Conditional Speculation and its Effects on Performance
and Area for High-Level Synthesis’

Sumit Gupta Nick Savoiu Nikil Dutt Rajesh Gupta Alex Nicolau

Center for Embedded Computer Systems
Dept. of Information and Computer Science
University of California at Irvine
http://www.cecs.uci.edu/~spark

{sumitg,savoiu,dutt,rgupta,nicolau} @cecs.uci.edu

ABSTRACT

We introduce a code transformation technique, “conditional specu-
lation”, that speculates operations by duplicating them into preced-
ing conditional blocks. This form of speculation belongs to a class
of aggressive code motion techniques that enable movement of op-
erations through and beyond conditionals and loops. We show that,
when used during scheduling in a high-level synthesis system, this
particular code motion has positive effect on latency and controller
complexity, e.g., up to 35 % reduction in longest path cycles and
the number of states in the finite state machine (FSM) of the con-
troller. However, it is not enough to determine complexity by the
number of states in the control FSM. Indeed, the greater resource
sharing opportunities afforded by speculation actually increase the
total control cost (in terms of multiplexing and steering logic). This
also adversely affects the clock period. We examine the effect of
the various code motions on the total synthesis cost and propose
techniques to reduce costs to make the transformations useful in
real-life behavioral design descriptions. Using the MPEG-1 and
ADPCM benchmarks, we show total reductions in schedule lengths
of up to 50 % while keeping control and area costs down.

1. INTRODUCTION

High-level synthesis is the automated synthesis of a digital de-
sign from its behavioral description [1, 2]. There has been a large
body of research on high-level synthesis (HLS) which has con-
centrated on reducing schedule lengths of a design by improved
scheduling techniques. However, the presence of complex control
flow significantly affects the quality of synthesis results. Hence,
several beyond-basic-block code motion techniques such as specu-
lation have been used to extract the inherent parallelism in designs
and increase resource utilization.

Generally, speculation refers to the unconditional execution of
operations that were originally supposed to have executed condi-
tionally. Conversely, in reverse speculation, which we introduced
in previous work [3], operations before conditionals are moved into
subsequent conditional blocks and hence, executed conditionally.

*This work is supported by the Semiconductor Research Corpora-
tion: Task 1.D. 781.001

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

I1SSS 01, October 1-3, 2001, Montréal, Québec, Canada.

Copyright 2001 ACM 1-58113-418-5/01/0010 ...$5.00.

In this paper, we present a variant of speculation where an opera-
tion from after the conditional block is duplicated up into preceding
conditional branches and executed conditionally. Hence, this code
motion is called conditional speculation.

These kind of aggressive generalized code motions lead to sig-
nificant reductions in schedule lengths and controller complexity.
However, the effects of code transformations on synthesis costs,
particularly control and multiplexing costs are poorly understood.
In order to better understand these effects, we have taken the VHDL
generated after scheduling by our high-level synthesis system and

synthesized it using logic synthesis tools. We find that if left unchecked,

these code motions can lead to substantial area and clock period
overheads.

This leads us to believe that although these type of speculative
code motions are useful, there needs to be a judicious balance be-
tween when to speculate, reverse speculate or conditionally specu-
late. Based on our experiments, we have developed simple heuristic
cost models for the code motions and use them to guide a priority-
list scheduling algorithm. This heuristic uses information on which
code motions are allowed, and the cost of each code motion, to
determine the most favorable operation to schedule on a given re-
source at a given time step.

However, the higher resource utilization and sharing caused by
these code motions still lead to higher area and control costs. The
control-intensive nature of the “real-life” benchmarks we have con-
sidered, further adds to these costs due to increased resource shar-
ing among mutually exclusive operations, which leads to larger in-
terconnect and associated control logic. Interconnect, here, refers
to the multiplexors and buses that connect components together.

To address the complexity of the interconnect, this paper also
presents an interconnect minimization approach based on a resource
binding methodology. This methodology attempts to first bind op-
erations with the same inputs or outputs to the same functional unit.
The variable to register binding then takes advantage of this by try-
ing to map variables which are inputs or outputs to the same func-
tional units to the same register. In this way, the number of registers
feeding the inputs and storing the outputs of functional units is re-
duced, in effect, reducing the size of the multiplexors and demulti-
plexors connected to the functional units. Our results demonstrate
the effectiveness of this approach in reducing area costs without
adversely effecting performance.

The rest of this paper is organized as follows. We first discuss
related work and then present the conditional speculation code mo-
tion. Section 4 outlines the scheduling heuristic which guides the
various code motions within a synthesis framework. Section 5 stud-
ies the effects of the various code motions on the quality of synthe-
sis results. Finally, an interconnect minimization strategy is out-
lined along with a study of its effectiveness on synthesis results.

2. RELATED WORK

Initial high-level synthesis work concentrated on data-flow de-
signs and applied optimizations such as algebraic transformations,
retiming and code motions across multiplexors for improved syn-
thesis results [4, 5]. Subsequent work has presented speculative
code motions for mixed control-data flow type of designs and demon-
strated their effects on schedule lengths. CVLS [6] uses condition
vectors to improve resource sharing among mutually exclusive op-
erations. Radivojevic et al [7] present an exact symbolic formu-
lation which generates an ensemble schedule of valid, scheduled
traces. The “Waveschedule” approach [8] incorporates speculative
execution into high-level synthesis (HLS) to achieve its objective
of minimizing the expected number of cycles. Santos et al [9] and
Rim et al [10] support generalized code motions, taken from soft-
ware compilers, for scheduling in HLS.

However, most previous works compare the effectiveness of their
algorithms in terms of only schedule lengths. This has prevented
a clear analysis of the effects of scheduling and code motions on
the area and latency of the final hardware generated, since control
logic overheads are usually ignored. To this end, Rim et al [10]
use an analytical cost model for interconnect and control while ap-
plying code motions and Bergamaschi [11] proposes the behavioral
network graph to bridge the gap between high-level and logic-level
synthesis.

A range of code motion techniques similar to those presented in
our work have also been previously developed for high-level lan-
guage software compilers (especially parallelizing compilers) [12,
13, 14]. Although the basic transformations (e.g. dead code elim-
ination, copy propagation) can be used in synthesis as well, other
transformations need to be re-instrumented for synthesis. This is
usually because the cost models in compilers and synthesis tools
are different. For example, in compilers there is generally a uni-
form push towards executing operations as soon as possible by
speculative code motions. However, in synthesis, the additional
hardware costs associated with code motions must be taken into
account while making scheduling decisions.

Reducing interconnect using binding techniques has also been
studied before [1, 2]. Stok et al [15] use a network flow formu-
lation for minimum module allocation while minimizing intercon-
nect. Paulin et al [16] perform exhaustive weight-directed clique
partitioning to find the lowest combined register and interconnect
costs. Mujumdar et al [17] use a network flow formulation to bind
operations and registers in each time-step one at a time.

However, several of these approaches have been tested using data
dominated designs with little or no control flow. Many moderately
complex benchmarks extracted from industrial design descriptions
such as ADPCM and parts of MPEG are control-intensive designs.
This adds a new dimension to the complexity of the problem due to
the presence of mutually exclusive operations on different branches
of conditionals which share resources. Code motions during schedul-
ing also lead to higher resource utilization and code duplication.
This leads to added control logic both in terms of control signal
generation and interconnect complexity.

The contributions of this paper include a presentation of condi-
tional speculation which is another code motion in a class of code
motions presented earlier [3] followed by a comparative study of
these code motions. Then, a simple scheduling heuristic which
directs these code motions is outlined. Finally, an interconnect
reduction methodology is presented to reduce the higher control
costs due to these aggressive code motions. This work has been
implemented within a high-level synthesis framework called Spark
which provides a path from a behavioral input description down to
synthesizable register-transfer level code.

@ (b) (©
Figure 1: (a) A sample control-data flow graph (b) Opera-
tions x and y are speculated leaving idle slots in the conditional
branches (c) Operation z is conditionally speculated into condi-
tionals BB; and BB

3. CONDITIONAL SPECULATION

There are often instances in the input description where the ba-
sic blocks that comprise the branches of a conditional do not have
enough operations to fully utilize the resources allocated to the de-
sign. Speculation also creates such “idle slots” on resources by
moving operations out of conditionals. These idle slots can be filled
or utilized by scheduling operations which lie in basic blocks after
the conditional blocks. These operations can be duplicated up into
both branches of the conditional and executed speculatively. We
call this code motion, conditional speculation (CS). This is similar
to the duplication-up code motion used in compilers and the node
duplication transformation discussed by Wakabayashi et al [6].

Figure 1 demonstrates how such idle slots are created by spec-
ulation and how conditional speculation can be used to fill them.
In the example in Figure 1(a), consider that the operations x and y
both write to the variable f in their respective conditional branches
BB; and BB5. Now, consider that this design is allocated one adder,
one subtracter and one comparator. Then operations x and y can be
speculatively executed as shown in Figure 1(b). As shown in this
figure, the results of the speculated operations are written into new
destination variables, d and c, which are not committed until the
corresponding condition is evaluated, i.e., the results of the specu-
lated operations are written back to the variable f only within the
conditional blocks.

Figure 1(b) demonstrates that the speculation of these operations
leaves “idle” slots in which no operations have been scheduled on
the resources. Furthermore, in this example, operation z is depen-
dent on either the result of operation x or operation y depending
on how the condition evaluates (i.e. operation z is dependent on
the variable f). Operations such as z, which lie in basic blocks
after the conditional blocks, can be duplicated up or conditionally
speculated into both branches of the conditional to fill idle slots as
illustrated in Figure 1(c).

Note that condition speculation does not necessarily need spec-
ulation to be done first to activate it as shown in the example.
As stated earlier, there are often empty slots within conditional
branches, which go unused unless operations are conditionally spec-
ulated from after the conditional block.

A scheduling heuristic which guides conditional speculation along
with other code motions in the Spark high-level synthesis system is
presented next.

4. PRIORITY-BASED GLOBAL LIST
SCHEDULING HEURISTIC

For the purpose of evaluating the various code motion transfor-
mations, we have chosen a priority-based global list scheduling
heuristic. Since we have chosen the objective of minimizing the
longest delay through the design, hence, the priorities are assigned

MPEG Prediction Block; Resources = 3ALU, 2] |,3 <<, 2 ==,1*(2-cycle); BBs = non-empty Basic Blocks
Type of calc_forw (73 Ops, 31 BBs) || pred2 (217 Ops, 45 BBs) || pred0_1 (101 Ops, 26 BBs)

Code Motion # States Long Path # States Long Path # States Long Path
Within basic blocks | 37 37 182 6359 187 3072
+across hier blocks | 28(-24%) | 28(-24%) 157(-14%) | 5956(-6%) 162(-13%) | 2871(-7%)
+speculation 26(-7%) | 26(-7%) 102(-35%) | 4263(-28%) || 137(-15%) | 2177(-24%)
+early cond exec 24(-8%) | 24(-8%) 100(-2%) | 4261(-0%) 134(-2%) | 2174(0%)
+cond speculation | 22(-8%) | 22(-8%) 92(-8%) 3945(-7%) || 122(-9%) | 1910(-12%0)
Total Reduction 40.5% 43.2 % 49.5 % 38.0 % 34.8% 37.8%

Table 1: Comparison of various types of code motion for the MPEG Pred benchmark

Hierarchical
Block

Figure 2: Various types of code motions

to each operation based on their distance from the primary outputs
of the design. The priority of an operation is calculated as one more
than the maximum of the priorities of all the operations that use its
result with output operations having a priority of one [3].

The scheduling heuristic works as follows: first, a priority is as-
signed to each operation as explained above. Then scheduling is
done one control (or scheduling) step at a time while traversing the
control-data flow graph (CDFG). At each time step, for each idle
resource, a list of available operations is collected [14]. Available
operations are operations which can be scheduled on the current re-
source type and whose data dependencies are either satisfied or can
be eliminated by dynamic renaming [18].

For each operation in the available operations list, the code mo-
tion technique determines if there is a path from the operation’s
current location to the scheduling step under consideration and the
code motions that will be required to move the operation. The
heuristic checks the code motions required to schedule the oper-
ation against a user specified list of code motions (i.e. speculation,
reverse speculation, conditional speculation et cetera), and removes
the operation from the available list if it requires a code motion that
is not enabled.

The heuristic then assigns a cost to each operation based on met-
rics such as priority of the operation, cost of code motions and their
effects on control logic. It then instructs the code motion technique
to schedule the operation with the lowest cost from the list of re-
maining available operations. This is repeated for all resources in
each scheduling step as the basic blocks in the CDFG are traversed
from top to bottom. Operations left unscheduled at the end of a
basic block are moved down into the next basic block or reverse
speculated into the conditional branches, as the case may be.

Costs are assigned to each operation in the available list as:

Costop = —Priority* Kcodemotiont * --- * KcodeMotionN

where Kcodemotiont 10 Kcodemotionn are the multiplication factors
(<= 1) associated with each code motion required to schedule the
operation at the scheduling step under consideration. Since we
found that except for conditional speculation, all the code motions
are equally useful, we assigned them a multiplication factor of one.
However, unchecked application of conditional speculation (CS)
can lead to poor scheduling results since this code motion involves
code duplication.

Hence, we developed a three-fold strategy to guide this code mo-
tion. Firstly, Kcodemation for CS is set to 0.5. Next, we allow CS

ADPCM Encoder(65 Ops, 38 non-empty BBs)
Type of 1ALU,2 ==2[],1 <<
Code Motion # States Long Path
Within basic blocks | 33 313
+across hier blocks | 28(-15%) | 273(-13%)
+speculation 26(-7%) 253(-7%)
+early cond exec 24(-8%) 233(-12%)
+cond speculation 16(-33%0) | 152(-35%)
Total Reduction 51.5% 51.4 %

Table 2: Comparison of various types of code motion for the
ADPCM Encoder benchmark

only after the “then” conditional branch has already been sched-
uled, i.e., in Figure 1, we would allow consideration of operations
which require CS only while scheduling basic block BB, (after BBy
has been scheduled). This gives us a better picture of available idle
slots. Lastly, we do not allow CS if it leads to an increase in the
maximum number of cycles through the conditional node. This
means, in Figure 1, if CS would lead to an additional cycle being
required in either the “then” (BB;) or the “else” (BB,) basic blocks,
then the code motion would not be allowed.

These cost models have been developed as first-cut heuristic rules
to guide the scheduling heuristic. The next section presents results
which compare the effectiveness of the various code motions when
guided by this scheduling heuristic.

5. EFFECTS OF CODE MOTIONS ON
QUALITY OF SYNTHESIS RESULTS

The various code motions presented earlier [3] along with con-
ditional speculation are shown again in Figure 2. In addition to
this, early condition execution is a code motion technique which
executes conditional checks as soon as possible by reverse specu-
lating unscheduled operations before the conditional, into the con-
ditional’s branches.

The two benchmarks used for the experiments in this paper are
the Encoder block from the ADPCM algorithm and the calc_forw,
pred0_1 and pred2 functions from the Prediction block of the MPEG-
1 algorithm? [19].

5.1 Effects on Performance

The effects of these code motions on the number of states in the
finite state machine (FSM) and the cycles on the longest path in the
design are presented in Tables 1 and 2. The percentage reductions
of each row over the previous row are in parentheses. The num-
ber of states denotes the controller complexity and the longest path
length is equivalent to the execution cycles of the design. For loops,
the longest path length of the loop body is multiplied by the number
of loop iterations. The resources used are indicated in the tables;
ALU does add and subtract, * is a multiplier, == is a comparator,
[is an array address decoder and << is a shifter. The multiplier is

LAlthough both benchmarks have loops, no loop transformations
have been applied for these experiments

1.4 H—1 Within Basic Blocks MPEG Pred2
[Across hier+Speculation function
g12 HE Early Condition Exec
% I Conditional Speculation
1= >Pe o e
> E—
§0.8 -
g 06 [
Soal
> 04
02
0 ”]
Num of States Critical Path Total Delay Unit Area

Synthesis Metrics

1.4 . Within Basic Blocks ADPCM Encoder
[Across hier+Speculation function
g12 HE Early Condition Exec
% I Conditional Speculation —
1 — —1 — —
>
§0.8 -
g 06 -
Soal
> 04
02
0 " .
Num of States Critical Path Total Delay Unit Area

Synthesis Metrics

Figure 3: Effects of code motions on various metrics for the MPEG pred2 and the ADPCM Encoder

a 2-cycle resource and all other resources have single cycle execu-
tion time. The number of non-empty basic blocks and operations
are also given in these tables.

The rows in the tables present results with each code motion en-
abled incrementally, i.e., these signify the allowed code motions
while determining the available operations (see Section 4) and do
not represent an ordering of code motions. We first allow code mo-
tions only within basic blocks (first row) and then, in the second
row, we also allow code motions across hierarchical blocks, i.e.,
across entire if-then-else conditionals and loops. The third row al-
lows speculation too, the fourth row has early condition execution
enabled as well and the final row has the conditional speculation
code motion also enabled.

The fifth row in these tables demonstrate that enabling condi-
tional speculation leads to reductions of 33-35 % in the number
of states and the longest path cycles for the ADPCM encoder and
between 7-12 % for the MPEG algorithm. This code motion is
more effective for the ADPCM benchmark since this benchmark is
highly control intensive with nearly as many conditional checks as
operations. Hence, moving operations into its conditional branches
significantly improves resource utilization. The functions in the
MPEG Prediction block on the other hand have a more mixed dis-
tribution of data and control operations. Hence, the improvements
due to the various code motions is more uniform for the MPEG
functions (see Table 1).

These observations and the results in Tables 1 and 2 demonstrate
that the effectiveness of a particular code motion is heavily depen-
dent on the characteristics of the behavioral description being syn-
thesized. Control-intensive designs (such as calc_forw and AD-
PCM Encoder) benefit more from code motions that move opera-
tions into conditional branches (such as early condition execution
and condition speculation), whereas designs which have more data
operations than conditionals (such as pred0_1 and pred2) benefit
more from code motions such as speculation.

Also, while experimenting with different resource constraints,
we found that opportunities for conditional speculation increase
with increasing resources, leading to up to 30 % reductions for the
MPEG benchmark. This goes towards showing that resources are
most idle within conditional branches, especially as more resources
are allocated.

These tables show that these kind of speculative code motions
lead to substantial improvements in the latency of the design and
complexity of the controller. The total reduction in execution cycles
and number of states achieved with all the transformations enabled
over code motion only within basic blocks ranges between 35 % to
51 % (last row in the tables).

Figure 4: Typical critical paths in control-intensive designs

5.2 Effects on Area and Clock Period

Although aggressive code motions lead to significant reductions
in the execution cycles of a design, their overall effects on synthe-
sis results should take into account the control costs. These are not
obvious until the design is synthesized to the gate level. Hence, to
further evaluate the effects of the various types of code motions,
we synthesized the register-transfer level VHDL, generated after
scheduling by the Spark synthesis system, using the Synopsys De-
sign Compiler logic synthesis tool. The LSI-10K synthesis library
was used for technology mapping.

The results for the MPEG pred2 function and ADPCM Encoder
are presented in the graphs in Figure 3. In these graphs, four met-
rics are mapped: the number of states in the FSM, the critical
path length (in nanoseconds), the unit area and the maximum de-
lay through the design. The critical path length is the length of
the longest combinational path in the netlist as determined by static
timing analysis. The critical path length dictates the clock period
of the final design. The unit area is in terms of the synthesis library
used (the LSI-10K library). The maximum delay is the product of
the longest path length (in cycles) and the critical path length (in ns)
and signifies the maximum input to output latency of the design.

The values of each metric are normalized by the lowest value for
that metric. They are mapped for code motions allowed only within
basic blocks, then with across hierarchical block code motions and
speculation also allowed, with early condition execution as well
and finally with conditional speculation enabled too. We synthe-
sized these designs with a simple, naive binding of operations to
functional units so as to ensure that the number of resources syn-
thesized are as per the resources allocated during scheduling by the
high-level synthesis system.

These graphs demonstrate that as we apply more and more ag-
gressive code motions, the size of the controller (humber of states)
decreases and the performance of the design increases, i.e. total
delay decreases. These values are almost halved when all the code
motions are enabled over when code motions only within basic
blocks are allowed.

These graphs also demonstrate that the critical path lengths in

l:a=b+c; 2:d=e+f

|

3:g=etd; 4h=atc

A
2:.d=etf
4:h=at+c

A0
1l:a=b+c
3:g=etd

@ (b)
Figure 5: An example of binding leading to a large number of
interconnections

the designs remain fairly constant, while the area increases steadily.
This area increase is due to increasing complexity of the steering
logic and associated control logic caused by resource sharing. Crit-
ical paths also typically pass through this steering logic. A typical
critical path in the synthesized designs is shown in Figure 4. It
starts in the control logic that generates the select signals for the
multiplexors connected to the functional units. The path contin-
ues through the multiplexors, through the functional unit and then
through another multiplexor, which finally writes to the output reg-
ister. As the resource utilization and sharing increases, due to ag-
gressive speculative code motions, the size of these interconnects
(multiplexors and demultiplexors) gets increasingly large, leading
to increased area.

As noted above, the critical path length does not change signif-
icantly as more and more code motions are enabled. This is be-
cause although aggressive code motions affect critical path lengths
adversely due to higher resource utilization and sharing, they also
lead to reduced number of states in the FSM and shorter schedule
lengths. This leads to smaller controllers which counter balance the
effects of the increased interconnect and effectively leads to negli-
gible affect of the code motions on critical path lengths.

6. REDUCING INTERCONNECT

The very resource sharing that is leading to increases in circuit
complexity, also provides an opportunity to minimize interconnect.
Since the resources have several operations and variables mapped
to them, there exist opportunities to reduce the number of inputs
to, and hence, the complexity of, the (de)multiplexors between
these resources by resource binding techniques. Fewer inputs not
only mean smaller interconnects but also simpler associated control
logic. The next two sections describe a resource binding method-
ology to minimize these interconnect and control costs.

6.1 Operation to Functional Unit Binding

The number of interconnections required to connect modules to
each other and to registers can be reduced by combining operations
which have the same inputs and/or same outputs. This can be intu-
itively understood by considering the classical example of binding
and resultant hardware shown in Figure 5 [1]. The interconnect can
be simplified by exchanging the functional units that operations 3
and 4 are bound to, as shown in Figure 7(a). This is because oper-
ations 1 and 4 have the input variable ¢ in common and operations
2 and 3 have e in common.

Hence, the operation binding problem can be defined as follows:
given a scheduled control data flow graph (CDFG) and a set of
resource constraints, map each operation to a functional unit from
among the given resources, such that the interconnect is minimized.

We formulate this problem by creating an operation compati-
bility graph for each type of resource in the resource list. Each
operation in the design of the resource type under consideration
has a node in the graph. Compatibility edges are created between
nodes corresponding to operations which are scheduled in either
different control steps or execute under a different set of conditions.

(b)
Figure 7: Reducing interconnections by improved (a) operation
binding (b) variable binding

This means that mutually exclusive operations (and their variables)
scheduled in the same time step are compatible with each other.

For reducing interconnect, we add additional edge weights be-
tween operations for each instance of common inputs or outputs
between them. A maximally weighted clique cover of this graph
will lead to binding that reduces interconnect. The constraint on
the number of resources means that the number of cliques cannot
exceed the number of resources of each type. To solve this prob-
lem, we formulate it as a multi-commodity network flow problem
and find the max-cost flow [20, 21]. Chang et al [20] use the same
formulation for module allocation but their objective is to minimize
power consumption.

6.2 Variable to Register Binding

Variable to register binding can take advantage of the improved
operation binding by mapping variables that are inputs or outputs
to the same port of the same functional unit to the same registers.
Hence, the result obtained after operation binding shown in Figure
7(a) can be further improved by changing the variable binding as
shown in Figure 7(b). In this binding, variables b and a, which are
inputs to operations 1 and 4 (which are bound to the same func-
tional unit), have been bound to the same register. Similarly, vari-
ables f and d are bound to the same register.

The formulation of this problem is similar to the operation bind-
ing problem, except that we do not place a constraint on the number
of registers. A compatibility graph is created with a node corre-
sponding to a write to a variable in the CDFG. Compatibility edges
are added between nodes corresponding to variables which do not
have overlapping lifetimes or are created under a different set of
conditions.

Edge weights are added between variables for each instance of
them being inputs or outputs to the same port of the same func-
tional unit. A maximally weighted clique cover represents a valid
variable to register binding with minimal interconnect . This is
solved by formulating it as a min-cost max-flow network problem.
This formulation has been used earlier to solve similar problems in
[15] and [22].

7. RESULTS OF RESOURCE BINDING

We synthesized the various designs with a naive resource binding
(“Unbound” case) and with the interconnect minimization method-
ology outlined above (“Bound” case). The results for the MPEG
pred2 and the ADPCM Encoder designs are summarized in the
graphs in Figure 6. The metrics compared in these graphs are the
critical path length, total delay and the unit area. The values for
each metric are normalized to the minimum value for that metric
among all its values (before and after binding).

The reductions in area of the “Bound” case over the “Unbound”
case are significant, especially for the pred2 function. These im-
provements are despite the fact that in our interconnect minimiza-
tion strategy, we sometimes choose to allocate more registers if this
leads to a reduction in the steering logic. Hence, the reductions in

13 T - T
Within Basic Blocks [_] MPEG Pred?2
1.2 | Across hier+Speculation] G . ed
P Early Condition Exec [l function
% 11 [Conditional Speculation [l
> L gu - _ W
'8 L
N o9
g 08
S
(o)
Z 07
0.6 | —|:I
5 1
Unbound Bound Unbound Bound Unbound Bound
Critical Path Total Delay Unit Area

Synthesis Metrics

Normalized Values

14
13
12
11

1H
09
08
0.7
06
05
0.4

[within Basic Blocks
IT—1 Across hier+Speculation
HI Early Condition Exec
| Condition eculation

ADPCM Encoder
function

Unbound Bound_
Unit Area

Unbound Bound
Total Delay
Synthesis Metrics

Unbound Bound
Critical Path

Figure 6: Synthesis results before and after resource binding for MPEG pred2 and ADPCM Encoder

interconnect complexity dominate any increases due to higher reg-
ister requirements. Furthermore, we found that although synthe-
sis using a binding methodology, which minimizes only registers,
leads to fewer registers, the total area of the design is worse, since
the interconnect sizes are not reduced.

The graphs show that critical path lengths remain fairly constant
in all the designs, hence, barely leading to any changes in delay
through the circuit. These results demonstrate that the interconnect
methodology is able to achieve more area efficient designs without
sacrificing performance.

For both the bound and unbound cases, we find that applying the
conditional speculation transformation can lead to an increase in
the critical path lengths and area of the synthesized circuit. This
is due to the higher resource sharing and code duplication that this
code motion leads to. Hence, there is a need to develop more ac-
curate control cost models, which the scheduling heuristic can use
while deciding which code motions to apply.

8. CONCLUSIONS

In this paper, we have presented a new code motion for synthe-
sis, called conditional speculation. This code motion is particu-
larly effective for control-intensive behaviors where more oppor-
tunities exist to move operations into otherwise idle slots in con-
ditional branches. We have shown that these kind of aggressive
code motions can be directed to obtain significant reductions in the
execution cycles of a design and also the number of states in the
controller for large control-intensive segments of industrial strength
benchmarks. Furthermore, the control and interconnect overheads
incurred due to these code motions can be minimized by resource
binding targeted at interconnect minimization. This leads to lower
area, without adversely effecting the latency of the final hardware
generated by logic synthesis tools. Future work will involve devel-
oping more elaborate cost models that will help in guiding when to
apply the various code motions.

9. REFERENCES

[1] D. D. Gajski, N. D. Dutt, A. C-H. Wu, and S. Y-L. Lin. High-
Level Synthesis: Introduction to Chip and System Design.
Kluwer Academic, 1992.

[2] R. Camposano and W. Wolf. High Level VLS Synthesis.
Kluwer Academic, 1991.

[3] S. Gupta, N. Savoiu, S. Kim, N.D. Dutt, R.K. Gupta, and
A. Nicolau. Speculation techniques for high level synthesis of
control intensive designs. In Design Automation Conf., 2001.

[4] M. Potkonjak and J. Rabaey. Optimizing resource utlization
using tranformations. IEEE Trans. on CAD, March 1994,

[5] R. Walker and D. Thomas. Behavioral transformation for al-
gorithmic level ic design. |EEE Trans. on CAD, October 1989.

[6] K. Wakabayashi and H. Tanaka. Global scheduling indepen-
dent of control dependencies based on condition vectors. In
Design Automation Conference, 1992.

I. Radivojevic and F. Brewer. A new symbolic technique for

control-dependent scheduling. |[EEE Transactions on CAD,

January 1996.

G. Lakshminarayana, A. Raghunathan, and N.K. Jha. Incor-

porating speculative execution into scheduling of control-flow

intensive behavioral descriptions. In Design Automation Con-

ference, 1998.

L.C.V. dos Santos and J.A.G. Jess. A reordering technique for

efficient code motion. In Design Automation Conf., 1999.

[10] M. Rim, Y. Fann, and R. Jain. Global scheduling with code-
motions for high-level synthesis applications. |EEE Transac-
tions on VLS Systems, September 1995.

[11] R.A. Bergamaschi. Behavioral network graph unifying the
domains of high-level and logic synthesis. In Design Automa-
tion Conference, 1999.

[12] J. Fisher. Trace scheduling: A technique for global microcode
compaction. |EEE Transactions on Computers, 7, July 1981.

[13] A. Nicolau. Uniform parallelism exploitation in ordinary pro-
grams. In International Conf. on Parallel Processing, 1985.

[14] K. Ebcioglu and A. Nicolau. A global resource-constrained
parallelization technique. In 3rd International Conference on
Supercomputing, 1989.

[15] L. Stok and W.J.M. Philipsen. Module allocation and compa-
rability graphs. In IEEE International Sympoisum on Circuits
and Systems, 1991.

[16] P. G. Paulin and J. P. Knight. Scheduling and Binding Algo-
rithms for High-Level Synthesis. In Design Automation Con-
ference, 1989.

[17] A. Mujumdar, R. Jain, and K. Saluja. Incorporating perfor-
mance and testability constraints during binding in high-level
synthesis. IEEE Trans. on CAD, 1996.

[18] S.-M. Moon and K. Ebcioglu. An efficient resource-
constrained global scheduling technique for superscalar and
vliw processors. In Intl. Symp. on Microarchitecture, 1992.

[19] Spark Synthesis Benchmarks FTP site.
ftp://ftp.ics.uci.edu/pub/spark/benchmarks.

[20] J.-M. Chang and M. Pedram. Module assignment for low
power. In European Design Automation Conference, 1996.

[21] L. Stok. Transfer free register allocation in cyclic data flow
graphs. In European Conf. on Design Automation, 1992.

[22] J.-M. Chang and M. Pedram. Register allocation and binding
low power. In Design Automation Conf., 1995.

[7]

(8]

9]

