Topics

• Review
 – Data Link Layer (7): Bridges
 • Interconnecting LANs
 • Bridge implementation
 • Bridges vs. Routers

 – Network Layer (1): Introduction
 • IP address
 – Terminology
 – Classful addressing
 – Classless addressing: CIDR
Where are we now?

Interconnecting LANs

• Why?
 – Limited distance (2.5km)
 – Limited number of stations

• Requirements
 – “Transparency”
 • End stations cannot tell whether they are on a single
 LAN or bridged LAN
 – Bandwidth
 • We want to keep bandwidth unaffected

• Several ways to interconnect…
Repeater?

• “Repeater”
 – Works at Physical layer (Layer 1)
 – Just amplify the signal
 • Less frequent errors

• Problems
 – Does not remove the limitations
 • Limitations on distance and # of stations
 • Ethernet allows only 4 repeaters

Router?

• “Router”
 – (details later)
 – Works at Network layer (Layer 3)
 • i.e. Reads (up to) layer-3 header

• Problem
 – Not transparent
 • Need to specify the destination in routing header
 – e.g.) D1 → (R) → D3

\[\text{Diagram: Data Link} \rightarrow \text{Routing Header}\]
Bridge

- "Bridge"
 - Works at Data Link layer (layer 2)
 - Read every frame ("promiscuous mode") and forward it to other LANs

- Good for small-scale interconnection
 - Transparent
 - Efficient bandwidth usage
 - By using "learning bridge"

Learning bridge

- Idea: Avoid wasting bandwidth
 - Bridge don’t need to forward a frame sent from A to B

- How?
 - By learning which station is connected to which interface of the bridge
 - From the source address of all frames
 - Find forwarding interface by looking up the table

<table>
<thead>
<tr>
<th>Station</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
</tr>
</tbody>
</table>
Limitations of bridge

- No cycles
 - Why?

 ![Diagram](image)

- Spanning tree algorithm
 - Disable some ports to eliminate cycles

Toward large-scale interconnections

- Bridges are **bad** for
 - Heterogeneous links (e.g. Ethernet & TokenRing)
 - Incompatible address
 - Incompatible Max packet size
 - Incompatible bandwidth
 - Large-scale networks
 - Flat address (i.e. not hierarchical)
 - Table size gets very big: Need one entry for each station
 - (We want to use “group of stations” in each table entry)
 - Spanning tree is not efficient
 - Allows only one path for each destination

- Need for **hierarchical** addressing scheme
 - Realized in higher layer: “Network layer”
• Review
 – Data Link Layer (7): Bridges
 • Interconnecting LANs
 • Bridge implementation
 • Bridges vs. Routers
 – Network Layer (1): Introduction
 • IP address
 – Terminology
 – Classful addressing
 – Classless addressing: CIDR

• IP address
 – 32bit
 • cf.) MAC address: 48bit
 – Globally unique
 • except “private address”
 – Hierarchical addressing
 • “Close addresses are close on the network”

• Terminology
 – “Network number”
 • (“Network address”)
 • (“Network prefix”)
 – “Host address”
 – “IP address”
 • Network number + Host address
Classful addressing

- **Class A**
 - 8-bit network number
 - up to $2^{24} = 16,777,216$ hosts
 - 0.0.0.0/8 – 127.0.0.0/8

- **Class B**
 - 16-bit network number
 - up to $2^{16} = 65,536$ hosts
 - 128.0.0.0/16 – 191.0.0.0/16

- **Class C**
 - 24-bit network number
 - up to $2^{8} = 256$ hosts
 - 192.0.0.0/24 – 223.0.0.0/24

- **Notation**
 - Network number = 10000001 00000001
 - "1000000100000001^*"
 - "$128.1.0.0/16^*
 - "$128.1.0.0, subnet mask = 255.255.0.0^*

Problems of Classful addressing

- **Background:** Lots of small networks
 - Rise of PCs & Ethernet
 - Need for many network numbers

- **Problems:**
 - Depletion of Class B address
 - Class C is too small, so give Class B address
 - But Class B is too big: a lot of waste
 - Solution: CIDR scheme (next)
 - Depletion of entire address space
 - Due to waste
 - Solution: IPv6, private address with NAT
 - See the lecture note for details
Classless addressing

- Idea: More flexible addressing
 - For more efficient use of address space

- CIDR (Classless Inter-Domain Routing) scheme
 - “Subnetting”
 - Divide one Class B address to multiple ranges
 - e.g.) 128.1.0.0/16 → 128.1.0.0/17, 128.1.128.0/17
 - “Supernetting”
 - Combine multiple (consecutive) Class C addresses to one range
 - e.g.) 192.0.0.0/24, 192.0.1.0/24 → 192.0.0.0/23

Router at work

- Forwarding algorithm
 - For each incoming packet,
 - See the destination IP address
 - Lookup the routing table,
 - Find the longest matching prefix P
 - Get the associated link L
 - Forward the packet to link L
 - If no prefix matches, forward on “default route”

- Example:
 - 5bit address
 - Packets incoming from link A
 - dest = “01100”
 - dest = “11010”
 - dest = “10110”

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>001*</td>
<td>A</td>
</tr>
<tr>
<td>0*</td>
<td>B</td>
</tr>
<tr>
<td>01*</td>
<td>C</td>
</tr>
<tr>
<td>11*</td>
<td>C</td>
</tr>
<tr>
<td>110*</td>
<td>D</td>
</tr>
<tr>
<td>default</td>
<td>B</td>
</tr>
</tbody>
</table>