
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 2, FEBRUARY 2005 1

Energy Aware Wireless Systems with Adaptive
Power-Fidelity Tradeoffs

Vijay Raghunathan, Student Member, IEEE, Cristiano L. Pereira, Mani B. Srivastava, Senior Member, IEEE, and
Rajesh K. Gupta, Fellow, IEEE

Abstract— Wireless networked embedded systems, such as
multimedia terminals, sensor nodes, etc., present a rich domain
for making energy/performance/quality tradeoffs based on appli-
cation needs, network conditions, etc. Energy awareness in these
systems is the ability to perform tradeoffs between available
battery energy and application quality requirements. In this
paper, we show how operating system directed dynamic voltage
scaling and dynamic power management can provide for such
a capability. We propose a real-time scheduling algorithm that
uses runtime feedback about application behavior to provide
adaptive power-fidelity tradeoffs. We demonstrate our approach
in the context of a static priority based preemptive task scheduler.
Simulation results show that the proposed algorithm results in
significant energy savings compared to state-of-the-art dynamic
voltage scaling schemes with minimal loss in system fidelity.
We have implemented our scheduling algorithm into the eCos
real-time operating system running on an Intel XScale based
variable voltage platform. Experimental results obtained using
this platform confirm the effectiveness of our technique.

Index Terms— Wireless Embedded Systems, Real Time Sys-
tems, Dynamic Power Management, Dynamic Voltage Scaling

I. INTRODUCTION

W IRELESS embedded systems such as multimedia ter-
minals, 3G cell phones, ad-hoc networks of wireless

sensors, wireless toys and robots, etc., are increasingly com-
putationally capable and often sport high bandwidth network
connections. As a result, they run sophisticated algorithms and
execute multiple large multimedia/data intensive applications.
Since several of these applications have real-time constraints,
a real-time operating system (RTOS) is often used in the
implementation of these systems.

The battery operated nature of these systems requires them
to be highly energy efficient to maximize device lifetimes. The
drive to prolong system lifetime has resulted in several low
power hardware design techniques (see [1], [2] for an overview
of these techniques). In addition to using low power design
techniques, a commonly used approach for energy aware
system operation is Dynamic Power Management (DPM), in
which unused system components are shutdown or sent into
low power states [3]. An alternative, and more effective when
applicable, technique used to increase energy efficiency is Dy-
namic Voltage Scaling (DVS) in which the supply voltage and

Manuscript received October 29, 2002; revised June 7, 2003. This paper is
based in part on research funded through the DARPA PAC/C Program under
AFRL Contract #F30602-00- C-0154, and through Semiconductor Research
Corporation System Task Thrust ID 899.001.

V. Raghunathan and M. B. Srivastava are with the Department of Electrical
Engineering, University of California, Los Angeles, CA 90095 USA (e-mail:
vijay@ee.ucla.edu).

C. L. Pereira and R. K. Gupta are with the Department of Computer Science
and Engineering, University of California, San Diego, CA 92093 USA.

clock frequency of the processor are changed dynamically to
just meet the instantaneous performance requirement [4]. The
RTOS is uniquely poised to efficiently implement DPM and
DVS policies due to the following reasons: (i) since the RTOS
coordinates the execution of the various application tasks, it
has global information about the performance requirements
and timing constraints of all the applications, and (ii) the RTOS
can directly control the underlying hardware platform, fine-
tuning it to meet specific system requirements.

In this paper, we use an RTOS directed approach to enable
energy aware system operation by exploiting the following
characteristics of wireless embedded systems:

� Most wireless systems are resilient to packet losses
and errors. The operating scenarios of these systems
invariably involve data losses and errors (e.g., due to
noisy wireless channel conditions), and the application
layer is designed to be tolerant to these impairments.
Most wireless systems, therefore, are “soft” real-time
systems where a few deadline misses only lead to a small
degradation in the user-perceived application quality.

� Wireless embedded systems offer a power-fidelity trade-
off that can be tuned to suit application needs. For
example, the precision of the computation (e.g., quality
of the audio or video) can be traded off against the power
consumed for the computation. As another example, wire-
less channel induced errors can be reduced by increasing
the transmission power of the radio.

� Wireless embedded systems have time varying compu-
tational loads. Performance analysis studies have shown
that for typical wireless applications, the instance to
instance task execution time varies significantly, and
is often far lower than the worst case execution time
(WCET). Table I gives the WCET and best case execution
time (BCET) for a few benchmarks and clearly illustrates
the large workload variability [5]. Although the execution
times vary significantly, they depend on data values that
are obtained from physical real-world signals (e.g., audio
or video streams), and are likely to have some temporal
correlation between them. This enables us to predict task
instance execution times with reasonable accuracy.

A. Paper contributions

The contributions of this paper are threefold:

1) We present an enhanced fixed priority schedulability
analysis for variable voltage systems that incorporates
the timing overheads incurred due to voltage/frequency
changes and processor shutdown/wakeup. This analysis

0000–0000/00$00.00 c
�

2005 IEEE

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 2, FEBRUARY 2005 2

TABLE I

VARIATION IN EXECUTION TIMES (IN CLOCK CYCLES) FOR A FEW MULTIMEDIA BENCHMARKS [5]

Program Description BCET WCET
DES Data encryption 73,912 672,298

DJPEG JPEG decompression (128x96, color) 12,703,432 122,838,368
FDCT JPEG forward DCT 5,587 16,693

can be used to accurately analyze the schedulability
of non-concrete periodic task sets, scheduled using the
Rate Monotonic (RM) or the Deadline Monotonic (DM)
priority assignment schemes.

2) We present a proactive DVS technique that exploits the
above described characteristics of wireless embedded
systems to achieve significant energy savings. A key
feature of our technique, not addressed in prior work,
is that it yields an adaptive tradeoff between energy
consumption and system fidelity/quality.

3) Our DVS technique has been implemented into the ker-
nel of the eCos [6] real-time operating system running
on an Intel XScale [7] processor. We present measured
results to demonstrate the effectiveness of our technique.
As part of our implementation, we have also devel-
oped a complete software architecture that facilitates
application-RTOS interaction for efficient DPM/DVS.

The proposed DVS technique exploits task runtime variation
by predicting task instance execution times and performing
DVS accordingly. Most previously proposed predictive DVS
algorithms [4], [8] are processor utilization based, and hence
perform poorly in the presence of latency constraints. In
contrast, our technique is tightly coupled to the schedulabil-
ity analysis of the underlying real-time scheduling scheme,
thereby yielding better results than utilization based ap-
proaches. The few deadline misses that result from occasional
mis-prediction are not catastrophic to performance due to the
inherent error-tolerant nature of wireless systems. In addition,
our algorithm uses an adaptive feedback mechanism to control
the number of task deadline misses. This is done by monitoring
recent deadline miss history, and accordingly adapting the
prediction to be more aggressive/conservative. Finally, since
our technique is based on the enhanced schedulability analysis
mentioned above, it can be used to schedule non-concrete task
sets, where the initial phase offsets of tasks are unknown. This
is unlike several existing variable voltage real-time scheduling
schemes, which require the initial phase offsets of the tasks to
be known in order to perform hyper-period scheduling.

B. Related work

Energy awareness in wireless embedded systems builds
upon advances in DPM, DVS, and real-time scheduling tech-
niques. We briefly discuss related work in these areas.

Shutdown based DPM techniques have been proposed for
several system components including processors, hard disks,
and wireless network interfaces. The goal of system-level
DPM techniques is to obtain an optimized power-state transi-
tion policy [9]–[12].

Early work on DVS was in the context of a workstation-like
environment [13], [14] where average throughput is the metric

of performance, and latency is not an issue since there are no
real-time constraints. In these techniques, the task scheduler
adjusts clock frequency and supply voltage in each discrete
time interval based on the processor utilization in the pre-
ceding interval. Similar utilization based predictive techniques
were studied in [4], [8]. Numerous other DVS techniques have
been proposed for low power real-time task scheduling, both
for uniprocessor [15]–[25] as well as multiprocessor [26]–[28]
systems. A detailed survey of these techniques is presented
in [29]. Most uniprocessor DVS techniques target systems
with hard deadline constraints, and several of them assume
that each task instance executes for its WCET. Even the few
schemes that allow deadline misses [4], [8] involve utilization
based speed setting decisions, and hence exhibit poor real-
time behavior. Moreover, they only consider systems with a
single application executing (i.e., a unitasking environment).
Pering et al. [20] propose a thread based DVS technique for
uniprocessor multitasking systems, based on execution time
prediction. Similar to Pering’s work, our work considers a
uniprocessor, multitasking, real-time environment, and shows
that permitting a few deadline misses leads to a significant
increase in energy savings and improves the energy scalability
of the system. Our work differs from the Pering’s work in two
ways, (i) while Pering’s algorithm permits missed deadlines,
it does not provide any control on the number of deadline
misses. Through appropriate parameter selection, the proposed
algorithm permits the user to control the number of deadline
misses, and trade them off for increased energy savings,
and (ii) Pering’s algorithm is a purely online one, whose
complexity scales linearly with the number of tasks present in
the system. In contrast, since the proposed algorithm is based
on an offline schedulability analysis, the scheduler overhead
is independent of the number of tasks in the system, resulting
in better scalability. This can be significant for systems with a
large number of tasks since online DVS algorithms are invoked
during every context switch.

The rest of this paper is organized as follows. Section II
presents examples to illustrate the power management oppor-
tunities that exist during real-time task scheduling. Section III
describes our system model. Section IV presents the enhanced
RM schedulability analysis for variable voltage systems. Sec-
tion V discusses our adaptive power-fidelity tradeoff technique.
Section VI details our simulation based performance analysis.
Section VII describes the implementation of our technique into
eCos. Section VIII presents the conclusions.

II. BACKGROUND AND EXAMPLES

Next, we describe the basic scheduling approach adopted
in our work, and present examples to illustrate the DPM/DVS
opportunities that arise during real-time task scheduling.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 2, FEBRUARY 2005 3

TABLE II

TASK TIMING PARAMETERS FOR EXAMPLES 1 AND 2

Task Time Period WCET Deadline
Audio decoding 60 10 60

Protocol processing 70 15 70
Video decoding 120 40 120

A. Task scheduling in RTOS

The task scheduler of an RTOS is responsible for schedul-
ing a given set of tasks such that real-time constraints are
satisfied. Schedulers differ in the type of scheduling policy
they implement. A commonly used scheduling policy is Rate
Monotonic (RM) scheduling [30]. This is a fixed-priority
based preemptive scheduling scheme where tasks are assigned
priorities in the inverse ratio of their time periods. Fixed
priority based preemptive scheduling is commonly used in
operating systems such as eCos, WinCE, VxWorks, QNX,
uC/OS, etc., that run on wireless embedded devices such as
handheld multimedia nodes. An alternative scheduling scheme
is Earliest Deadline First (EDF) scheduling [30], where task
priorities are assigned dynamically such that task instances
with closer deadlines are given higher priorities. EDF can
schedule task sets with a higher processor utilization than
can be scheduled by a static priority based scheduling scheme
such as RM. However, dynamic priority based scheduling is
also more complex to implement since task priorities keep
changing during runtime. No matter which scheduling policy is
used, the RTOS ensures that at any point of time, the currently
active task is the one with the highest priority among the ready
to run tasks. The problem of task scheduling on a uniprocessor
system in the presence of deadlines is known to be solvable
in polynomial time if the system is preemptive in nature [31].
However, the low energy scheduling problem was shown to
be NP-Complete in [32], by a reduction from the “Sequencing
with deadlines and set-up times” problem, described in [31].

B. Power management opportunities during task scheduling

1) Static slack: It has been observed in many systems that,
during runtime, even if all task instances run for their WCET,
the processor utilization is often far lower than 100%, resulting
in idle intervals. This slack that inherently exists in the system
due to low processor utilization is henceforth referred to as
static slack. It can be exploited to reduce energy consumption
by statically slowing down the processor and operating at a
lower voltage. While processor slowdown improves utilization,
excessive slowdown may lead to deadline violations. Hence,
the extent of slowdown is limited by the schedulability of the
task set at the reduced speed, under the scheduling policy used.
The following example illustrates the use of static slowdown
to reduce energy consumption.

Example 1: Consider a simple mobile multimedia terminal
shown in Fig. 11. The system receives real-time audio and
video streams over a wireless link, and plays them out. Thus,
the three main tasks that run on a processor embedded in

1The system shown in Fig. 1 could, in general, be any multitasking,
uniprocessor, battery powered system, such as a 3G cell phone or a PDA.

Fig. 1. Mobile multimedia terminal used in Examples 1 and 2.

S=1

S=0.75

���������������
���������������

���������������������
���������������������

���������������������
���������������������

���������������������������
���������������������������

	�		�	
�

�

0 10 20 40 60 80 110

of video decoding task

Audio decoding Protocol processing Video decoding

Deadline of first instance

30 50 70 90 100 120

110 1201009080706050403020100

(b)

(a)

Fig. 2. Task execution schedule for Example 1: (a) Original (b) Statically
optimized.

this system are protocol processing, audio decoding, and video
decoding. The timing parameters for these tasks are listed in
Table II. For simplicity, the initial phase offsets for the tasks
are set to zero (however, our algorithm, presented in Section
V, makes no such assumptions). The resulting schedule for
the time interval [0, 120] when this task set is scheduled on a
single processor using the RM priority assignment scheme,
is shown in Fig. 2(a). It can be seen from the figure that
the system is idle during time interval [90, 120]. This slack
can be utilized to lower the operating frequency and supply
voltage, thereby reducing the energy consumption. Fig. 2(b)
shows the schedule for the same task set with the processor
slowed down2 by a factor of

� �
. As seen from the figure,

processor slowdown leads to a reduction in slack3. Note that
any further reduction in processor speed will result in the video
decoding task missing its deadline. When the supply voltage
is also scaled, this leads to a decrease in power consumption
from 420mW to 184mW, using the power vs. frequency curve
for the StrongARM processor, shown in Fig. 4. The energy
consumption over the interval [0, 120], therefore, decreases
by 41%, compared to a shutdown based policy.

2) Dynamic slack: Static slack is not the only kind of slack
present in the system. During runtime, due to the variation
in the task instance execution times, there is additional slack
created when a task instance finishes executing before its
WCET. This slack that arises due to execution time variation
is henceforth referred to as dynamic slack. Dynamic slack can
be exploited for DVS by dynamically varying the operating

2For simplicity, we assume that such an exact slowdown is possible. Our
algorithm handles the case only a finite set of frequencies are available.

3While in this example, uniform slowdown of all tasks resulted in a
complete elimination of static slack, in general different tasks might require
different slowdown factors. Our algorithm does this, if necessary.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 2, FEBRUARY 2005 4

S=0.375 S=0.375

S=0.75

S=0.75

������������������������������������ ����������������������������

������������������������������������ ����������������������������
	�	�		�	�	
�
�

�
�

0 10

of video decoding task

Audio Decoding Protocol processing Video decoding

Deadline of first instance

20 30 40 50 60 70 80 90 100 110 120

0 10 20 30 40 50 60 70 80 90 100 110 120

(b)

(a)

Fig. 3. Task execution schedule for Example 2: (a) Statically optimized (b)
After dynamic slowdown.

frequency and supply voltage of the processor to extend the
task instance’s execution time to its WCET. Thus, the lower
a task instance’s actual execution time, the more its energy
reduction potential. However, to realize this potential, we need
to know/estimate the execution time of each task instance.
The following example illustrates how dynamic slack can be
exploited for DVS.

Example 2: Consider the statically optimized schedule for
the task set of Example 1 shown in Fig. 2(b). Fig. 3(a) shows
the resulting schedule when the video decoding task instance
requires only 20 time units to complete execution at maximum
processor speed. As a result, the video decoding task now
completes execution at time ������ units, and does not
get preempted. As seen from the figure, this execution time
variation creates some dynamic slack. To utilize this slack,
the processor frequency and supply voltage are dynamically
reduced further during the execution of the video decoding
task. If the frequency were to be dropped by a factor of 2
over the already statically optimized value, the slack gets filled
up again as shown in Fig. 3(b)4. Accompanied by appropriate
voltage scaling, the energy consumption for the interval [0,
120] now reduces by a further 14% compared to the statically
optimized schedule of Fig. 3(a).

The above examples illustrated the energy reduction op-
portunities present during real-time task scheduling. We next
describe our system model, and present an enhanced RM
schedulability analysis for variable voltage systems. Using
this analysis, we then present our power aware scheduling
algorithm that exploits the above illustrated DVS/DPM op-
portunities to yield large energy savings.

III. SYSTEM MODEL

A. Task timing model

A set of N independent periodic tasks is to be scheduled
on a uniprocessor system. Associated with each task i are the
following parameters: (i) ��� is its time period, (ii) ��� is its
worst case execution time (WCET), (iii) ��� is the best case
execution time (BCET), and (iv) ��� is its deadline. The BCET
and WCET can be obtained through execution profiling or
other performance analysis techniques [5]. Our techniques are
applicable to the general case where � � and � � are unrelated.
We discuss this further in Section IV.

4Note that in Fig. 3(b), the video decoding task is preempted at time �����!
units, and resumes execution later to complete at time ���#"%$! units.

0

50

100

150

200

250

300

350

400

60 80 100 120 140 160 180 200 220 240

P
ow

er
 c

on
su

m
ed

 (
m

W
)

Frequency (MHz)

Fig. 4. Power consumption as a function of clock frequency for the
StrongARM processor.

B. Power model

We use a power model of the StrongARM processor, which
is based on actual measurements, for computing the power
consumption. Fig. 4 shows the power consumption of the
StrongARM, plotted as a function of the operating frequency.
This plot is obtained from actual current and voltage measure-
ments reported in [33] for the StrongARM SA-1100 processor.
Using this curve, the power consumption of the processor
for a given clock frequency can be calculated. By varying
the supply voltage and clock frequency, the variable voltage
system can be made to operate at different points along this
curve. For a given clock frequency (i.e., speed setting), the
energy consumption of a task instance can be computed as the
product of the power consumption (obtained from the power-
frequency curve shown above) and the execution time of the
task instance. Further, the energy-speed curve is convex in
nature [17]. Thus, if two task instances have to be completed
by a deadline, due to Jensen’s inequality

& '�(*),+.-/'0()1+32
[34],

it is more energy efficient to run the two tasks at a constant
speed than to change the speed from one task to the other. As
will be seen in the next section, our algorithm utilizes this fact
by attempting to slow down tasks in a uniform manner, to the
extent possible.

C. Overheads due to DVS/DPM

The variable supply voltage is generated using a DC-DC
converter. During a voltage transition, it takes a finite amount
of time for the output voltage of the DC-DC converter to
transition from the present level to the desired level. Efficient
DC-DC regulators with fast transition times were reported
in [35], [36]. Complementary to the supply voltage variation
is the accompanying variation of the clock frequency. The
phase locked loop present in the clock generation circuitry
also takes a finite amount of time to settle at its steady state
value, after a frequency change. Further, shutting down and
waking up the processor involve a non-zero time and power
overhead. These overheads have to be explicitly accounted for
during task scheduling. For variable voltage real-time systems,
the timing overheads have to be incorporated into the task-set

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 2, FEBRUARY 2005 5

schedulability analysis to guarantee the schedulability of tasks.
The energy overheads have to be considered while computing
the energy savings obtained through the use of DVS and
DPM. Commercial processors till recently had large frequency
transition overheads (for example, the StrongARM [37] takes
150 � seconds to change its frequency). However, these tran-
sition times are considerably lower in more recent processors
as designers realize the effectiveness of DVS. The transition
overhead is around 30 � seconds in the XScale processor [7].
We use a stall duration of 150 � seconds in our simulations,
since the power model used is that of a StrongARM proces-
sor. However, in our implementation (Section VII), the stall
duration is only 30 � seconds, since our experimental testbed
is based on the XScale processor. Finally, although some
processors [20] developed at academic institutions allow the
computation to continue while the voltage and frequency are
being changed, commercially available processors such as the
XScale do not permit this. Therefore, in our simulations, the
processor is stalled for the duration of the frequency change,
resulting in some wasted energy (although this is insignificant
since the processor clock is frozen). We account for all the
above mentioned overheads in our energy calculations.

IV. RM SCHEDULABILITY ANALYSIS

Several schedulability analysis results exist for RM schedul-
ing [38]. However, none of them consider variable volt-
age/frequency processors. Since processor shutdown, proces-
sor wakeup, and voltage and frequency changes take a finite
amount of time, they affect the timing behavior of the system.
In this section, we present an enhanced schedulability analysis
for RM scheduling, which takes into account the overheads
introduced due to DPM/DVS. We denote the time taken to
shutdown/wakeup the processor by ��� , and the time taken for
a voltage/frequency change by ��� 5.

A. The � ��� ��� case

The schedulability analysis for RM scheduling for the case� � � ��� is presented in [38], in which necessary and
sufficient conditions are derived for the schedulability of
a non-concrete (i.e., unknown initial phases for the tasks)
periodic task set. The response time of a task instance is
defined as the amount of time needed for the task instance
to finish execution, from the instant at which it arrived in the
system. The worst case response time (WCRT), as the name
indicates, is the maximum possible response time that a task
instance can have. For a conventional fixed speed system, the
WCRT of a task under the RM scheduling scheme is given by
the smallest value of ��� that satisfies the equation [38]:� � � � �	�
�������� ��� � � �� �	��� � � (1)

where ��� (��3+ denotes the set of tasks with priority greater than
that of task

�
, �.� denotes the worst case execution time of

5The time taken for a voltage change could be different from the time
taken for a frequency change. In that case, �! is the maximum of the
two values. Further, the voltage/frequency change will be accompanied by
a context switch, whose overhead can also be added to � .

task
�
, "$# % denotes the ceiling operator, and � � is simply an

intermediate variable used in computing the WCRT. Equation
(1) can be solved using an iterative technique. The summation
term on the right-hand-side of the equation represents the
total interference that an instance of task

�
sees from higher

priority tasks during its execution. Task
�

is schedulable iff
the WCRT of the task is less than or equal to its deadline� � . Our enhanced schedulability analysis is based upon three
observations.

1) Slowing down a task by a factor & increases its compu-
tation time by the same factor. Therefore, given a set of
slowdown factors & �(' �*),+.- '0/1/0/�'3254 , the computation
time for task

�
now becomes

(& �6# ��� + .
2) Each higher priority task instance that arrives during

the lifetime of a lower priority task instance adds either� � or 78# � � to the response time of the lower-priority
task instance, where � � is the time taken to change
the processor frequency/voltage. This is the preemption
related overhead of DVS. It takes � � time units to
change the voltage to execute the higher priority task
instance, and another ��� units to change back to resume
execution of the preempted task instance, and the worst
case for a task instance occurs when this procedure
repeats for every higher priority task instance that arrives
during its lifetime. So, the worst case interference that
a higher priority task instance contributes is equal to79# �:� . However, when the higher priority task is being
executed, suppose a task with priority in between that
of the currently running task and the preempted task
arrives. It is easy to see that this task instance only
causes an interference of � � .

3) The maximum amount of blocking that can be faced by
a task instance, and which is not preemption related is;=<.> / + 7?#3�6@ �BABC � �:�?'37?#3�:�D4 , where �6@ �BABC is the time
taken to shutdown/wakeup the processor. Since the pro-
cesses of voltage/frequency change or shutdown cannot
be preempted, each task instance may be blocked for an
amount of time if it arrives just after a voltage/frequency
change or a shutdown has been initiated.

Based on the above observations, the following theorem can
be used as a sufficient condition for the schedulability of a task
set under RM scheduling on a DVS enabled system.

Theorem 1: A non-concrete periodic task set is guaranteed
to be schedulable on a variable voltage processor, under the
RM scheduling policy if, for every task

�
, E �8� � (F� + � ���

where E �8� � (F�3+ is the smallest value of � � that satisfies the
equation:� � �G& � # � �H� ;=<.> / + 79# �6� � � � 'I7J# � � 4�
������� ���*K � � �� �	��� (& � # � � � 7J# � � +$L (2)

where &�M is the slowdown factor for task N .

B. The � �PO ��� case

The schedulability analysis for the case when � � O � � is
more complex. For fixed speed systems, when � � and � � are

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 2, FEBRUARY 2005 6

unrelated, the WCRT of task
�

is given by [38]:E �8� � (��3+ � ;=<.> /���������� + E �
	 ����J# � � 4 (3)

where � is the smallest non-negative integer value that satis-
fies E#��	 � � (

� � - + #!��� , and E#��	 � is the smallest solution to
the equation:E �
	 � � (

 � - + # � �	�
������� ��� � E �
	 �� � �,� � � (4)

The task set is schedulable if, and only if, E �8� � (��3+ �� � '�� �) +.- '0/1/0/�'8N�4 . Intuitively, the above analysis implies
that the WCRT may not occur for the first instance of
the task, and we may need to check the schedulability for
multiple instances of the task. In the case of variable voltage
systems, using the three observations listed in Section IV.A.,
the schedulability test reduces to a sufficient condition, and
Equation (4) is changed to:E �
	 � � (

 � - + #0& � # ��� � ;=<.> / + 7J# � � � �6� ' 79# �6� 4�
������� � � K � E �
	 �� � � � (& � # � � � 7J# �6� + L (5)

where & � is the slowdown factor for task
�
. Note that

the � � � ��� case is just a special case of this enhanced
equation. When � �3���� , Equations (3) and (4) are satisfied
for � � � . The offline component of our algorithm uses
this enhanced sufficient schedulability test to compute static
slowdown factors for each task.

V. ALGORITHM

We consider a priority based, preemptive scheduling model
where the priority assignment is done statically, using the RM
priority assignment policy6. Task instances that do not finish
executing by their deadline are killed. Our algorithm adjusts
the processor’s supply voltage and clock frequency whenever
a new task instance first starts executing, as well as every time
it resumes execution after being preempted by a higher priority
task. Also, our algorithm uses a constant speed setting between
two points of preemption in order to maximally exploit the
convexity of the energy-speed curve. The pseudo-code of our
algorithm is shown in Fig. 5 and 6. The crucial steps of our
algorithm are described next.

A. Static slowdown factor computation

This component of our algorithm involves a schedulability
analysis of the task set. It is executed whenever a new task
(e.g., audio/video decoding) enters the system and registers
itself with the scheduler. Given the task set to be scheduled,
the procedure COMPUTE STATIC SLOWDOWN FACTORS per-
forms a schedulability analysis (as described in Section IV),
and computes the minimum operating frequency for each task,
at which the entire task set is still schedulable. Every task
is slowed down uniformly till one or more tasks reach their
critical point (i.e., they are “just” schedulable). This is done by

6Although not analyzed in this paper, our algorithm is also applicable to
dynamic priority scheduling, such as Earliest Deadline First scheduling, using
an appropriately modified schedulability analysis.

the function Scale WCET(). At this juncture, further slowdown
of any task with higher priority than any of the critical tasks
will render at least one critical task unschedulable. Therefore,
only the tasks, if any, with lower priority than any of the
critical tasks can be slowed down further without affecting
the schedulability of the task set. The procedure continues till
there is no further scaling possible while satisfying all task
deadlines. In summary, this iterative procedure gives us a new
reduced frequency for each task such that the entire task set
is just schedulable. The online component of our algorithm
augments this static slowdown with a dynamic slowdown
factor, computed at runtime, to increase energy savings.

B. Dynamic slowdown factor computation

The online component of our algorithm invokes the COM-
PUTE DYNAMIC SLOWDOWN FACTOR procedure, listed in
Fig. 6, to dynamically alter the supply voltage and oper-
ating frequency of the system in accordance with recent
task execution statistics. Thus, while the offline compo-
nent of our algorithm computes task specific static slow-
down factors, the online component augments this with
task instance specific dynamic slowdown factors. The COM-
PUTE DYNAMIC SLOWDOWN FACTOR procedure is called
each time a new task instance starts, or resumes execution
after being preempted by a high priority task. The algorithm
sets the processor speed and voltage based on an estimate of
the task instance execution time.

1) Runtime prediction strategy: A novel feature of our al-
gorithm is that it involves a proactive DVS scheme. In contrast,
a majority of existing DVS techniques are reactive in nature.
Therefore, in conventional schemes, any slack that arises due
to a task instance completing execution early is distributed to
task instances that follow, using (possibly complex) dynamic
slack reclamation algorithms. Our technique, on the other
hand, attempts to avoid the creation of slack altogether through
the use of a predictive technique, eliminating the need for
slack reclamation. In our scheme, the execution time of a task
instance is predicted as some function of the execution times
of a fixed number of previous task instances. An execution
history database is maintained for each task, that is updated
every time a task instance finishes executing or is killed due to
a deadline miss. The function used to compute the execution
time determines the type of predictor. We have evaluated our
techniques using a simple average predictor model, as well
as an exponentially weighted average one. Both these are
simple prediction schemes that place a light computational
load on the scheduler. Since the results were very similar in
the two cases, we only report the results obtained using the
weighted average model. The use of a more complex predictor
will improve prediction accuracy. However, this will increase
the computational burden on the scheduler since the predictor
is executed every time a task instance starts or restarts after
preemption.

2) Improving prediction accuracy: In order to improve
prediction accuracy while retaining simplicity, we extend the
prediction strategy to use conditional prediction as described
below. Every time a task instance is preempted, the predicted

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 2, FEBRUARY 2005 7

Procedure COMPUTE STATIC SLOWDOWN FACTORS

Inputs: � , Time Periods[], WCETs[], Deadlines[]
Outputs: Static Slowdown Factors[]+

SET S = � //Tasks that can be slowed down further

SET S1 =
�

//Tasks that will miss deadline upon further scaling

Current Scaling Factor = 1;
For each task i in S

Static Slowdown Factor[i] = 1;
While (S � � �

)
+

f = Scale WCET (Time Periods[], WCETs[], Deadlines[], S, Static Slowdown Factor[]);
S1 = Tasks that will miss deadlines with further scaling;
Current Scaling Factor *= f;
For each task i in S

Static Slowdown Factor[i] = Current Scaling Factor;
S = All tasks with priority less than the lowest priority task in S1;44

Fig. 5. Pseudo-code for the offline component of the proposed algorithm.

remaining time for that task instance is recalculated as the
expected value of the execution history distribution from the
already elapsed time to the WCET of the task. This gives
the predicted remaining time of the task, given that it has
already run for the elapsed time. This improves the prediction
accuracy, and reduces the probability of under-prediction, in
turn reducing the probability of missed deadlines. As a side
effect, it also reduces the impact of the original prediction
model. This explains why we obtained similar results using
the simple average and weighted average predictors.

3) Adaptive power-fidelity tradeoff: Some applications may
not be able to tolerate the number of deadlines that are missed
using the above described predictive scheme. Therefore, we
introduce an adaptive feedback mechanism into the prediction
process. The predicted execution time of a task instance is
altered using an adaptive multiplicative factor, as shown in
the pseudo-code of Fig. 6. Deadline miss history is monitored
using a moving window mechanism, and if the number of
deadline misses is found to be increasing, the prediction is
made more conservative, reducing the probability of further
deadline misses. Similarly, a low/decreasing deadline miss
history results in more aggressive prediction in order to in-
crease energy savings. This is implemented as follows. If there
are more than � - deadline misses in the last E��.2 ��� E
task instances, the algorithm becomes more conservative and
increases the adaptive factor by � . Similarly, if the number
of deadline misses in the last E��.2 ��� E task instances is
less than �97 , then the algorithm becomes more aggressive
and decreases the adaptive factor by � . A lower bound,� � �	� �
��� ' � , dictates the maximum aggressiveness of
the algorithm. The prediction scheme is now adaptive to a
recent history of missed deadlines, becoming more conser-
vative in response to deadline misses and becoming more
aggressive if no deadline misses occur over the past few
instances. This adaptive control mechanism ensures that the

number of deadline misses (which is representative of system
fidelity) is kept under tight check at all times. The choice of the
various parameters depends on how aggressive/conservative
the user wants to be in the energy-fidelity tradeoff, a detailed
analysis of which is beyond the scope of this paper. Note that
in order to keep the algorithm and implementation simple, we
have made the deadline miss history and all the parameters
of the adaptive algorithm global parameters. An alternative,
although more complicated, approach would be to perform
the adaptation on a per-task basis. Such an approach would
permit better control on the fidelity of individual applications.
Finally, note that this adaptive scheme is also useful in the case
when applications can tolerate more deadlines than missed
through the use of the baseline predictive scheme. In such
a situation, the adaptive scheme can be used to obtain an
increase in energy savings at the cost of more deadline misses.
Thus, the application can adjust the operating point along an
energy-fidelity curve, which enhances its energy scalability.
For example, as the system runs out of energy, it can scale
down its fidelity gracefully. To the best of our knowledge,
existing DVS schemes do not provide this capability.

4) Voltage variation policy: Our algorithm recomputes the
voltage setting every time a task instance first starts executing,
or restarts after being preempted. The pre-computed static
slowdown factor for the task is augmented with a dynamic
slowdown factor for the specific task instance that is about to
start executing. The dynamic slowdown factor is computed by
stretching the task instance’s predicted execution time to reach
its WCET. The product of the static and dynamic factors is the
final slowdown factor. The processor’s operating frequency is
then decreased by this factor, the corresponding supply voltage
is set, and execution of the task instance begins. This dynamic
slowdown spreads the execution to fill otherwise idle time
intervals, enabling operation at a lower supply voltage and
clock frequency.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 2, FEBRUARY 2005 8

Procedure COMPUTE DYNAMIC SLOWDOWN FACTOR

Inputs: WCET, Deadline Miss History, Execution History
Output: Dynamic Slowdown Factor+

P = PREDICT TIME (Execution History);& = ADAPTIVE FACTOR (Deadline Miss History, &);
P = P * & ;
Dynamic Slowdown Factor = WCET / P;4

Procedure PREDICT TIME

Input: Execution History
Output: Predicted Time+

If (Elapsed Time == 0)

Predicted Time = �
������ ��� �
	������� ABC ��� M C ��� � �
� � CF� ��� ��� ��� A @ C�� @�� ��M @ C�� M ��� �

�
������ � � ;

//N is the number of past instances being monitored

//The coefficients ��� depend on the prediction scheme used

Else
Predicted Time = Expected value of execution time distribution

from Elapsed Time to WCET;4
Procedure ADAPTIVE FACTOR

Input: Deadline Miss History, Adaptive Factor
Output: Adaptive Factor+

x = Number of deadline misses in past WINDOW instances of the task;
If (x

-
T1) Adaptive Factor += I;

If (x � T2) Adaptive Factor -= D;
If (Adaptive Factor � ADAPTIVE LB) Adaptive Factor = ADAPTIVE LB;4

Fig. 6. Pseudo-code for the online component of the proposed algorithm.

VI. SIMULATION BASED PERFORMANCE
ANALYSIS

We next describe our simulation framework, and present
simulation results comparing the proposed adaptive power-
fidelity DVS algorithm to several existing DVS/DPM schemes
to demonstrate its effectiveness.

A. Simulation model

To analyze the performance of the proposed adaptive power-
fidelity DVS scheme, a discrete event simulator was built using
PARSEC [39], a C based parallel simulation language. The
simulation structure, shown in Fig. 7, consisted of two parallel
communicating entities. The first one represented the RTOS,
and implemented the task scheduler (enhanced with the DVS
scheme). In addition to performing task scheduling, the RTOS
entity also maintained the statistics of task instance execution
times and deadline misses. The second entity, i.e., the task
generator, periodically generated task instances with run times
according to a trace or a distribution, and passed them to the
RTOS entity.

2 13

TASK INSTANCESTASK

ENTITY

RTOS

ENTITY
GENERATOR

PARSEC SIMULATION PLATFORM

Fig. 7. System simulation model in PARSEC.

B. Simulation results

We performed simulations on two task sets (henceforth
called Task Set 1 and Task Set 2) that are based on standard
task sets used in embedded real-time applications [40], [41].
The task instance execution times were generated using a
Gaussian distribution7 with

;! < N � " # �%$'&%(# ��$) , and

7We obtained similar results using a uniform distribution. Therefore, only
the results for the Gaussian distribution case are presented.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 2, FEBRUARY 2005 9

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ne

rg
y

sa
vi

ng
s

(%
)

BCET / WCET

Shutdown

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ne

rg
y

sa
vi

ng
s

(%
)

BCET / WCET

WCET

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ne

rg
y

sa
vi

ng
s

(%
)

BCET / WCET

PAST/PEG

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ne

rg
y

sa
vi

ng
s

(%
)

BCET / WCET

Proposed

(a)

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ne

rg
y

sa
vi

ng
s

(%
)

BCET / WCET

Shutdown

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ne

rg
y

sa
vi

ng
s

(%
)

BCET / WCET

WCET

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ne

rg
y

sa
vi

ng
s

(%
)

BCET / WCET

PAST/PEG

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ne

rg
y

sa
vi

ng
s

(%
)

BCET / WCET

Proposed

(b)

Fig. 8. Energy savings of various DVS/DPM schemes using RM scheduling for (a) Task Set 1 and (b) Task Set 2.

0

5

10

15

20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
ea

dl
in

es
 m

is
se

d
(%

)

BCET / WCET

PAST/PEG

0

5

10

15

20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
ea

dl
in

es
 m

is
se

d
(%

)

BCET / WCET

Proposed

(a)

0

1

2

3

4

5

6

7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
ea

dl
in

es
 m

is
se

d
(%

)

BCET / WCET

PAST/PEG

0

1

2

3

4

5

6

7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
ea

dl
in

es
 m

is
se

d
(%

)

BCET / WCET

Proposed

(b)

Fig. 9. Deadline miss percentage for the proposed scheme and the PAST/PEG scheme using RM scheduling for (a) Task Set 1, and (b) Task Set 2.

� � < N�� <) � � �� � < � ��� N � (# �%$�� " # ��$� . To demonstrate that
our technique works even for non-concrete task sets, every
task

�
was given a random initial phase offset in the interval	 � '%��� + . We performed four experiments on each task set. In

the first experiment, only shutdown based DPM was employed,
and the supply voltage and frequency were fixed at their maxi-
mum values. Next, we implemented the low-power scheduling
technique of [18]. This is a WCET based scheme, where DVS
is done only when there is a single task remaining to execute.
In the third experiment, we implemented the PAST/PEG DVS
scheme [4], [8]. Similar to our algorithm, this is a predictive
DVS scheme. However, all DVS decisions in the PAST/PEG
scheme are purely utilization based. Finally, the proposed
adaptive power-fidelity DVS scheme was implemented. The
experiments were repeated while varying the BCET from 10%
to 100% of the WCET in steps of 10%. For the adaptive
scheme, the following parameter values were used: 2 � - � ,E���2 � � E � - � , � � � / ��
 , � � � / � - , � - � -

, and �97 � � .

The various parameters are described in Section V.B.3.

Fig. 8 shows the energy savings obtained for the two task
sets for each of the above mentioned DVS/DPM schemes.
The results are normalized to the case when no DVS/DPM
is used. As can be seen in the figure, the proposed adaptive
power-fidelity DVS algorithm results in significantly higher
energy savings compared to the shutdown, WCET based, and
PAST/PEG algorithms. Fig. 9 shows the percentage of dead-
lines missed by the proposed algorithm, and the PAST/PEG
algorithm. The PAST/PEG scheme results in a large number of
deadline misses because it takes DVS decisions purely based
on processor utilization. As mentioned before, in real-time
multi-tasking systems, the schedulability of the task set is
only weakly related to the processor utilization. Therefore,
the PAST/PEG algorithm results in a significant loss in real-
time behavior. The algorithm proposed in this work is tightly
coupled to the schedulability analysis of the underlying real-
time scheduling scheme used, resulting in far fewer deadline

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 2, FEBRUARY 2005 10

0

0.5

1

1.5

2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
ea

dl
in

e
m

is
se

s
(%

)

BCET / WCET

Non-Adaptive

0

0.5

1

1.5

2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
ea

dl
in

e
m

is
se

s
(%

)

BCET / WCET

Adaptive (0.8)

0

0.5

1

1.5

2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
ea

dl
in

e
m

is
se

s
(%

)

BCET / WCET

Adaptive (1.0)

0

0.5

1

1.5

2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
ea

dl
in

e
m

is
se

s
(%

)

BCET / WCET

Adaptive (1.2)

(a)

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ne

rg
y

sa
vi

ng
s

(%
)

BCET / WCET

Non-Adaptive

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ne

rg
y

sa
vi

ng
s

(%
)

BCET / WCET

Adaptive (0.8)

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ne

rg
y

sa
vi

ng
s

(%
)

BCET / WCET

Adaptive (1.0)

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ne

rg
y

sa
vi

ng
s

(%
)

BCET / WCET

Adaptive (1.2)

(b)

Fig. 10. Impact of the parameter �������������
	 �� on (a) Percentage of deadline misses and (b) Energy savings, for Task Set 1.

(a) (b)

Fig. 11. Variation of (a) Energy savings and (b) Deadline miss percentage with parameters ����������� and �������������
	 �� for Task Set 1.

misses, as is evident from Fig. 9.
We performed additional experiments with Task Set 1 to

illustrate the adaptive power-fidelity tradeoff that our scheme
provides. We ran our algorithm for three different values of the
parameter

� � �
� �	��� ' � . Fig. 10(a) and 10(b) show the
energy savings and deadline miss percentages, respectively, for� � �	� �
��� ' �) + � / � ' - / � ' - / 7 4 , and for a non-adaptive
version of our algorithm. From the figures, it is clear that by in-
creasing

� � �	� �
��� ' � , one can trade-off energy savings
for fewer deadline misses. Such an adaptive scheme enhances
the system’s energy-scalability. For example, as the battery
drains out,

� � �
� �	��� ' � can be decreased, thereby grad-
ually degrading the system’s fidelity. Fig. 11(a) and 11(b)
plot the energy savings and deadline misses as a function
of the parameters

� � �
� �
� � ' � and E���2 � � E , for
a " # ��$(# ��$ � � /
 . It is evident that as

� � �
� �
� � ' �
increases, the energy savings decrease, and the deadline misses
increase. As the window size increases, the energy savings

decrease and the deadline misses decrease. Also, note that
choosing a very low value for

� � �
� �	��� ' � is not
very energy efficient. This is because, the large number of
missed deadlines cause the voltage to be increased very
frequently in response, lowering the energy savings obtained.
In order to clearly show the energy-fidelity tradeoff, we have
plotted the energy savings vs. the deadline miss percentage
in Fig. 12 for E���2 � � E � - � and different values of� � �
� �
� � ' � . As can be seen in Fig. 12, a value of 0.8
for

� � �
� �
� � ' � seems to yield the maximum energy
savings, for this particular task set.

VII. IMPLEMENTATION

In addition to validating the proposed adaptive power-
fidelity technique through simulations, we also evaluated its
performance by implementing it in an RTOS running on a
variable voltage hardware platform. In this section, we first

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 2, FEBRUARY 2005 11

66

68

70

72

74

0 0.5 1 1.5 2

E
ne

rg
y

sa
vi

ng
s

(%
)

Deadline misses (%)

ADAPTIVE_LB=0.8

ADAPTIVE_LB=0.6

ADAPTIVE_LB=1.2

Fig. 12. Energy savings vs. Deadline misses for ����������� � "% and
various values of �
����������� 	 �� for Task Set 1.

give a brief overview of a structured software architecture that
we have developed to facilitate application-RTOS interaction
for effective energy management. Then, we describe our
implementation in detail, and present measured results that
demonstrate the effectiveness of our DVS algorithms.

A. Software architecture

We view the notion of power awareness in the application
and OS as a capability that enables a continuous dialog
between the application, the OS, and the underlying hardware.
This dialog establishes the functionality and performance
expectations (or even contracts, as in the real-time sense)
within the available energy constraints. A well structured
software architecture is necessary for realizing this notion
of power awareness. The power aware software architecture
(PASA) [42], [43] that we have developed is composed of
two software layers and the RTOS kernel. One layer is an API
that interfaces applications with the OS, and the second layer
makes power related hardware knobs available to the OS. Both
layers interface to various OS services as shown in Fig. 13(a).
The API layer is separated into two sub-layers. The Power
Aware Application Programmer Interface (PA-API) sub-layer
provides power management functions to the applications,
while the other sub-layer, the Power Aware Operating System
Layer (PA-OSL) provides access to existing and modified
OS services. Active entities that are not implemented within
the RTOS kernel should be implemented at this layer (e.g.,
threads created to assist the OS in DVS/DPM, such as a thread
responsible for killing other threads whose deadlines were
missed). The modified RTOS and the underlying hardware are
interfaced using a Power Aware Hardware Abstraction Layer
(PA-HAL). The PA-HAL gives the OS access to the power
related hardware knobs while abstracting out the details of
the underlying hardware platform.

B. Experimental setup

Using the PASA presented above, the proposed adaptive
power-fidelity DVS algorithm has been incorporated into the
eCos operating system, an open source RTOS from Red-Hat

TABLE III

FREQUENCY-VOLTAGE PAIRS FOR THE INTEL XSCALE PROCESSOR USED

IN OUR IMPLEMENTATION

Clock Frequency (MHz) Supply Voltage (V)
733 1.5
666 1.4
600 1.3
533 1.25
466 1.2
400 1.1
333 1.0

Inc. eCos was ported to an 80200 Intel Evaluation Board [44],
which is an evaluation platform based on the XScale processor.
The processor supports nine frequency levels ranging from
200MHz to 733MHz. However, two of them (200MHz and
266MHz) cannot be used in the 80200 board due to limitations
in the clock generation circuitry [7]. In addition, the processor
supports three different low power modes: IDLE, DROWSY,
and SLEEP. The SLEEP mode results in maximal power
savings, but requires a processor reset in order to return to the
ACTIVE mode. The IDLE mode, on the other hand, offers
the least power savings but only requires a simple external
interrupt to wake the processor up. We use the IDLE mode in
our experiments due to its simple implementation.

Like most RTOSs, eCos requires a periodic interrupt to
keep track of the internal OS tick, responsible for the notion
of timing within the system. In the 80200 board, the only
source of such an interrupt is the internal XScale performance
counter interrupt. However, the interrupt is internal to the
processor, and therefore cannot wake it up from the IDLE
mode. To overcome this problem, we used a source of external
interrupts to wake up the processor. The interrupt pin of
the processor is connected to an Altera FPGA board, which
generates periodic interrupts to wake up the processor. The
period of the external interrupt is made equal to that of the
smallest time period task to ensure that the processor is not
woken up unnecessarily. The experimental setup, consisting of
the XScale board, the MAXIM DC-DC converter board, the
FPGA, and some interface circuitry is shown in Fig. 13(b).

1) Variable voltage supply: The variable voltage supply
consists of a MAXIM 1855 DC-DC converter board, and some
interface circuitry implemented using a PLD. When a voltage
change is required, the processor sends a byte through the
peripheral bus of the 80200 board to the interface circuitry
which acts as an addressable latch. The outputs of this latch are
connected to the digital inputs of the Maxim variable supply
board. These inputs determine the output supply voltage of the
Maxim board, which is fed back to the processor core. For
the experiments, the system was configured to run at supply
voltages from 1.0V to 1.5V and corresponding frequencies
from 333 MHz to 733 MHz. The frequency-voltage pairs are
listed in Table III. The frequency is changed using the XScale’s
internal registers.

2) Power measurement setup: We used a National Instru-
ments Data Acquisition (DAQ) board to measure the power
consumption. We isolated the power supply to the processor
from the rest of the board, and measured the power consumed

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 2, FEBRUARY 2005 12

(a) (b)

Fig. 13. (a) Power aware software architecture, and (b) Our experimental setup. The XScale board is on the top left, the Maxim board on the top right, and
the FPGA board, which generates interrupts, is on the bottom right side. On the bottom left is a bread board with interconnections to trigger the DAQ board.

by the processor alone. For this purpose, we used a current-
sense resistor (0.02 ohm) and sampled the voltage drop across
it at a high sampling rate to obtain the instantaneous current
drawn by the processor. We computed the energy consumption
by integrating the product of the instantaneous supply voltage
and current consumption over the interval of interest. The DAQ
board was triggered by pulling signals out of the peripheral bus
of the 80200 board to synchronize the power measurements
with the task execution.

C. Experimental procedure and results

We implemented and compared three different DVS/DPM
schemes, (i) shutdown based DPM, (ii) a non-adaptive version
of the proposed algorithm, and (iii) the complete adaptive
power-fidelity tradeoff DVS algorithm. As a baseline for
comparison, we also conducted an experiment without any
DVS/DPM. The following parameter values were used for
the adaptive scheme, � � � 7 , �) � � , E��.2 ��� E � - � ,
� �� / - , and � �� / �
 . We used two values (0.95 and 0.85)
for

� � �
� �
� � ' � . We did not explore optimal choices
for these parameters. Rather, our goal was to demonstrate the
effectiveness of our algorithm by implementing it on a real
system.

We used three different applications in our experiments: (i)
an MPEG2 decoder, (ii) an ADPCM speech encoder, and (iii)
a floating point FFT algorithm. Note that these applications
run concurrently in the system. Each application executes
as an eCos thread, and is scheduled using the RM priority
assignment scheme. We profiled the execution time of each
application for different input data to collect WCET statistics.
For the MPEG2 decoder, different files were decompressed,

and the WCET was measured separately for each one of them.
The original FFT algorithm computes a fixed number (1024)
of FFTs in one execution. In order to increase the variability
in execution time, we also implemented a version of the FFT
algorithm that computes a random number (obtained using a
Gaussian distribution) of FFTs in each execution. Table IV
shows the characteristics of the applications used. The WCET
of each application instance was measured with the processor
running at maximum frequency. The standard deviation is also
given in Table IV to show the variability in the execution times
for each application. We built three different task sets using
these applications. The task sets, their component tasks, and
the individual task characteristics are listed in Table V. The
static slowdown factor is also listed for each task.

All the DVS/DPM algorithms shutdown the processor as
soon as it becomes idle. The processor is woken up when the
next external interrupt arrives. A limitation of the processor
wake up strategy for our current testbed requires us to make
all task periods a multiple of the highest-rate task. Thus,
whenever the processor is woken up there is useful work
to be done. This limitation could be eliminated through the
use of a programmable interrupt generator. Further, note that
this is not a limitation of the DVS algorithm or the software
architecture itself. The static slowdown factors used by the
proposed DVS algorithm are maintained in a table that is
internal to eCos. Each task type is associated with a static
factor, which is computed during system initialization. The
dynamic and adaptive factors are maintained in a table of task
instances. The task type table also contains a specified number
(10 in our case) of execution times of previous task instances.
The eCos kernel has full access to these tables. When a context

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 2, FEBRUARY 2005 13

TABLE IV

APPLICATIONS USED IN THE EXPERIMENTS. T1 AND T2 BOTH PERFORM MPEG DECODING, BUT ON DIFFERENT FILES.

Task Application WCET at max. frequency (� s) Std. Dev.
T1 MPEG2 (wg gdo 1.mpg) 30700 3100
T2 MPEG2 (wg cs 1.mpg) 26300 2100
T3 ADPCM 9300 3300
T4 FFT 15900 0
T5 FFT (Gaussian dist.) 13600 800

TABLE V

TASK SETS USED IN THE EXPERIMENTS. EACH TASK SET IS COMPRISED OF THREE TASKS.

Task Set Component Task WCET (� s) Time Period (� s) Deadline (� s) Static Slowdown Factor
T2 26300 40000 40000 0.9495

A T3 9300 80000 80000 0.9495
T4 15900 120000 120000 0.9495
T1 30700 47000 47000 0.8979

B T3 9300 94000 94000 0.8979
T4 15900 141000 141000 0.8979
T1 30700 45000 45000 0.9207

C T3 9300 90000 90000 0.9207
T5 13600 135000 135000 0.9207

TABLE VI

EXPERIMENTAL RESULTS FOR TASK SET A. THE TOTAL NUMBER OF TASK INSTANCES IS 415,207, AND 138 FOR TASKS T2, T3, AND T4 RESPECTIVELY.

DVS/DPM scheme used Energy (J) Power (W) Ratio No. of deadlines missed (T2/T3/T4)
No DVS/DPM 39.085 0.779 1 0/0/0

Shutdown 31.504 0.628 0.80 0/0/0
Non-adaptive 28.496 0.568 0.72 1/1/2

Adaptive (0.95) 26.581 0.527 0.68 3/2/1
Adaptive (0.85) 25.251 0.502 0.64 3/1/4

TABLE VII

EXPERIMENTAL RESULTS FOR TASK SET B. THE TOTAL NUMBER OF TASK INSTANCES IS 130,65, AND 43 FOR TASKS T1, T3, AND T4, RESPECTIVELY.

DVS/DPM scheme used Energy (J) Avg. Power (W) Ratio No. of deadlines missed (T1/T3/T4)
No DPM 12.546 0.798 1 0/0/0
Shutdown 11.265 0.716 0.89 0/0/0

Non-adaptive 9.811 0.624 0.78 1/0/1
Adaptive (0.95) 9.795 0.623 0.78 1/0/1
Adaptive (0.85) 8.828 0.562 0.70 1/1/31

switch occurs, the various tables are updated, and the voltage
and frequency of the processor are adjusted.

The energy consumption, average power consumption, and
number of deadline misses for the three task sets, under various
DPM/DVS schemes, are shown in Tables VI, VII, and VIII.
The column titled Ratio gives the energy consumption normal-
ized to the case when no DVS/DPM is used. For the adaptive
algorithm, the number in parentheses in the column DVS/DPM
scheme used represents the value of

� � �	� �
��� ' � . As
expected, the energy savings increase as this parameter de-
creases, at the cost of more deadline misses. These results
indicate that the proposed adaptive power-fidelity DVS algo-
rithm does indeed result in considerable energy savings at the
cost of a small number of missed deadlines.

VIII. SUMMARY AND FUTURE WORK

This paper presented an RTOS directed DVS scheme to
reduce energy consumption in wireless embedded systems.
A key feature of the proposed technique is that it yields
an adaptive tradeoff between energy consumption and sys-
tem fidelity. The proposed algorithm exploits low processor

utilization, instance to instance variation in task execution
times, and tolerance to missed deadlines of wireless systems to
achieve this tradeoff. The technique has been incorporated into
the eCos RTOS, and an energy efficient software architecture
has been developed that facilitates application aware power
management by enabling a dialog between the application and
the RTOS. Involving the application in DVS/DPM can yield
significant benefits. In many cases, the execution time is a
superposition of several distinct distributions corresponding
to different operating modes or distinct values of data. For
example, a multiplier takes lesser time to compute its output
if the operands are powers of two. Another example is an
MPEG decoder whose histogram of run times has three distinct
peaks corresponding to P, I and F frames. In such cases, an
intelligent task can provide feedback to the OS in the form
of a hint on the distribution of run times after the data values
are known. As part of future work, we plan to investigate the
energy reduction potential of such interactions in detail.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 2, FEBRUARY 2005 14

TABLE VIII

EXPERIMENTAL RESULTS FOR TASK SET C. THE TOTAL NUMBER OF TASK INSTANCES IS 130, 65, AND 43 FOR TASKS T1, T3, AND T5, RESPECTIVELY.

DPM Scheme Used Energy (J) Avg. Power (W) Ratio No. of deadlines missed (T1/T3/T5)
No DPM 13.080 0.838 1 0/0/0
Shutdown 12.342 0.772 0.94 0/0/0

Non-adaptive 10.892 0.693 0.83 0/1/18
Adaptive (0.95) 10.958 0.697 0.83 0/1/18
Adaptive (0.85) 9.990 0.637 0.76 11/16/32

REFERENCES

[1] A. P. Chandrakasan and R. W. Brodersen, Low Power CMOS Digital
Design. Kluwer Academic Publishers, Norwell, MA, 1996.

[2] A. Raghunathan, N. K. Jha, and S. Dey, High-level Power Analysis and
Optimization. Kluwer Academic Publishers, Norwell, MA, 1998.

[3] L. Benini and G. De Micheli, Dynamic Power Management: Design
Techniques and CAD Tools. Kluwer Academic Publishers, Norwell,
MA, 1997.

[4] T. A. Pering, T. D. Burd, and R. W. Brodersen, “The simulation
and evaluation of dynamic voltage scaling algorithms”, in Proc. ACM
ISLPED, pp. 76–81, 1998.

[5] Y. -T. S. Li and S. Malik, “Performance analysis of embedded software
using implicit path enumeration”, IEEE Trans. on CAD, vol. 16, iss. 12,
pp. 1477-1487, December, 1997.

[6] eCos real-time OS (http://www.redhat.com/embedded/
technologies/ecos).

[7] Intel XScale microarchitecture (http://developer.intel.com/
design/xscale/).

[8] D. Grunwald, et al., “Policies for dynamic clock scheduling”, in Proc.
ACM Symp. on OSDI, pp. 73–86, 2000.

[9] M. B. Srivastava, A. P. Chandrakasan, and R. W. Brodersen, “Predictive
system shutdown and other architectural techniques for energy efficient
programmable computation”, IEEE Transactions on VLSI Systems, vol.
4, no. 1, pp. 42–55, March 1996.

[10] C. Hwang and A. Hu, “A predictive system shutdown method for energy
saving of event driven computation”, in Proc. IEEE ICCAD, pp. 28–32,
1997.

[11] T. Simunic, L. Benini, P. Glynn, and G. De Micheli, “Dynamic power
management for portable systems”, in Proc. ACM MOBICOM, pp. 11–
19, 2000.

[12] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design
techniques for system-level dynamic power management”, IEEE Trans.
on VLSI Systems, vol. 8, iss. 3, pp. 299–316, June 2000.

[13] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for
reduced CPU energy”, in Proc. ACM Symp. on OSDI, pp.13–23, 1994.

[14] K. Govil, E. Chan, and H. Wasserman, “Comparing algorithms for
dynamic speed-setting of a low-power CPU”, in Proc. ACM MOBICOM,
pp. 13–25, 1995.

[15] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced
CPU energy”, in Proc. Annual Symp. on Foundations of Computer
Science, pp.374–382, 1995.

[16] I. Hong, M. Potkonjak, and M. B. Srivastava, “On-line scheduling of
hard real-time tasks on variable voltage processors”, in Proc. IEEE
ICCAD, pp.653–656, 1998.

[17] T. Ishihara and H. Yasuura, “Voltage scheduling problem for dynami-
cally variable voltage processors”, in Proc. ACM ISLPED, pp.197–202,
1998.

[18] Y. Shin and K. Choi, “Power conscious fixed priority scheduling for
hard real-time systems”, in Proc. IEEE/ACM DAC, pp. 134–139, 1999.

[19] T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen, “A
dynamic voltage scaled microprocessor system”, IEEE Journal of Solid-
State Circuits, vol. 35, iss. 11, pp. 1571–1580, November 2000.

[20] T. A. Pering, T. D. Burd, and R. W. Brodersen, “Voltage scheduling in
the lpARM microprocessor system”, in Proc. ACM ISLPED, pp. 96–101,
2000.

[21] A. Manzak and C. Chakrabarty, “Variable voltage task scheduling for
minimizing energy or minimizing power”, in Proc. IEEE ICASSP, pp.
3239–3242, 2000.

[22] C. M. Krishna and Y. H. Lee, “Voltage-clock-scaling adaptive scheduling
techniques for low power in hard real-time systems”, in Proc. IEEE
RTAS, pp. 156–165, 2000.

[23] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for low
power embedded operating systems”, in Proc. ACM Symposium on
Operating Systems Principles, pp. 89–102, 2001.

[24] F. Gruian,“Hard real-time scheduling for low energy using stochastic
data and DVS processor”, in Proc. ACM ISLPED, pp. 46–51, 2001.

[25] J. Pouwelse, K. Langendoen, and H. Sips, “Energy priority scheduling
for variable voltage processors”, in Proc. ACM ISLPED, pp. 28–33,
2001.

[26] J. Luo and N. K. Jha, “Power conscious joint scheduling of periodic task
graphs and aperiodic tasks in distributed real-time embedded systems”,
in Proc. IEEE ICCAD, pp. 357–364, 2000.

[27] J. Luo and N. K. Jha, “Battery aware static scheduling for distributed
real-time embedded systems”, in Proc. ACM/IEEE DAC, pp. 444–449,
2001.

[28] D. Zhu, R. Melhem, and B. Childers, “Scheduling with dynamic
voltage/speed adjustment using slack reclamation in multi-processor
real-time systems”, in Proc. IEEE RTSS, pp. 95–105, 2001.

[29] N. K. Jha, “Low power system scheduling and synthesis”, in Proc. IEEE
ICCAD, pp. 259–263, 2001.

[30] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard real time environment”, Journal of ACM, vol. 20, pp. 46-
61, January 1973.

[31] M. R. Garey and D. S. Johnson, Computers and Intractability: A guide
to the theory of NP-Completeness. W. H. Freeman and Company, San
Fransisco, CA, 1979.

[32] I. Hong, G. Qu, M. Potkonjak, and M. B.Srivastava, “Synthesis tech-
niques for low-power hard real-time systems on variable voltage pro-
cessors”, in Proc. IEEE RTSS, pp. 178–187, 1998.

[33] A. Sinha and A. P. Chandrakasan, “Jouletrack: A web based tool for
software energy profiling”, in Proc. IEEE/ACM DAC, pp. 220–225,
2001.

[34] J. L. W. V. Jensen, “Sur les fonctions convexes et les inegalites entre
les valeurs moyennes”, Acta Math., vol. 30, pp. 175–193, 1906.

[35] W. Namgoong and T. H. Meng, “A high-efficiency variable-
voltage CMOS dynamic dc-dc switching regulator”, in Proc. IEEE
ISSCC, pp.380-381, 1997.

[36] V. Gutnik and A. .P. Chandrakasan, “Embedded power supply for low-
power DSP”, IEEE Trans. on VLSI Systems, vol.5, no.4, pp.425–435,
December 1997.

[37] Intel StrongARM processors (http://developer.intel.com/
design/strong/).

[38] A. Burns and A. Welling, Real-Time Systems and their Programming
Languages. International Computer Science Series. Addison-Wesley,
1989.

[39] PARSEC parallel simulation language (http://pcl.cs.ucla.
edu/projects/parsec/).

[40] A. Burns, K. Tindell, and A. Wellings, “Effective analysis for engi-
neering real-time fixed priority schedulers”, IEEE Trans. on Software
Engineering, vol.21, pp.475-480, May 1995.

[41] N. Kim, M. Ryu, S. Hong, M. Saksena, C. Choi, and H. Shin, “Visual
assessment of a real time system design: a case study on a CNC
controller”, in Proc. IEEE RTSS, pp. 300–310, 1996.

[42] C. Pereira, V. Raghunathan, S. Gupta, R. Gupta, and M. Srivastava, “A
Software Architecture for Building Power Aware Real Time Operating
Systems”, Tech. Report #02-07, University of California, Irvine, March,
2002.

[43] Power Aware Distributed Systems project, UC Los Angeles and UC,
Irvine (http://www.ics.uci.edu/˜cpereira/pads).

[44] Intel 80200 Evaluation Board (http://developer.intel.com/
design/xscale/).

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 2, FEBRUARY 2005 15

Vijay Raghunathan received the B. Tech. degree in
Electrical Engineering from the Indian Institute of
Technology, Madras, in 2000, and the M.S. degree
in Electrical Engineering from UCLA, in 2002,
where he is currently pursuing a Ph.D. His research
interests include system architectures and design
methodologies for wireless embedded systems with
emphasis on low power design, and energy effi-
cient protocols for wireless communications. Vijay
received the UCLA EE Department’s Outstanding
Masters Student Award for the year 2001-02 and the

UC Regents graduate fellowship during the year 2000-01. He also received
the best student paper award at the IEEE International Conference on VLSI
Design in 2000. He is a student member of the IEEE.

Cristiano L. Pereira received the Bachelor degree
in Computer Science from the Catholic University
of Minas Gerais, Brazil, in 1997, and a MSc de-
gree, also in Computer Science, from the Federal
University of Minas Gerais, Brazil, in 2000. He is
currently a Ph.D. student at the Computer Science
and Engineering Department at the University of
California, San Diego. His research interests are
high level power management, operating systems
and embedded software.

Mani B. Srivastava received the B.Tech. degree
in Electrical Engineering from IIT Kanpur in 1985,
and the M.S. and Ph.D. degrees from the University
of California at Berkeley in 1987 and 1992 respec-
tively. He is currently a professor in the Electrical
Engineering Department at UCLA. Prior to joining
UCLA, he was in the Networked Computing Re-
search Department at Bell Laboratories from 1992
to 1996. His research interests at UCLA are in
mobile and wireless networked embedded systems,
focusing particularly on energy-aware computing

and communications, low-power design, pervasive computing systems, and
wireless sensor and actuator networks. He holds 5 US patents, and has
published over 100 papers in the areas of wireless systems, sensor networks,
and low-power embedded systems. He serves on the editorial board of IEEE
Transactions on Mobile Computing and Wiley’s Wireless Communications
and Mobile Computing. He received the NSF CAREER award in 1997, the
Okawa Foundation grant in 1997, and the President of India Gold Medal
in 1985. He also received the best paper award at the IEEE International
Conference on Distributed Computing Systems in 1997. He is a Senior
Member of the IEEE.

Rajesh K. Gupta is a professor and holder of
the Qualcomm endowed chair in embedded mi-
crosystems in the Department of Computer Science
and Engineering at UC San Diego, California. He
received his B.Tech. in Electrical Engineering from
IIT Kanpur, India, M.S. in EECS from UC Berkeley
and a Ph.D. in Electrical Engineering from Stan-
ford University. His current research interests are
in embedded systems, VLSI design and adaptive
system architectures. Earlier he was on the faculty
of Computer Science departments at UC Irvine and

University of Illinois, Urbana-Champaign. Prior to that he worked as a circuit
designer at Intel Corporation in Santa Clara, California on a number of
processor design teams. He is author/co-author of over 150 articles on various
aspects of embedded systems and design automation and three patents on
PLL design, data-path synthesis and system-on-chip modeling. Gupta is a
recipient of the Chancellor’s Fellow at UC Irvine, UCI Chancellor’s Award for
excellence in undergraduate research, National Science Foundation CAREER
Award, two Departmental Achievement Awards and a Components Research
Team Award at Intel. Gupta is editor-in-chief of IEEE Design and Test of
Computers and serves on the editorial boards of IEEE Transactions on CAD
and IEEE Transactions on Mobile Computing. Gupta is a Fellow of the IEEE
and a distinguished lecturer for the ACM/SIGDA and the IEEE CAS Society.

