CSE123A discussion session

2007/02/09 Ryo Sugihara

Topics

• Review
 – Data Link Layer (3): Error detection sublayer
 • CRC
 – Polynomial representation
 – Implementation using LFSR
 – Data Link Layer (4): Error recovery sublayer
 • Protocol
 – Various errors
 • Simple protocol:
 – Stop and wait code
 – Alternating bit protocol
 • Throughput and latency
Where are we now? Where are we now? Where are we now? Where are we now?

Today’s topic

CRC (Cyclic Redundancy Check)

- Quick review
 - For detecting errors
 - Much more powerful than parity

- Basic idea
 - Make all codeword divisible by G (“generator”)
 - If a received bitstring is not divisible by G, it’s corrupted
 - How? By subtracting the remainder of division
 - ex) msg=45, G=7: 45 % 7 = 3, so (45-3) is divisible by 7
 - In CRC, everything’s done in “modulo-2 arithmetic”, though

<table>
<thead>
<tr>
<th>data</th>
<th>Original message</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>CRC checksum</td>
</tr>
<tr>
<td></td>
<td>Codeword (to be sent to PHY layer)</td>
</tr>
</tbody>
</table>
CRC: Polynomial representation

- Example: “1011” = “x^3 + x + 1”
 - Addition is EXOR: x^2 + x^2 = (1+1) * x^2 = 0
 - Equivalent to arithmetic view

- What for?
 - For easier analysis
 - Now you see why remainder is always (r-1) bit when G is r bit

- What matters is “error polynomial”
 - Whether error polynomial E(x) is divisible by G(x) or not

- Burst error
 - Def:
 - M(x)
 - E(x)
 - M(x) + E(x)

 Sender
 M(x)
 E(x)
 Receiver
 M(x) + E(x)

 Burst error

 flipped
 may or may not be flipped
 flipped

CRC: Performance analysis (1/2)

- Random errors
 - 1bit:
 - E(x) = x^k
 - Not divided by any G(x) = x^r + ... + 1 (hint: at least two terms in G(x)(x^(k-r)+...))
 - 2bits:
 - E(x) = x^k(x^m + 1)
 - x^k is not divisible by G(x) (as seen above)
 - Whether x^m + 1 is divisible by G(x) or not is the problem
 - G(x) should be designed NOT to divide x^m + 1 for large m

 - Any odd number bit errors:
 - E(x) = x^k (x^m + ... + 1), where (x^m + ...) has odd number of terms
 - Never be divisible by “x + 1” (hint: substitute x = -1 to see if x^m + ... + 1 = 0 has x = -1 as a solution or not)
 - G(x) should be designed to have “x + 1” as a factor

Assume G(x) = x^r + ... + 1
CRC: Performance analysis (2/2)

- Burst errors
 - m bit \((m-1<r)\):
 - \(E(x) = x^k (x^{m-1} + ... + 1)\)
 - \(x^k\) not divided by \(G(x)\)
 - \(x^{m-1} + ... + 1\) not divided by \(G(x)\)
 - Because \(m-1 < r\)
 - What about “m bit \((m-1>=r)\)”?
 - \(x^{m-1} + ... + 1 (=Q(x))\) might be divided by \(G(x)\)
 - How many expressions whose highest degree is \((m-1)\)?
 - How many expressions can we make by \(G(x) (x^{r-m-1} + ...)\)?
 - Thus, most errors can be detected
 - prob of undetected err = \(1/2^r\)

Assume \(G(x) = x^r + ... + 1\)

CRC: Implementation

- Software implementation
 - Emulate ordinary division
 - Hold current remainder in the register
 - If MSB=1, EXOR current remainder with divisor
 - Shift current remainder by 1bit to the left, and shift-in the next message bit

- Naive hardware implementation
 - Same as SW impl
 - Compare MSB
 - Calc EXOR
 - Shift 1bit
 - 3 clocks per each iteration
 - LFSR (Linear Feedback Shift Register)
 - Same thing, but faster
 - 1 clock per each iteration
 - Do everything simultaneously
CRC: LFSR

- 1 clock per each iteration
 - Compare MSB
 - Calc EXOR
 - Shift 1bit

- Parts
 - R0-R4: register to store 1 bit
 - Generator string is encoded in circuit

- Simple example: G=1101, M=101
 - How many registers?
 - How to connect?

CRC: LFSR example

G = 1101 M = 101

<table>
<thead>
<tr>
<th>clock</th>
<th>R2</th>
<th>(XOR)</th>
<th>R1</th>
<th>R0</th>
<th>(XOR)</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>101000</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>(0)</td>
<td>(0)</td>
<td>1</td>
<td>1</td>
<td>01000</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1000</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>000</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Topics

- Review
 - Data Link Layer (3): Error detection sublayer
 - CRC
 - Polynomial representation
 - Implementation using LFSR
 - Data Link Layer (4): Error recovery sublayer
 - Protocol
 - Various errors
 - Simple protocol:
 - Stop and wait code
 - Alternating bit protocol
 - Throughput and latency

Error recovery sublayer

- Error recovery is OPTIONAL in Layer 2
 - Usually taught at Layer 4
 - Along with TCP
 - However, it's increasing importance
 - e.g.) wireless

- What must error recovery guarantee?
 - No duplication: a,a,b,c,d,...
 - No loss: a,c,d,...
 - No misordering: a,c,b,d,...

- Design “protocol” to realize error recovery
 - Protocol = “The rules governing horizontal communication between peer layer entities” (Remember lecture on layering)
Before starting protocol design...

- Assumptions
 - Perfect error detection
 - No undetected error
 - Whole frame can be lost
 - Receiver may not know anything was sent
 - PHY layer is FIFO
 - Frame sent earlier arrives earlier
 - Not a valid assumption in TCP!
 - Arbitrary delay
 - May vary frame-to-frame

Protocol design (by trial-and-error)

- Naive
 - Loss
 - Node S
 - a, b, c
 - Node R
 - a

- + ACK & retransmit
 - Dup
 - Node S
 - a, b, c
 - Node R
 - a

- + Reject duplicates
 - Livelock
 - Node S
 - a, a
 - Node R
 - a

- + Seq. number
 - Livelock
 - Node S
 - a, b, c
 - Node R
 - a, 0

- + ACK for duplicate frames
 - Loss
 - Node S
 - a, b, c
 - Node R
 - a, 0

- + Numbered ACK
 - Stop and wait protocol
 - Node S
 - a
 - Node R
 - a

- a
- Rej
- a
- Rej
- a
- Rej
Stop and wait protocol

Each of sender and receiver keeps a “counter”
- **SN** (sender number), **RN** (receiver number)
- Large enough (e.g. 32 bit)
- 0, initially

Sender
- send (D, SN)
- update SN with R if it receives (ACK, R) where R ≠ SN
 - R = SN+1, in this case
 - (Don’t update SN when R=SN)
- retransmit after timeout period

Receiver
- on receiving (D, S) where S = RN
 - pass D to upper layer
 - update RN with RN+1 (=S+1)
- send (ACK, RN)
 - in any case, even for dup frames

Each of sender and receiver keeps a “counter”
- **SN** (sender number), **RN** (receiver number)
- Large enough (e.g. 32 bit)
- 0, initially

“Stop & wait” to “Alternating bit”

Do we need 32 bits for SN & RN?
- No, 1 bit would suffice

Why?
- Intuitively because
 - SN = RN or SN + 1 = RN
- For precise reasons,
 - Use “invariants” (see lecture notes)
Throughput & Latency

• “Throughput”
 - “Jobs completed per second”
 - i.e. Num of jobs coming out of the system per sec
 - System owners want to maximize

• “Latency”
 - “Time to complete one job”
 - i.e. Time that one job stays inside the system
 - Users want to maximize

• Other performance metrics
 - “Propagation delay”
 - Time for one bit to reach the receiver
 - Different from transmission rate (cf. telephone line vs. satellite)
 - “Pipe size”
 - (transmission rate) * (round-trip propagation delay)
 - When large, you might want sliding window protocol

Analogy: Pipeline (in architecture class)
- Throughput: Num of pipelines
- cf. superscalar, VLIW
- Latency: Length of pipelines

BACKUP