Mobile Embedded Computing: Applications & Beyond

Rajesh Gupta, Ramesh Rao
UC San Diego
Two 2-threaded 64b VLIW cores
1.72 Billion transistors, 596 mm², 90nm
Generated clock frequency is a function of the measured voltage -- 3X gain in power consumption

- 16 bit Instr
- 32 bit datapath
- 4K*16 bit program
- 4K*8 bit data
- 1 GHz, 5-stage pipe
- Real-time scheduler
- Power control
- Temperature control

MicroController

Power Distribution at Fixed V/F

Power Range with Foxton
New Computing Nodes & Networks are no longer monolithic entities

- High-end processing migrating to mobile computing, sensor computing

Tremendous innovations in form and function
Over 90% all innovations in modern automobile are SW-

- **Processing**: 70-80 electronic control units (ECUs) supporting hundreds of features
 - ECUs delivered by multiple suppliers, with their own software chains

- **Networking**: separate, integrated networks for power train, chassis, security, MMI, multimedia, body/comfort functions
 - Increasing interaction beyond car’s boundaries with devices, networks

- **Software**: hardware independence, information interdependence among subsystems, system composition, validation.

- Highly complex, networked, and distributed
8oz to 2000 lb platforms: Computing is on the move

- Tremendous architectural variations on how these machines are built and deployed

- Silicon computational fabrics are getting to be intertwined with sensors, radios and multi-scale networks

- Opportunity for at-scale instrumentation of the physical world
 - Real-time embedded control software appearing everywhere

- Fundamental challenges of modeling, design, validation across all application domains.

▶ Mobile Computing = computing with time & space
Mobility is Inherent & Transformative

- Code can move to a new virtual location or to a new physical location
 - Different challenges: distributed computation, combat failure and disconnections

- It has a transformative effect on programming
 - The abstraction of just connecting things breaks down when considering Mobility
 - Whether networking (VL) or distributed computing (PL)
 - Mobility fundamentally changes the observables associated with computation
 - Observables are events or states that can in principle be detected.
New Observables and Hiddens

- Administrative Domains
- and new hiddens
 - Communication failure is no longer obvious
 - Lower bound on latencies, but no upper bound
 - Undetectable communication errors (as some long delay)
 - Failure recovery is now equivalent to occasional connectivity
Mobile Computing = Computing + Space + Time

- Location information is part of the computational infrastructure. Mobile device or mobile environments.
- Three broad classes:
Computing Efficiencies are rising to fundamental device limits

- **Watt nodes: Home, Office, Car**
 - Compute intensive platforms
 - Reaching 1 Tops in 5-10W: 100-200 Gops/W
 - 100-1000x more efficient than today’s PCs
 - Programmability must, innovation from domain knowledge

- **MilliWatt nodes: Converged devices**
 - Wireless intensive: radios, networks, protocols, applications
 - Multimedia evolution to Scalable video coding leading to 9-36x more CPU than H.264
 - 10-hour battery operation, 1W for 10-100 Gops: 10-100 Gops/W
 - Combination of scaling and duty cycling, computing models

- **MicroWatt nodes: Immortal devices, ad hoc networks**
 - < 100 microwatts for scavenging, 10 Mops: very high peak efficiencies
 - Approach limits on computation and communication
 - Aggressive duty cycling (<1%. 1bps-10kbps).
Intrinsic Power Efficiency of Silicon Substrates

At 130 nm nodes
- MPU: 100 MOPS/W
- FPGA: 1-2 GOPS/W
- ASIC: 10-20 GOPS/W

Computing Efficiency In the Near Term:
- We are within 10x of efficiency requirements for custom ASICs
- Perhaps a maximum of 25x of improvements in software performance possible on the same hardware through optimizations of embedded SW.

In the Far Term:
- But 500x behind when dealing with SW programmable systems
 - Unless, of course, notion of SW changes underneath..

[ISSCC99 T. Classen]
Problems we are focusing on

- **Adaptive and Reconfigurable Computing Fabrics**
 - Laboratory for experimentation with various computing fabrics: Coarse and fine-grain co-processing
 - Soft multiprocessor cores: with multithreading
 - Dynamically reconfigurable circuit fabrics: Sequential versus spatial processing
 - Capabilities: Fast prototyping, Synthesis, Modeling and Verification
 - Parallelizing High Level Synthesis, Architectural Modeling, Compositional methods

- **Cyber-Physical Systems (CPS)**
 - Combining processing and reasoning with both logical as well as physical variables
 - Time, Location/Place, Storage, Sensor observables
 - Model space and reason with spatial information
 - Time and Space as first order quantities in CPS models provide a starting point for this integration.

- Projects that seek to use and contribute to improving technological and societal infrastructure.
Location & Location Infrastructure

- Current GPS infrastructure primarily used for transportation purposes in civilian use
 - Recreational, Navigational: 3m-10m
 - Resource mapping: 1m-5m
 - Precision increase through augmentation over GPS
- Many levels and sources of augmentation
 - All the way to survey type applications
1cm-1dm ‘real-time’ GPS

- Assisted by reference stations, rowers and cooperative infrastructure
 - DGPS: L1 corrections, range: 200-400km, meter level accuracy, few seconds, continental coverage
 - RTK – single base-station: L1 code, L1/L2 carrier corrections, range: 10-15 km, cm level accuracy, < 1 second delay, regional and local coverage.

- dm real-time positioning capability is on the horizon
 - Augment NDGPS and WAAS
 - National Spatial Reference System: collect CORS measurements and stream over the internet

- Many other advances in ‘localization’ techniques other than the GPS.
Continuously Operating Reference Stations
Adding real-time

- Dm accuracy in real-time can be used for
 - Land surveying
 - Remote sensing
 - Hydrography
 - Machine control (precision agriculture)
 - Emergency response
 - Asset inventory
 - Structural integrity monitoring
 - Atmospheric monitoring, weather forecasting
 - Tsunami and volcanic warning systems.
New Computing Paradigms with time and space observables

- **RT computing at the intersection of two different time topologies**
 - Absolute and relative delays
 - Delays as uninterruptible actions
 - Timeouts, timed procedure calls, wait selects
 - Location-specific computing
 - Need models that capture location
 - Need methods including operations on these models.

These two together lay the foundation for a new vocabulary in engineering systems.
Location awareness

- Programming with spatial references
- Infrastructural support for location
 - Transparent location updates
 - Monitor resources in their environment
 - Virtual resource naming, that is, resources referred to based on their expected location
 - Reactive to changes in the resource availability
 - Control resource usage: access timeouts.
- Spatial Programming
 - Using Reactive Mobile Concurrent Processes (RMCP)
 - Define ‘observables’ across computing entities and methods to communicate these.
 - Define new methods “match_ontology” to reason with spatial constructs.
Embedded Systems in Societal Context

While Embedded Systems continue to proliferate their impact on societal infrastructure in a meaningful way is yet to be seen
- Intelligent transportation networks
- Power distribution and delivery
- Healthcare
- Emergency response

Challenges
- Highly distributed, complex ‘systems of systems’
- Societal integration challenges: legacy, scalability, policy goals

Goal:
- Combat fragility, devise robust and adaptable solutions to societal applications.
A Team Effort

- Partnership between researchers drawn from
 - Technology areas
 - Social and Technology policy
 - Industry and Standards bodies

- Deeply integrated with engineering education
 - Embedded Real-Time Systems, Structural Dynamics, Distributed Control, Data Management, Communications & Networking

- Institutional Engagement and Support
 - CalIT2
 - Center for Embedded Computer Systems, UC Irvine
 - UCSD/LANL Engineering Institute
 - MIND Laboratory, University of Maryland
 - GM-CMU Collaborative Laboratory at CMU
 - IIT Delhi, IIT Bombay, Univ. of Bologna
 - C. A. R., Sona Koyo Testing Facilities in Gurgaon
Personnel

Rajesh Gupta, Ingolf Krueger, Computer Science & Engg., UC San Diego
Michael Todd, Vistasp Karbhari, Structural Engineering, UC San Diego
Ramesh Rao, Electrical and Computer Engineering, UC San Diego
Nikil Dutt, Center for Embedded Computer Systems, UC Irvine
Sharad Mehrotra, Nalini Venkatsubramaniam, UC Irvine
Ashok K. Aggarwal, Computer Science, University of Maryland, College Park
Raj Rajkumar, Electrical and Computer Engineering, CMU
Luca Benini, DEIS, University of Bologna, Italy
Preeti Ranjan Panda, M. Balakrishnana, Anshul Kumar, Huzur Sharan, Kolin Paul, Computer Science and Engineering, IIT Delhi
Krithi Ramamritham, Computer Science and Engineering, IIT Bombay
Anand Patwardhan, S. J. Mehta School of Management, IIT Bombay
Sajid Mubhashir, Scientist TIFAC/DST, Secy, C.A.R.
Ravindra Nath Sharma, Sona Koyo Steering Systems Ltd, Gurgaon
On going Activities

- Application focii
 - Energy and Power Distribution Networks
 - Automotive and Transportation Networks
- Multiple technical efforts seeded
 - PCES: Engineering of Physically-Coupled Distributed Embedded Systems for Societal Scale Applications
 - CAESERS: Advanced Embedded Systems for Robust Societal Scale Applications
 - ACCESS: Adaptable Cyber-Coupled Engineering Systems for Autonomous Response to Unexpected Events
 - SHM: Structural Health Monitoring for Damage Prognosis
- Community building
 - ASWD: Automotive Software Workshop at San Diego, March 2006
 - ESLD: System-level Design Workshop at IIT Delhi, February 2007
 - CPS: Multiple and Broader Community building on Cyber-Physical Systems, July, October, 2006
Adaptable Cyber-Coupled Engineering Systems for Autonomous Response to Unexpected Events (ACCESS)

Grand Challenge: Models and methods to build coupled cyber-physical systems that are able to autonomously respond to unexpected events through highly available IT infrastructure, accurate and timely situational awareness and key reconfigurabilities for resource repurposing.

Research Components
1. Provably correct composable models of CP components
2. Situational awareness through continuous structural monitoring for dynamic decision support
3. Automatic synthesis of adaptive and reflective middleware for dynamic resource management

Impact & Testbed

MetaSim: simulation environment for crisis response situations.

Awareness Applications

Distributed Embedded Systems, Storage & Data Architecture, Structural Health Monitoring, Resource Planning
Summary

- Cal-IT2 is the hub of a community of shared interests
 - Technical: Deeply-coupled Cyber-physical systems
 - Educational: Embedded systems, software engineering, sensor networks, data engineering, predictive modeling and hazard mitigation
 - Wholesome and Holistic: societal-scale applications and implications for technology and social policy

- We have assembled a strong team to address deep technical challenges
 - And capability to transition research success to meaningful societal contributions
 - And always looking for the driven few…!