a ← {a|a ∈ Va,H(i, a) ≤ k}
6: Run MVU on induced subgraph formed by Vi,n∪Vi,a

7: Run modified gradient descent (using rule (20))

8: if feasible solution is found then

9: Run modified gradient descent on Ṽn ∪ Vi,n

10: if feasible solution is found then

11: Ṽn ← Ṽn ∪ Vi,n

12: end if

13: end if

14: end while

variance unfolding (MVU) with matrix factorization proposed

by Weinberger et al. [19] to efficiently get an initial point

for running the modified gradient descent. After obtaining a

feasible solution for the subgraph, we try to merge it with the

feasible solution for Ṽn to see if there is a consistent solution

(lines 8-13).

This algorithm may fail since the problem in general is NP-

hard. However, even if the algorithm fails to find a feasible

solution for the whole network, it is likely that we can still find

feasible solutions for a subgraph. Therefore, assuming we have

a feasible solution for subgraph G′′ ⊂ G, we can calculate the

error bound d′p for subgraph G′ ⊆ G′′. Then from Proposition

3, for the pair of error bound d′p and feasible solution x̃′
p, we

have a guarantee that ||x̃′
p − x∗

p|| ≤ d′p.

C. Algorithm for Error Bound Calculation

Algorithm 2 shows how we compute the error bound for

each node. In the initialization (lines 1-4), for each node we

choose up to Mini neighbor nodes (set to Mini = 10 in the

experiments) by first adding anchors and then pseudo-anchors

with small error bounds. For node i, Na(i) denotes the set of

anchors in the neighbor and Nn(i) denotes that of nodes.

The main loop from line 5 is iterated for whole set of nodes

Vn so that we can obtain rough error bounds for all nodes

in a reasonable amount of time and then more precise ones

afterwards. The inner iteration from line 7 starts with choosing

a node to compute the error bound. The idea of how we choose

a node is to start with the node with the least error bound so

that other nodes can possibly benefit from that. Specifically,

we sort all remaining nodes with multiple criteria in lines 9-13

and choose the best one.

For the chosen node i, we add Madd anchors/nodes (set to

Madd = 3 in the experiments) (line 15). Ideally we want to

add the anchors or nodes that contribute the most to reducing

the error bound of node i. However, under measurement errors,

it is hard to tell which node is the best for reducing the error

bound. Here we choose the one with the minimum weighted

error bounds. We use hop distance from i as the weight so

that we can add more near nodes rather than far nodes. Then



Algorithm 2 Computing the error bound

1: for all i ∈ Vn do ⊲ Prepare initial nodeset

2: Vi ← Up to Mini anchors in k ∈ Na(i) with least dik

3: Vi ← Vi ∪ Up to (Mini − |Vi|) nodes in j ∈ Nn(i)
with least dj ⊲ Choose “good” pseudo-anchors

4: end for

5: while forever do ⊲ Main loop

6: Viter ← Vn

7: while Viter 6= ∅ do ⊲ Iteration for each node

8: i← First node after sorting all nodes in Viter

by the following (in the order of precedence):

9: min di, ⊲ Error bound of itself

10: max |Na(i)|, ⊲ #anchor in neighbor

11: min avgk∈Na(i)(dik − dik),

12: max |{j|j ∈ Nn(i), dj <∞}|,
13: min avg{dj |j ∈ Nn(i), dj <∞}|
14: Viter ← Viter\i
15: Vi ← Vi ∪ Up to Madd nodes j ∈ Nn(Vi)

with least H(i, j)dj

16: Gi ← induced subgraph of G formed by Vi

17: Update di by solving SDP problem (17) for Gi

18: end while

19: end while

finally we consider the induced subgraph for the node set Vi

and solve the SDP problem (17) to update the error bound di

(line 16-17).

Convergence to dp obtained for whole graph is guaranteed

by the fact that each computation eventually contains all the

nodes in the network. This heuristic algorithm is intended as

a practical solution for the case that it is impossible due to

a memory limitation etc. to solve the problem for the whole

network. In practice, it takes more time for each iteration as

the problem size gets bigger, so we stop the computation after

certain number of iterations and use the value at the time.

Since the problem for each subgraph is a relaxation of that for

the whole graph, the error bound from intermediate problem

serves as a conservative error bound.

VI. EVALUATION

We implemented the SDP formulation (17) as well as

Algorithm 1 and 2 to calculate an upper bound of localization

error. We use Matlab and SeDuMi [20] with CVX [21] for

solving SDP problems. We also use the Matlab implementation

of maximum variance unfolding by Weinberger [22].

A. Small Graphs

First we compute the error bound for several small graphs

to see how the measurement error affect the bound. We use

a proportional noise represented by noise factor δ. For true

distance d∗, we randomly generate a distance measurement d
such that (1− δ)d ≤ d∗ ≤ (1 + δ)d is satisfied. Note that this

noise model is only for experiments and the SDP formulation

itself can handle any noise model as long as an interval that

is guaranteed to contain d∗ is given.

Fig. 3. Example 1: Case that RRT-3Beacon cannot identify the unique
localizability of node A; Squares are anchors, circles are nodes.

Fig. 4. Example 2: Case that unique localizability is established by two
anchors due to non-generic configuration. Directional error bounds are shown
for noise factor 0.01, 0.03, 0.05, 0.10, 0.15, 0.20.

Figure 3 shows a graph with three nodes and three anchors.

This graph appears in [23] as an example that the sufficient

condition for unique node localizability called RRT-3Beacon

fails for node A, while it is actually uniquely localizable. The

graph on the right shows the error bounds obtained by solving

the SDP problem (17) for various noise factors from 0 to 0.2.
As the graph shows, the error bound for node A approaches

zero when the noise factor is close to zero, implying the unique

localizability.

Figure 4 shows an example of non-generic framework with

one node and two anchors on a single line. As is expected,

error bound approaches zero for the cases with small noise

factors. On the right the directional error bounds are shown.

We divided the range [0, π] into 100 smaller ranges and solved

the SDP problem for each case. The error bounds for [π, 2π]
are obtained from symmetry. The results show that we have

more uncertainty in the direction orthogonal to the edges.

Figure 5 shows two frameworks that have the same graph

but with different anchor locations. In both cases the node

is localizable and the error bound certainly approaches zero

when the noise factor is close to zero. However, the growth of

error bound is very different in two cases. The reason is clear

from the directional error bounds, which show the uncertainty

on θ = π/4 direction is large in the second case.

B. Large Graphs

Next we evaluate the performance of Algorithms 1 and 2

with large graphs. For given number of nodes N , number

of anchors K, and range r, nodes and anchors are randomly

scattered in [0, 1]×[0, 1] region and nodes (or node and anchor)
within r are connected with an edge.

First we evaluated the performance of Algorithm 1 to find

a feasible solution of the network localization problem (16).

Figure 6 shows the success rate for various parameters. The



Fig. 5. Example 3: Two graphs have the same topology and the same distance,
yet the error bounds are different under measurement errors due to anchors’
locations. Directional error bounds are shown for noise factor 0.01, 0.03, 0.05,
0.10, 0.15, 0.20.

Fig. 6. Success rate of finding a feasible solution for the network localization
problem (16): (a) Number of nodes N = 100 with various number of anchors
K and range r; (b) N = 1000 case.

rate is very close to 100% for dense graphs with large noise

factors, and decreases when the network is sparse, the anchors

are few, or noise factor is small.

Figure 7(a) is an example of sensor deployments with

100 nodes, 10 anchors, and range r = 0.2. Figure 7(b)

shows an example of feasible solution when the noise factor

δ = 0.2, with the differences from the ground truth as lines.

Figure 8(a) shows the progress of error bounds computed

by Algorithm 2 for the same network with the same noise

factor. The graph shows the error bounds for the first 1500

iterations, which means 15 iterations for each of 100 nodes.

For many of the nodes the error bound decreases the most in

the second iteration (101st-200th iterations). Figure 8(b) shows

the comparison of the observed error (shown in Figure 7(b))

and the error bound for each node. For all nodes the error

bounds are larger than the observed errors.

VII. RELATED WORK

Sensor localization problem consists of two parts: localiz-

ability problem and localization problem, where the former

asks the existence of a framework that satisfies all distance

constraints and the latter asks for the locations of each node

for a localizable graph.

Rigidity theory is mainly for the localizability problem.

Fig. 7. Example of large network: (a) Ground truth: 100 nodes, 10 anchors,
range r = 0.2, large dots are anchors; (b) An example of feasible solution:
Under noise factor δ = 0.2. For each node, estimated location is shown by a
circle with the line representing the difference from the true location.

Fig. 8. Computation results for the network shown in Figure 7: (a) Progress
of error upper bound for the first 1500 iterations; (b) Comparison of observed
error and error bound for each node.

Based on classical results [24], [25], Hendrickson [6] showed

several necessary conditions for generic global rigidity, i.e.,

all generic frameworks are unique. Jackson and Jordan [26]

showed that 3-connectedness and redundant rigidity are an

equivalent condition for generic global rigidity in two dimen-

sional space. For three dimensional case, such equivalent con-

dition has been conjectured by Connelly [27] and proved by

Gortler et al. [28]. Several subclasses of generically globally

rigid graphs have been studied: Eren et al. [13] identified

trilateration graphs and Zhu et al. [17] showed generically

universally rigid graphs. As we have discussed earlier, almost

all of these results are for generic frameworks.

In rigidity theory, node localizability has not been studied as

much as network localizability. Goldenberg et al. [23] showed

that having three node-disjoint paths to three distinct beacons

is a necessary condition for unique node localizability and

that RRT-3Beacon (a node belongs to globally rigid subgraph

and contains three beacons) is a sufficient condition. Tighter

conditions are found by Eren et al. [29] by introducing implicit

edges and then further improved by Yang and Liu [30].

Another approach for sensor localization problem is through

formulation as optimization problems. Optimization approach

is mostly concerned with the localization problem. Network

localization problem can be formulated as a nonconvex opti-



mization problem and its relaxation to SDP problem has been

studied [10], [11], [15]–[19]. As we have discussed in earlier

sections, our work is built upon these to specialize in providing

deterministic upper bounds on localization error of each node.

Several work has analytical treatments of noisy distance

measurements. Biswas et al. [10] presented SDP formulations

for stochastic and interval-based noise models. They provided

a detailed analysis only on the stochastic error case, and we

have presented one for the latter case in this paper. In another

paper [18], they also presented techniques for refining the

localization results by regularization and gradient descent. Jian

et al. [31] proposed a way to filter out erroneous distance

information by analyzing embeddability of a graph by rigidity

theory. However, their method is limited in the sense that all

non-erroneous distances are assumed to be exact. Moore et al.

[32] considered noisy range measurement cases and presented

an algorithm to avoid flip ambiguities. Our SDP formulation

automatically takes care of such ambiguities; when a node has

a flip ambiguity, the error bound will be large. Liu and Zhang

[33] focus on error-control mechanism based on characterizing

the node uncertainties, but it does not give any deterministic

guarantee.

VIII. CONCLUSION

We have presented an SDP formulation to quantitatively

evaluate the deterministic upper bound of localization error

of each node in sensor localization problem. Our formulation

is general in multitude of ways: it is not limited to generic

frameworks, it is easily extended to the case with measurement

errors and also for computing directional error bounds. We

also designed an iterative algorithm so that we can solve

the problem for large-scale networks without destroying the

correctness of the upper bound, along with another heuristic al-

gorithm for finding a feasible solution for network localization

problem. Simulation results demonstrate that the formulation

is effective in handling the cases that have been eliminated as

exceptions in rigidity-based studies, and also useful in practice

for knowing the worst-case localization error for each node.
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