
High Level Modeling and
Component Compositions

Understanding and Appreciating Structure

Rajesh Gupta
University of California, San Diego.

mesl . ucsd . edu

Intel DTTC, August 15, 2006

2

The BALBOA Project Team

UC San Diego
Rajesh Gupta, Frederic Doucet, Sudipta Kundu, Jeff Namkung, Nick
Savoiu (UCI)

Virginia Tech
Sandeep Shukla, Hiren Patel, Gaurav Singh, Said Suhaib

INRIA/IRISA, France
Jean-Pierre Talpin, David Berner

TIFR, Mumbai, India
R. K. Shyamsundar

Intel, Conexant/Mindspeed, Qualcomm, ST Micro
Eric Debes, Mojy Chian, Suhas Pai, Ramesh Chandra

3

HLM: A personal journey

It all started as a circuit designer in SC4 c. 1986
Life was “Simple”

Simulation tool reproduced hardware behavior faithfully
Circuits hooked together: modularity and abstraction
Designer design automation focused on methodological innovations
(split runs, timing calculators, sanity checks)
Real simple handoff (of printed C-size sheets)
Local verifiability and updates through back annotations

Then things changed
Design became data, and data exploded
Programming paradigm percolated down to RTL
Designers opened up to letting go of the clock boundary

HDL = HLL + Concurrency+Timing+Reactivity+Structure
HardwareC, Radha-Ratan, Scenic, BALBOA

4

Chip Modeling & Building

Methodological issues are increasingly at the
junction of chip and embedded system design
Build components

model, synthesize, verify
Specification-based designs

(Automated) synthesis strategies to handle complexity

Build systems from components
architect, compose, validate

Platform-based designs

Design reuse, composition, co-simulation strategies

Momentum in applying HLL to HLM

5

HLM Semantic Necessities

Structural Abstraction
provide a mechanism for building larger systems by
composing smaller ones

Reactive programming
provide mechanism to model non-terminating interaction
with other components

e.g., watching (signal) and waiting (condition)
exception handling

Determinism
provide a “predictable” simulation behavior

Simultaneity
model hardware parallelism, multiple clocks

6

HLM Enablers
“Virtualization” of IP blocks through smarts in object
oriented (and library based) modeling of system
components

IP blocks as part of language level libraries
Virtual system architectures as abstractions of
platforms

Advances in verification techniques
HW verifications smarts beginning to drive PL design

SystemC treading down the path synchronous
languages have been before

and facing the same problems (solutions)
we will discuss one of these problems: causality loops

7

Compositionality can be
achieved

Component ‘wrappers’
Automatic and manual
Scripting languages and their integration to modeling
languages: SWIG, SysPy (SystemC+Python)

While integration for simulation is doable
Problem becomes immense if model substitutability is
concerned
Ensuring correctness is not trivial

Compositional frameworks that rely on models,
specifications

Heterogeneous MOCs, meta-models

8

Structure is fundamental to
chip design

Module as a top-level class
Member functions:

model blocks
create compound blocks
connect component objects
set parameters

Module as a top-level class
Member functions:

model blocks
create compound blocks
connect component objects
set parameters

A glorified schematic entry
> set design [new Module]
> set C0 [$design Component]
> $design connect C0 C1
> $design attach_list
> $design copy_interface
> $design attach_behavior
> ...

A glorified schematic entry
> set design [new Module]
> set C0 [$design Component]
> $design connect C0 C1
> $design attach_list
> $design copy_interface
> $design attach_behavior
> ...

9

BALBOA Project
Vision: Focus on Compositionality

Composability can be achieved through polymorphic interfaces and
mixed compiled and interpreted programming components.
Ensure correctness of the compositional process through static and
dynamic validation methods
Drive compositionality through advances in interface refinement and
substitution

Project Goals: Algorithms and techniques for
Composition of IP components for system-level designs

Addresses compositional guidance provided by virtual system
architectures

Automated selection of correct IP components and interfaces
Addresses port polymorphism and interface adaptor synthesis

Formal compatibility checks and creation of simulation models
Type abstractions, model checking and automated creation of
correct interfaces and simulation models.

10

Component
Integration, CIL

Split-Level
Interface/BIDL

C++, SystemC

System designer
C

om
piled

Interpreted

A composition environment
Built upon existing class libraries, to add
a software layer for manipulation and
configuration of C++ IP models
Ease software module connectivity
Run-time environment structure

A SW architecture that enables
composition of structural and functional
information

Current state
SystemC + NS2 + ISS + OS services

BALBOA CCF

11

Key Technical Decisions

A layered development and runtime environment
Functionality: describe & synthesize
Structure: capture & simulate

Use an interpreted language for
Architecture description
Component integration

Use compiled models for
behavioral description, simulation

Automatically link the two domains
through a “split-level” interface

Automatic code “wrapper” generation
for component reuse.

12

Language Layer: Compiled

Component Implementation in C++
To execute the modeled behavior
Can use object structure to replicate modeled
structures
Use modeling class library (in SystemC, C++) for

Concurrency
Bit-level data types
Model of time (variants, BFM, ISS etc.)
Model of structure
OS, Middleware services, abstractions

Components are implemented by a component library
designer, modeling plus C++ programming

Component
Integration, CIL

Split-Level
Interface/BIDL

C++, SystemC

System designer

C
om

piled
Interp rete d

13

Producer P
Consumer C
Queue Q

P query attributes
⇒queue_out
C query attributes
⇒queue_in

P.queue_out query methods
⇒bind_to read

P.queue_out bind_to Q
…

Language Layers: CIL

Script-like language
based on Object Tcl
Compose an architecture

Instantiate components
Connect components
Compose objects
Build test benches

Introspection
Query its own structure

Loose typing
Strings and numbers

Component
Integration, CIL

Split-Level
Interface/BIDL

C++, SystemC

System designer

C
om

piled
Interp rete d

14

template<class T>
class Producer {
kind BEHAVIORAL;

public:
Queue<T>* queue_out;
unsigned int packet_count;
void packet_generator process();

};

INSTANCE (int)
OF_CLASS (Producer)

INSTANCE (BigPacket)
OF_CLASS (Producer)

INSTANCE (SmallPacket)
OF_CLASS (Producer)

Language Layers: BIDL
Describe the component for usage
with the CIL
Exports the interface and internals
details:

Attributes, Methods
Relationships, Non-functional properties

Configure a Split-Level Interface
(SLI)

A custom wrapper for manipulation of
the C++ compiled object by the CIL

Generate the Type System
Extensions

For the CIL introspection and type
inference

(Defines the “meta-level” for
reflection)

Component
Integration, CIL

Split-Level
Interface/BIDL

C++, SystemC

System designer

C
om

piled
Interp rete d

15

Internal Component Architecture

16

Internal Component
Architecture

Split-level interface
Link between interpreted and compiled domain
Abstracts and manage the underlying C++ object
Implements heuristic for type inference
Maintains type checking for correct by construction validation
Implement the composition model, introspection and reflection

Type adapter bridge
Provides a proxy to the internal C++ object
Specific for each C++ type
Generated by the BIDL

Type system information
Specific to the C++ class, generated by the BIDL

Interpreted variables and methods
The system architect can add interpreted parts to the component

17

Language and Run-time Layers

Interpreter

BIDL
Compiler

Split Level
Interfaces

GCC Compiled
objects

Language Tools Run-time structure

GCC

Introspection

BIDL

C++

CIL

SLI/Type
system

extension

Reflection

18

Example
Instantiate components
Adder a
Register r
connect a.z to r.in

type introspection
a query type
⇒Adder

a query type parameters
⇒DATATYPE (bv10)

a query implementation
⇒add_fast<bv10>

a query ports
a b cin z cout

a.cin query type
bv<10>

Declare interface
Component Adder/interface {
Inport a
Inport b
Inport cin
…
Type parameter (DATATYPE)

}

Declare implementation
Component Adder/Implementation {
DATATYPE (bv10): add_fast<bv10>

…
}

template<class T>
class add_fast: public sc_module {
sc_in<bv10> a;
…

}; C++CIL

BIDL

19

Type System
Compiled types are “weakened” in the CIL

Data types are abstracted from signal and ports

Algorithm for data type inference
If a component is not typed in the CIL

The SLI delays the instantiation of the compiled
internal object
Interpreted parts of the component are
accessible

Verify if types are compatible when a relationship is
set

If a compatible type is found, the SLI allocates
the internal object and sets the relationship
If not, the link command is delayed until the types
are solved

Component

Type parameters build
the type availability table

20

p1

p3

p2
p5

p4c

An adder:

is polymorphic because its ports can
have many type mappings:

int

int

bool

int

bool
c1

ports(c1) : int X int X bool X int X bool

bv<8>

bv<8>

bool

bv<8>

bool
c2

ports(c2) : bv8 X bv8 X bool X bv8 X bool

bv<16>

bv<16>

bool

bv<16>

bool
c3

ports(c3) : bv16 X bv16 X bool X bv16 X bool

The dtp mapping function has 3 choice
in assigning the ports to compiled types!

Mapping can be viewed as an IP selection

21

Subtyping & Software Components
Substitutability (polymorphism):

If we replace A by B in the system, will correctness be maintained?
(may be a different abstraction, language, required environment)

int

int

bool

int

bool
c1

bv<8>

bv<8>

bool

bv<8>

boolc2

Callback<T*()>Process()

≤

Problem gets complex as the notion of substitutability is enhanced
Use behavioral types as containers of sequential behavior at the interfaces

22

Ensuring Compositional
Correctness

Syntactical correctness does not guarantee correct
behavior, let alone desired behavior
How can we compose IP blocks in SystemC so that the
system can be further composed

(associativity if preserved permits further compositions incrementally)
Simulation correctness does not imply logical
correctness due to

Non-coverage (or defining) the complete input environment (input
nondeterminism)
Behavioral nondeterminism
Compositional anomalies: cycles, scheduling order dependencies, 2-
level (delta) timing models
Problem with delta timing : infinite actions in a finite time (Zeno’s
Paradox, Thompson’s lamp)

How can we carry further with verification methods?

23

Two-level Timing Models

Use of delta cycles (like in most HDLs) helps order
events that happen within a given scheduling step to
preserve deterministic behavior
Event notification can be immediate, timed or at delta
cycles
Delta cycles, even with limited testing for absence of a
signal could lead causal cycles.

24

Example: Checking for event
absence forms a cycle

SC_MODULE(M1) {
sc_in<bool> e1;
sc_in<bool> e3x;
sc_out<bool> e3;
sc_out<bool> e1x;

SC_CTOR(M1) {
SC_METHOD(p1);
sensitive << e1 << e3x;

}
void p1() {
if (!e3x.event())
e3.write(!e3.read());

e1x.write(!e1x.read());
}

}; Cyclic loop: three
processes themselves

25

Nondeterministic Behavior
non-determinism:

for an input trace, it can be possible to observe different output traces
consequence:

can cause synchronization problems
missed events, different values, etc

where does it come from: four possible sources
mix of concurrency with shared variables
mix of concurrency with immediate event notification
non-deterministic software models with immediate event notifications
un-initialized signals/variables

26

Nondeterministic Behavior

SC_MODULE(M1) {
sc_event e;
int data;

SC_CTOR(M) {
SC_THREAD(a);
SC_THREAD(b);

}
void a() {
data=1;
e.notify()

}
void b() {

wait(e)
}

};

SC_MODULE(M2) {
sc_event e;

SC_CTOR(M) {
SC_THREAD(a);
SC_THREAD(b);

}
void a() {
wait(10,SC_NS)
e.notify();

}
void b() {
wait(10, SC_NS);
wait(e);

}
};

event notification can be missed depending of
which process gets scheduled first

at some arbitrary stepat the initial step

27

Scheduler Dependency
sc_event e;

SC_MODULE(M1) {

SC_CTOR(M1) {
SC_THREAD(a);

}
void a() {
e.notify()

}
};

SC_MODULE(M2) {

SC_CTOR(M2) {
SC_THREAD(b);

}
void b() {
wait(e);
sc_stop();

}
};

int sc_main() {
M1 m1(‘’m1’’);
M2 m2(‘’m2’’);

sc_start(10);
return 1;

}

This runs to completion and
execute the sc_stop statement

28

Scheduler Dependency
sc_event e;

SC_MODULE(M1) {

SC_CTOR(M1) {
SC_THREAD(a);

}
void a() {
e.notify()

}
};

SC_MODULE(M2) {

SC_CTOR(M2) {
SC_THREAD(b);

}
void b() {
wait(e);
sc_stop();

}
};

int sc_main() {
M1 m1(‘’m1’’);
M2 m2(‘’m2’’);
sc_start(10);
return 1;

}

inverting the instantiation order makes
M2 miss e and block forever

int sc_main() {
M2 m2(‘’m2’’);
M1 m1(‘’m1’’);

sc_start(10);
return 1;

}
Not really a structural specification!

29

Of course, we can turn ND to
Deterministic SystemC programs
sc_event e;

SC_MODULE(M1) {

SC_CTOR(M1) {
SC_THREAD(a);

}
void a() {
e.notify_delayed()

}
};

SC_MODULE(M2) {

SC_CTOR(M2) {
SC_THREAD(b);

}
void b() {
wait(e);
sc_stop();

}
};

Delayed notification (delta events) can be used to make
non-deterministic behavior deterministic

The delivery of event is delayed until next cycle,
introducing a partial order between concurrent events

However, are these logically correct?

30

BALBOA Approach

A firm semantics (SOS style)
Clear unambiguous understanding of IP block behaviors

Static Analysis of SystemC
Check for logical correctness

Compositional (modular) Verification
Abstractions

Reduces complexity, but requires strong formal
foundation

Tools for analysis and synthesis
Heterogeneous models, multiple clocks etc

31

SOS for SystemC
Events emitted

termination flag

environment

syntactic rule

semantic rules

If e is not in the
environment,
wait more

statement by statement,
succession (and merging)
of environments…

and identify conditions that lead to compositional anomalies.

32

Status and plans

We have SOS and a behavioral type system in
place to enable capture of SystemC programs
for compositional verification
Currently working on software architecture to
allow

Capture and automatic translation of SystemC code
Generation of proof obligations (have hand examples
working)

Working on algorithm for refinement checking
for simulation efficiency

Using model checking to prove flow invariance

33

Summary

The current movement towards HLM through
programming advances holds the promise of modeling
and methodology convergence from chip design to
embedded systems (software) design

Language-level modeling advances now touching new compositional
abilities through innovations in design patterns and infrastructure
capabilities

However, such advances go hand-in-hand with
advances in verification and synthesis tools

Yet, good IP-model composability still very much out of reach

BALBOA CCF is a prototype for dynamic composition
of IP blocks and their validation through static and
dynamic verification.

34

Related Work
Software architecture

Architecture description languages: Wright, EXPRESSION, xADL
Component-configuration-connection model

Component frameworks
Ptolemy

Type system in full lattice structure, solving in linear time
Interoperation semantics, top down design, Balboa= bottom-up

TIMA’s Colif, IBM Coral, JavaCAD
Architectural inference, and component selection according to constraints

Platform-based design
Architectural modeling

IP Chinook:
compositional specification with modal processes
weave in new features in the system
problem: no verification

Metropolis
formal foundation to system design
not compositional
basic equivalence verification only

Split-level programming
Network Simulator (NS)

Separate composition concerns from programming
Wrapper generation

SWIG, CDL (component description languages)

35

36

Dynamic Type and Static Type

Dynamic type
it defines the transition system of the interface

Static type
A static interface of the same code is an abstraction of the dynamic
interface, by

abstracting the transitions into clock relations,
taking closure of the clock relations, and
taking transitive closure of the scheduling relations.

Verification is through subtype checking (inferred
against specified)

Subtype checking in dynamic interface types can be checked by
simulation relations
Subtype checking for static interfaces can be done using checking
trace inclusion

37

Notationally a minimalistic STS
A multi-clock based type system

Signal = clock presence, sampling

Type = set of traces on its signals that satisfy all clock
equations in its description.

Two modules are composable if inference can produce a
type for the composition.

38

Example

39

Behavioral type assignment

Defines an invariant per instruction

Static abstraction by proposition on clocks

40

Example: Type annotation
Type P of a block consists of synchronous composition of the type
associated with every instruction in that block.

Clocks:
Branches: xL2, xL3, xL2\L3
Data: T1^, …

41

Static interface abstracts delayed transitions
by clock relations.

Type inference function defined by induction on the formal syntax of a
Program. Associate a clock with each block to model activation, return.

42

Type Inference

	High Level Modeling and Component Compositions
	The BALBOA Project Team
	HLM: A personal journey
	Chip Modeling & Building
	HLM Semantic Necessities
	HLM Enablers
	Compositionality can be achieved
	Structure is fundamental to chip design
	BALBOA Project
	BALBOA CCF
	Key Technical Decisions
	Language Layer: Compiled
	Language Layers: CIL
	Language Layers: BIDL
	Internal Component Architecture
	Internal Component Architecture
	Language and Run-time Layers
	Example
	Type System
	Subtyping & Software Components
	Ensuring Compositional Correctness
	Two-level Timing Models
	Example: Checking for event absence forms a cycle
	Nondeterministic Behavior
	Nondeterministic Behavior
	Scheduler Dependency
	Scheduler Dependency
	Of course, we can turn ND to Deterministic SystemC programs
	BALBOA Approach
	SOS for SystemC
	Status and plans
	Summary
	Related Work
	Dynamic Type and Static Type
	Notationally a minimalistic STS
	Example
	Behavioral type assignment
	Example: Type annotation
	Static interface abstracts delayed transitions by clock relations.
	Type Inference

