CSE123A discussion session

2007/03/08 Ryo Sugihara

Topics

• Review
 – Network Layer (2,3): Route computation
 • Distance vector
 • Link state
Where are we now?

Route computation

- Router needs to know “which port to forward”
 - Done by “routing table”

- But how to make routing table?
 - By exchanging routing information
 - What kind of information?

Routing table

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>001*</td>
<td>A</td>
</tr>
<tr>
<td>0*</td>
<td>B</td>
</tr>
<tr>
<td>01*</td>
<td>C</td>
</tr>
<tr>
<td>11*</td>
<td>C</td>
</tr>
<tr>
<td>110*</td>
<td>D</td>
</tr>
<tr>
<td>default</td>
<td>B</td>
</tr>
</tbody>
</table>
Distance vector & Link state

- Two ways to exchange routing info
 - Distance vector
 - Exchange "distance to a destination"
 - Each router knows the next hop for each dest
 - One hop of the shortest path to the dest
 - Link state
 - Exchange "my neighbors (and costs)"
 - Each router knows whole network topology
 - compute the shortest paths by Dijkstra’s algorithm

Example

CSE (132.239.10.0/24)

\[
\begin{array}{c}
R1 & R2 & R3 & R4 & R5 \\
1 & 5 & 2 & 3 & 4 \\
& & 8 & & 10 \\
& & & & \\
\end{array}
\]
General strategy

- R1 (somehow) knows CSE is distance one from itself

- R1 tells the neighbors (=R2, R3) about it
 - DV: “CSE is distance one from me”
 - LS: “I have link with CSE (d=1), R2 (d=5), and R3 (d=1)”

Distance vector

- R1 tells “CSE is distance one from me!”
 - to R2 and R3
What happens at R2?

- Routing table
 - Net | dist | iface
 - ...
 - CSE 6 | p1 |
 - ...

- Table for each interface
- One routing table

Distance vector

- Router forwards distance info to others when its routing table is updated
What happens at R2?

Routing table

<table>
<thead>
<tr>
<th>Net</th>
<th>dist</th>
<th>iface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE</td>
<td>6</td>
<td>p2</td>
</tr>
</tbody>
</table>

In case of link failure,

- Switch to backup route
- Problem: “Count-to-infinity problem” (next)
Count-to-infinity problem

R1 broadcasts “I have link with CSE (d=1), R2 (d=5), and R3 (d=1)”
 – It will be flooded to the entire network

Link state
Link state

- Each router has the **entire graph**
 - In DV, it only knew next hop for each dest.
- Each router computes next hop for each dest.
 - By Dijkstra’s algorithm

![Link state diagram](image)

Intelligent flooding

- Without “intelligence”, LSP may loop
 - If a router received a “newer” LSP, it forwards
 - Otherwise, it discards

- Solution: add **sequence number** to LSP
 - If a router received a “newer” LSP, it forwards
 - Otherwise, it discards

- Other issues:
 - Subtle problems: “source jumping”, “aging” → lecture notes
 - How Dijkstra’s algorithm works →