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ABSTRACT
A SystemC simulation kernel consists of a deterministic im-
plementation of the scheduler, whose specification is non-
deterministic. To leverage testing of a SystemC TLM design,
we focus on automatically exploring all possible behaviors
of the design for a given data input. We combine static
and dynamic partial order reduction techniques with Sys-
temC semantics to intelligently explore a subset of the pos-
sible traces, while still being provably sufficient for detect-
ing deadlocks and safety property violations. We have im-
plemented our exploration algorithm in a framework called
Satya and have applied it to a variety of examples including
the TAC benchmark. Using Satya, we automatically found
an assertion violation in a benchmark distributed as a part
of the OSCI repository.

Categories and Subject Descriptors
I.6.4 [Computing Methodologies]: Simulation and Mod-
eling—Model Validation and Analysis

General Terms
Algorithms, Design and Verification

Keywords
Partial-Order Reduction, Verification, Simulation, Testing.

1. INTRODUCTION
The growing complexity of systems and their implemen-

tation into silicon encourages designers to look for ways to
model designs at higher levels of abstraction and then in-
crementally build portions of these designs – automatically
or manually – while ensuring system-level functional cor-
rectness. System description languages such as SystemC
and SystemVerilog enable designers to describe designs at
various levels of abstraction. These are particularly use-
ful in behavioral/algorithmic and transaction level modeling
(TLM) [21, 12, 5]. The idea of SystemC TLM is to provide
a golden reference of the system in an early phase of the
development process and allow fast simulation. This design
abstraction supports new synchronization procedures which
make current techniques for RTL validation inapplicable.
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SystemC is a set of library routines and macros implemented
in C++, which makes it possible to simulate concurrent pro-
cesses, each described by ordinary C++ syntax. SystemC is
both a description language and a simulation kernel.

Problem Statement: Dynamic validation has so far been
the “workhorse” for validating SystemC designs. As pointed
out in [22], adapting software formal verification techniques
to SystemC has been formidable task, mainly due to its
object-oriented nature and its support for both synchronous
and asynchronous semantics with a notion of time. In the
absence of accepted formal semantics, SystemC models and
methods attempt to speed up simulation. However, simula-
tion does not guarantee completeness in verification or val-
idation as it cannot expose all possible ordering of events.
The need is therefore to apply formal verification techniques
to improve system level simulation coverage.

Related Work: Prior work on SystemC focuses mainly on
improving simulation performance [17] and generating rep-
resentative inputs for the design [11] and formalizing the
semantics of SystemC [18, 16, 13, 20], while ignoring the
problem of generating all possible behaviors of the design.
However, recently researchers address the above problem
by automatically generating all valid scheduling of the de-
sign [14]. Their work used dynamic partial-order reduction
(POR) techniques [7] to avoid generation of two schedulings
that have the same effect on the system’s behavior. POR
techniques are extensively used by software model checkers
for reducing the size of the state space of concurrent system
at the implementation level [10, 15]. Other state space re-
duction techniques, such as slicing [6, 19] and abstraction [4],
are orthogonal and can be used in conjunction with POR.
The POR techniques can be divided in two main categories:
static [9] and dynamic [7].

The main static POR techniques are persistent/stubborn
sets and sleep sets [9]. Intuitively, the persistent/stubborn
set techniques compute a provably sufficient subset of the en-
abled transitions in each visited states such that if a selective
search is done using only the transitions from these subsets
the detection of all the deadlocks and safety property viola-
tions is guaranteed. All these algorithms infer the persistent
sets from the static structure (code) of the system being ver-
ified. On the other hand, the sleep set techniques exploits
independencies between the transitions in the persistent sets
to reduce interleavings. Both these techniques are orthogo-
nal and can be applied simultaneously [9]. In contrast, the
dynamic POR technique evaluates the dependency relation
dynamically between the enabled and executed transitions
for a given execution.

Overview: In this paper, we present a practical technique
for checking all possible execution traces of a SystemC de-
sign. We focus on using formal verification techniques devel-
oped for software to extend dynamic validation of SystemC



TLM designs. In what follows, we assume the representative
inputs are already provided, possibly using techniques pre-
sented in [11] and the execution terminates. Thus, we focus
our discussion mainly on detecting deadlocks, write-conflicts
and safety property violations such as assertion violations.
Note that termination can be guaranteed in SystemC by
bounding the execution length during simulation.

To cope with the state-space-explosion problem associated
with any concurrent system we use a combination of static
and dynamic POR techniques. In particular, we first use
static analysis techniques to compute if two atomic blocks
are independent, meaning that their execution does not in-
terfere with each other, and changing their order of execu-
tion will not alter their combined effect. Next, we start by
executing one random trace of the program until completion,
and then dynamically compute backtracking points along
the trace that identify alternative transitions that need to
be explored because they may lead to different final states.
However, unlike dynamic techniques [14, 7] we use the infor-
mation obtained by static analysis in a query-based frame-
work, rather than dynamically collecting the information
and analyzing it during runtime. Using static information
we tradeoff precision for performance. We chose perfor-
mance since for most SystemC designs we can find the de-
pendency relation quite precisely by using static analysis
only. Intuitively, our approach infers the persistent sets dy-
namically using information obtained by static analysis. To
further reduce the number of explored traces we use the sleep
sets in conjunction with the above technique. Our algorithm
is stateless [10], i.e., it stores no state representations in
memory but only information about which transitions and
traces have been executed so far.

Moreover, we adapt the POR techniques to further im-
prove the efficiency of the algorithms by using SystemC
specific semantics. Adaptations are needed because in Sys-
temC: processes are co-operatively multitasking; supports
the concept of δ-cycle, which reduces the analysis of back-
tracking points immensely; supports signal variables that do
not change values until an update phase; synchronization is
done using events instead of locks; and enabled processes
cannot be disabled by another one.

Contributions:

1. We propose a novel query-based framework that combines
static and dynamic POR techniques to cover all possible ex-
ecutions of a SystemC design. We reduce the runtime over-
head by computing the dependency information statically,
and use it during runtime, without much loss of precision.

2. We use SystemC specific semantics to further improve the
efficiency of the POR techniques. In SystemC, processes are
co-operatively multitasking and supports the concept of δ-
cycle. This synchronous semantics of SystemC reduces the
size of persistent set and consequently reduces the analysis
of backtracking points immensely.

3. We use the Open SystemC Initiative’s (OSCI) SystemC
simulator [2] to implement our algorithm of exploring all
possible behaviors of a SystemC design in a validating sys-
tem called Satya. We use Satya to check the correctness of
a variety of small examples and two benchmark designs. In
particular, we were able to automatically find an assertion
violation in the FIFO benchmark (distributed as a part of
OSCI repository), which may not have been found by simu-
lation. We also applied our tool on an industrial benchmark
namely the TAC platform [3].

2. EXAMPLE
Let us start by examining the salient features of SystemC

using a simple producer-consumer example shown in Fig-
ure 1. A SystemC program is a set of interconnected mod-
ules communicating through channels using transactions,
events and shared variables collectively called communica-
tion objects. A module comprises of a set of ports, vari-
ables, processes and methods. Processes are small pieces
of code that run concurrently with other processes and are
managed by a non-preemptive scheduler. The semantics of
concurrency is cooperatively multitasking : a type of multi-
tasking in which the process currently executing must offer
control to other processes. As such, a wait-to-wait block in
a process is atomic. The processes exchange data between
themselves using shared variables (signals and non-signals).
During the execution of a SystemC design, all signal values
are stable until all processes reach the waiting state. When
all processes are waiting, signals are updated with the new
values (see Update Phase in §3). In contrast, the non-signal
variables are standard C++ variables which are updated
immediately during execution.

For clarity the syntactic details of SystemC are not shown
in Figure 1. It has three processes namely P1 (lines 5-10), P2

(lines 11-19) and C1 (lines 20-31). The global variables of the
program are shown in lines 1-4. The program uses a shared
data array as a buffer, and an integer num, which indicates
the total number of elements in the buffer. The producer P1

in a loop writes to the buffer and then syncronizes by waiting
(or blocking) (line 9) on time for 4 nanoseconds (SC NS).
Similarly, producer P2 writes to the buffer and if timer is
set then notifies the event e and then synchronizes using
time. The consumer C1 on the other hand, waits (or blocks)
(line 25) on the event e when the buffer is empty, until the
notify (line 17) on e is invoked in the P2 process. If there are
elements in the buffer then C1 consumes it and synchronizes
on time like the other processes. For synchronization Sys-
temC uses wait-notify on events and time. In what follows,
we will use this example to guide our discussion.

3. SYSTEMC SIMULATION KERNEL
Simulation involves the execution of a discrete event sched-

uler, which in turn triggers or resumes the execution of pro-
cesses within the application. The functionality of the sched-
uler (as per IEEE std. [2]) can be summarized as follows:

1. Initialization Phase: Initialize every eligible method and
thread process instance in the object hierarchy to the set of
runnable processes.

2. Evaluation Phase: From the set of runnable processes,
select a process instance in an unspecified order and execute
it non-preemptively. This can, in turn, notify other events,
which can result in new processes being ready to run. Con-
tinue this step till there are processes to run.

3. Update Phase: Update signal values for all processes in
step 2, that requested for it.

4. δ-Notification Phase: Trigger all pending δ-delayed noti-
fications, which can wake up new processes. If, at the end
of this phase, the set of runnable processes is non-empty, go
back to the evaluation phase.

5. Timed-Notification Phase (τ): If there are pending timed
notification, advance simulation time to the earliest dead-
line. Determine the set of runnable processes that can run
at this time and go to step 2. Otherwise, end simulation.

To simulate synchronous concurrent reactions on a sequen-



1. int MAX, num = 0, i = 0
2. char data [2]
3. sc event e
4. bool timer = false

5. process P1()
6. while (i < MAX)

7. data[num] = ‘A’

8. + + num
9. wait (4, SC NS)
10. return

11. process P2()
12. while (i < MAX)

13. data[num] = ‘B’

14. + + num
15. if (timer)
16. timer = false
17. notify (e)
18. wait (4, SC NS)
19. return

20. process C1(int x)
21. while (i < MAX)
22. if (num == 0)
23. timer = true
24. i + +
25. wait (e)
26. num −−
27. assert (num ≥ 0)

28. c = data[num]

29. i + +
30. wait (x, SC NS)
31. return

Figure 1: (Left) Simple Producer-Consumer Example

Figure 2: (Right) A partial execution-tree showing only the first δ-cycle
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tial computer SystemC supports the concept of δ-cycle. A
δ-cycle is an event cycle (consisting of evaluate, update and
δ-notification phase) that occurs in 0 simulation time.

Nondeterminism: For a given input, a SystemC program
can produce different output behavior due to nondeterminis-
tic scheduling. To illustrate this let us consider the processes
P1 and C1 from the example in §2 with MAX = 2 and x = 4
(line 20). It has the following 4 possible executions, where
τ denotes a time elapse:

• P1C1τP1C1τP1C1 and P1C1τP1C1τC1P1 leads to a suc-
cessful termination of the program with 2 A’s being pro-
duced and consumed.

• P1C1τC1P1 leads to a deadlock situation. As C1 is waiting
for the event e (line 25) and P1 has terminated.

• C1(P1τ )
∗ leads to an array bound violation as C1 waits for

the event e and P1 goes on producing in the array data .

In general, a simulator will execute only one of the 4 possible
executions. For instance with the reference OSCI simulation
kernel [2], only the first execution will be scheduled and the
other buggy executions will be ignored. Thus, it is important
to test all possible execution of a SystemC design.

Now consider the same example with all 3 processes and
MAX = 8 and x = 2 (line 20). It has 3701 possible exe-
cutions. A naive algorithm will try to explore all possible
executions one by one and will face scalability issues. In
the following sections we discuss our approach of exploring
these executions and how we adapt POR techniques for Sys-
temC. For this example, our approach will explore only 767
executions and still remain provably sufficient for detecting
deadlocks and assertion violations.

4. FORMAL SETTING
In this section, we describe some standard definitions used

in the context of POR [14, 7, 9], which have been adapted
here for SystemC.

Definition 1. Transition: A transition moves the sys-
tem from one state to a subsequent state. In SystemC there
are three types of transitions:

1. Immediate-transition change the state by executing a fi-
nite sequence of operations of a chosen process followed
by a wait operation or termination of the same process.

2. δ-transition change the state by updating all the signals,
and by triggering all the δ-delayed notification that were
requested in the current δ-cycle.

3. A time-transition change the system state by updating
the simulation time.

Let T denote the set of all transitions of the system. An ith

transition of process P is denoted by P i. For t = P i ∈ T
we denote, Process(t) as the process P .

Definition 2. Runnable: A transition t ∈ T is runnable
in state s, written t ∈ runnable(s) if it can be executed in s.

If t ∈ runnable(s), then we say the execution of t from

s produces a successor state s′, written s
t−→ s′. We write

s
w

=⇒ s′ to mean that the execution of the finite sequence
w ∈ T ∗ leads from s to s′. A state s, where runnable(s) = ∅
is called a deadlock, or a terminating state.

The behavior of a SystemC program is represented using a
transition system M = (State, s0,∆), where State is a finite
non-empty set of states, s0 is the initial state of the system
and ∆ ⊆ State× State is the transition relation defined by

(s, s′) ∈ ∆ iff ∃ t ∈ T : s
t−→ s′.

A transition t1 ∈ T is called co-runnable with another
transition t2 ∈ T , written CoRunnable(t1, t2) if ∃ s ∈ State
such that both t1, t2 ∈ runnable(s). Note that 2 transitions
of the same process cannot be co-runnable in SystemC. An
execution of the program is defined by a trace of the system.

Definition 3. Trace: A trace φ ∈ T ∗ of M is a finite
(possibly empty) sequence of transitions t0, · · · , tn−1 where
there exists states s0, · · · sn such that s0 is the initial state

of M and s0
t0−→ s1 · · ·

tn−1−→ sn.

For a given trace φ = t0, · · · , tn; φi represents the transition
ti; φ0···i denotes the trace t0, · · · , ti; Pre(φ, i) denotes the
state si and Post(φ, i) denotes the state si+1.

The following definition states the condition when two
transitions are independent, meaning that they result in the
same state when executed in different orders.

Definition 4. Independence Relation: A relation I ⊆
T × T is an independence relation of M if I is symmetric
and irreflexive and the following conditions hold for each
s ∈ State and for each (t1, t2) ∈ I:

1. if t1, t2 ∈ runnable(s) and s
t1−→ s′ then t2 ∈ runnable(s′)

2. if t1, t2 ∈ runnable(s), then there is a unique state s′

such that s
t1t2=⇒ s′ and s

t2t1=⇒ s′

Transitions t1, t2 ∈ T are independent in M if (t1, t2) ∈ I.
Thus, a pair of independent transitions cannot make each
other runnable when executed and runnable independent
transition commute. The complementary dependence rela-
tion D is given by (T × T ) − I.

Two traces are said to be equivalent if they can be ob-
tained from each other by successively permuting adjacent
independent transitions. Thus, given a valid independence



relation, traces can be grouped together into equivalence
classes. For a given trace, we define a happens-before re-
lation between its transitions as follows:

Definition 5. Happens-before: Let φ = t0 · · · tn be a
trace in M . A happens-before relation ≺φ is the smallest
relation on {0 · · ·n} such that

1. if i ≤ j and (φi, φj) ∈ D then i ≺φ j.

2. ≺φ is transitively closed.

In our algorithm we use a variant of the above happens-
before relation which is defined as follows: for a given trace
φ = t0 · · · tn in M and i ∈ {0 · · ·n}, i happens-before process
P , written, i ≺φ P if either

1. Process(φi) = P or

2. ∃k ∈ {i+1, · · · , n} such that i ≺φ k and Process(φk) = P .

5. OUR APPROACH
We obtain partial-order of runnable processes statically by

identifying the dependent transitions. A transition in Sys-
temC is an atomic block, which in turn is a non-preemptive
sequence of operations between wait to wait. Note, due to
branching within an atomic block, such blocks may not be
derived statically. An atomic execution is dependent on an-
other atomic execution if it is enabled or disabled by the
other or there exists read-write conflicts on the shared vari-
able accesses in these blocks. In our approach, we first de-
rive wait-notify control skeleton of the SystemC design, and
then enumerate all possible atomic blocks. We then perform
dependency analysis on the set of atomic blocks, and repre-
sent the information symbolically. These static information
are used later, while exploring the different executions of
the design. In particular, we query to check if a given pair
of atomic blocks (corresponding to the runnable processes)
need to be interleaved. If not, we do not consider that inter-
leaving of runnable processes. In the following sections we
describe our algorithm in more details.

5.1 Static Analysis
Our goal is to execute only one trace from each equiva-

lence class for a given dependence relation. Thus, the first
step is to compute this dependence relation. We use static
analysis techniques to compute if two transitions are depen-
dent. Intuitively, two transitions are dependent if they op-
erate on some shared communication objects. In particular,
we use the following rules to compute the dependence rela-
tion D, i.e. ∀ t1, t2 ∈ T , (t1, t2) ∈ D if any of the following
holds:

1. a write on a shared non-signal variable v in t1 and a read
or a write on the same variable v in t2.

2. a write on a shared signal variable s in t1 and a write on
the same variable s in t2.

3. a wait on an event e in t1 and an immediate notification
on the same event e in t2.

Note here that the order in which the statements occur
within a transition does not matter. For each transition
t ∈ T , we maintain four sets - read and write sets for shared
non-signal variables and shared signal variables (written,
Rt,ns,Wt,ns, Rt,s,Wt,s respectively). Thus, rule 1 can be
re-written as, (Wt1,ns ∩Rt2,ns)∪(Wt1,ns∩Wt2,ns) = ∅. And
rule 2 can be re-written as, Wt1,s ∩Wt2,s = ∅.

In the rules mentioned above, we saw that, in general, two
transitions with write operations on a shared variable are
dependent. But to exercise more independency we consider

1. type Runnable := list of Transition
2. type TSet := set of Transition
3. type State := Runnable × TSet × TSet
4. type Schedule := sequence of State

5. function Explore() : void
6. let sched := Simulate(∅)
7. let depth := sched .Size − 1
8. while depth ≥ 0 do
9. let φ := sched .Trace
10. let s := sched .At(depth)
11. Analyze(φ, depth)
12. if ∃t ∈ s.Todo \ s.Sleep then
13. s.Runnable.Add(0, s.Runnable.Remove(t))
14. let newSched := sched .Copy(0, depth)
15. sched := Simulate(newSched )
16. depth := sched .Size − 1
17. else
18. depth := depth − 1

19. function Analyze(φ : Trace , depth : int) : void
20. let start := StartOfDeltaCycle(φdepth)
21. for each i | start ≤ i < depth do
22. if Query(φi , φdepth) = Dependent
23. and CoRunnable(φi , φdepth)) then
24. let s := Pre(φ, i)
25. let p := Process(φdepth)
26. if Runnable(s, p) then
27. s.Todo := s.Todo ∪ {Transition(s, p)}
28. elseif ∃ j > i | Runnable(s,Process(φj ))
29. and j ≺φ0···depth p then
30. s.Todo := s.Todo ∪
31. {Transition(s,Process(φj ))}
32. else
33. s.Todo := s.Runnable

Figure 3: The Explore Algorithm

special cases of write operations (called symmetric write)
that can be considered as being independent (applying Def-
inition 4). For instance, two constant addition or constant
multiplication with the same variable can be considered as
being independent. We also use static slicing techniques to
remove irrelevant operations to further extract more inde-
pendency between the transitions [6]. Intuitively, if a state-
ment does not influence the property that we are checking
than that statement can be removed in the sliced program.

To illustrate the above rules, consider the example from
Figure 1. Consider the wait to wait atomic transition con-
sisting of the lines (6-9) in process P1 and the transition con-
sisting of the lines (12-18) in process P2. In general, these
two transitions are dependent because they both write to the
variable data and num. However, if the property that we are
checking is the assertion in line 27 then we can get a sliced
program by removing the statements inside the boxes, while
still remaining correct for detecting the assertion violation.
Now, if we consider only the rules 1, 2 and 3 from above
then the two transitions are still dependent in the sliced
program because they both write to the variable num. But,
notice that both the writes to the variable num are symmet-
ric (increment). Thus, we have that the two transitions are
independent if the property that we are checking is only the
assertion (num ≥ 0) at line 27.

5.2 The Explore Algorithm
Our Explore algorithm shown in lines 5-18 of Figure 3,



explores a reduced set of possible executions of a SystemC
design. Our algorithm presented here is stateless [10], i.e., it
stores no state representations in memory but only informa-
tion about which transitions and traces have been executed
so far. Although, our approach will be slower than an al-
gorithm that maintains full state information, it requires
considerably less amount of memory, especially when the
design have large number of variables. It explores each non-
equivalent trace of the system by re-executing the design
from its initial state.

The algorithm maintains a sched of type Schedule . A
Schedule is a sequence of States. Each State s is a 3-tuple
(Runnable ,Todo,Sleep) where, Runnable is a sequence of
Transitions that are runnable in state s, Todo is a set of
Transitions that needs to be explored from s, and Sleep
is the set of Transitions that are no longer needed to be
explored from s. The algorithm also uses a function Simulate
(not shown here) that takes as input a prefix schedule and
then executes it according to the trace corresponding to the
schedule. Once the prefix trace ends, it randomly chooses a
runnable transition that is not in the Sleep Set of the current
state and executes it. The function continues the above step
till completion of the simulation and returns the Schedule
for the current execution. To further reduce the explored
transitions, the Simulate function maintains a sleep set for
each state in the same way as explained in VeriSoft [9, 10].

The Explore function starts by executing a random sched-
ule (as the prefix trace is ∅) and returns the schedule in
sched (line 6). Our algorithm traverses the execution-tree
bottom up and depth maintains the position in the tree
such that the sub-tree below depth has been fully explored.
Note that by traversing the execution-tree bottom-up we
need to maintain very little state information. While we
have not traversed the entire execution-tree, let sched =
s0, · · · sdepth , · · · sn then φ = t0, · · · ti, · · · tn−1 (line 9) is the
trace corresponding to sched such that φi = si.Runnable.At(0)
and s = sdepth (line 10). Using the computed trace φ, Explore
then finds out the transitions that can be dependent with
the transition φdepth using the function Analyze (line 11) and
adds those in the Todo set of the corresponding state. Next,
if there exists any transition t ∈ Todo\Sleep in the state s
(line 12), then the Explore function swap the transition t with
the first element of Runnable in state s (line 13), copies the
prefix schedule (line 14) and simulate it using the Simulate
function (line 15). Otherwise, we have explored all required
transitions in the sub tree below depth and now will explore
all the transitions in the sub tree below depth − 1 (line 18).

The Analyze function takes as argument a trace φ and
an integer depth . Next, it finds the start of the δ-cycle to
which φdepth belongs (line 20). Then, for each transition φi

such that i < depth and belongs to the same delta cycle
(line 21), we check if φi and φdepth are dependent using a
query function (line 22) and may be co-runnable (line 23).
If true, then it computes the state s = Pre(φ, i) and p as the
process to which the transition φdepth belongs. Next, if there
exists a transition of p that is runnable at s (line 26) then it
adds that transition to the Todo set of s (line 27). Else, if
there exists j > i such that j ≺φ0···depth p (see Definition 5)
and the runnable set of s contains a transition that belongs
to the process to which φj belongs (line 29) then it adds that
transition to the Todo set of s (line 30). Otherwise, it adds
all runnable transitions to the Todo set of s (line 33).

To review our approach, consider the example from Fig-
ure 1 with all 3 processes and MAX = 1 and x = 2 (line 20).
A partial execution-tree for this example consisting of only
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Figure 4: Our Prototype Framework - Satya

the first δ-cycle is shown in Figure 2. The jth transition
of the process Proc is given by Procj . In particular, Fig-
ure 2 shows the following wait to wait atomic transitions P 1

1

(lines 6-9), P 2
1 (lines 6, 10), P 1

2 (lines 12-18), P 2
2 (lines 12,

19), C1
1 (lines 21, 22, 26-30) and C2

1 (lines 21-25). Using
static analysis (as explained in §5.1), we obtain the indepen-
dence relation I = {(P 1

2 , P
1
1 ), (P 1

1 , P
1
2 ), (P 2

2 , P
2
1 ), (P 2

1 , P
2
2 )}.

We use slicing of data and symmetric writes on num to de-
termine the independency relation.

For a given data-input, let φ be a trace (P 1
1 , C

1
1 , P

1
2 , · · · )

and its corresponding state sequence be (s0, s1, s2, s3, · · · ).
Using the trace φ, we present an overview of our algorithm to
explore all possible behaviours of a design for a given data-
input. The state s0 is the initial state with three runnable
processes, i.e., P1, P2, C1. Our Explore algorithm examines
the current trace bottom up and restrict its analysis for
adding backtracking points within a δ-cycle. Intuitively, for
every state si, it checks if the transition φi, which is exe-
cuted from state si is dependent with any other transition
φj for j < i, i.e., in its prefix trace, that belongs to the same
δ-cycle. If true, then it finds the runnable transition tk in
the pre-state sj of φj (see Definition 3), which has a causal
order with φi and adds tk to the backtracking set of sj . For
example, when the algorithm examines the state s2, it adds
P 1

2 to the backtracking set of s1 (since, P 1
2 and C1

1 are de-
pendent). Next, when it analyzes the state s1 the algorithm
adds C2

1 to the backtracking set of s0 and then explores the
trace ψ = (P 1

1 , P
1
2 , C

1
1 , · · · ) (as P 1

2 was in s1’s backtracking
set). Next, it analyzes the new trace ψ in a similar fashion.
The algorithm continues in this way, till it reach state s7,
at this point P 1

2 is added to the backtracking set of s0. The
transition and state shown in dashed line is not explored.
The state s8 is a deadlock state. Note that the transition
P 1

1 is not explored in the state s10 because it is in the Sleep
set of s10 (as P 1

1 and P 1
2 are independent). Our algorithm

explores only 4 different traces out of the 8 possible traces
for this example.

6. OUR FRAMEWORK: SATYA
We implemented our algorithm to explore all possible valid

traces of a SystemC design in a prototype framework called
Satya. The implementation of Satya consists of 2 main mod-
ules - a static analyzer and a verification module. The Satya
software tool is over 18,000 lines of C++ code and uses the
EDG C++ front-end parser [1] and the OSCI SystemC sim-
ulator [2]. Of those, about 17,500 lines are the intermediate
representation (IR) and utility functions needed by the static
analyzer and the verification module (explore and query en-
gine) is only about 800 lines.

Figure 4 presents an overview of the Satya framework. It
takes a SystemC design as input - currently with the restric-
tion of no dynamic casting and no dynamic process creation.
After parsing the design description, we capture the EDG
intermediate language into our own IR that consists of basic
blocks encapsulated in Hierarchical Task Graphs (HTGs) [8].
The static analyzer work on the HTGs in a compositional



manner to generate the dependency relation, which is then
used by the query engine. The implementation of the ex-
plore engine follows closely the algorithm described in §5.2.

The SystemC design is compiled with the verification mod-
ule which contains a modified OSCI’s SystemC kernel. The
modified kernel implements the Simulate function of our
Explore algorithm (Figure 3). It takes as input a prefix
schedule and executes it till completion such that the pre-
fix of the executed trace is same as the trace corresponding
to the input prefix schedule. The modifications are still in
compliance with the SystemC specification [2].

7. EXPERIMENTS AND RESULTS
Using Satya, we experimented on several small examples

and two benchmark designs. In this section, we discuss the
results for the two benchmarks.

7.1 FIFO Benchmark
The first benchmark is a FIFO channel example obtained

from the OSCI’s example repository [2]. The example has
an hierarchical channel FIFO. To use the FIFO channel it
uses a producer-consumer scenario. The example works fine
when executed in one producer and one consumer scenario.
However, if we use two producers writing to the channel and
one consumer reading from that channel then we have an
assertion violation. Moreover, since this bug is not visible in
every trace of the example, simulation may not find it. Our
tool was able to find the bug and consequently we changed
the code to correct it. The following results are measured
on the corrected example. The example has 3 processes
executing concurrently. The total number of possible traces
is directly proportional to the number of elements produced
by the producers. To quantify the scalability of our tool, we
report in Table 1 for different number of elements produced
by the two producers, the time required using POR and the
number of reduced traces explored by our tool, along with
the total number of possible traces and the time required
without POR.

Elements Reduced Time (POR) Total Time (no-POR)
produced #traces sec:msec #traces sec:msec

14 6 00:032 8 00:046
28 42 00:265 80 00:469
44 318 02:313 992 06:344
62 2514 19:031 13376 93:563

Table 1: Results for the FIFO Benchmark

7.2 TAC Benchmark
The second benchmark is the industrial Transaction Ac-

curate Communication (TAC) example [3] developed by ST
Microelectronics, which includes a platform composed of the
following 6 modules: two traffic generators, two memories,
a timer and a router to connect them. These modules are
based on the TAC protocol built on top of OSCI’s TLM stan-
dard. This benchmark is over 12,000 lines of SystemC code
and consists of 349 functions. The example can be executed
for certain number of transactions. A transaction is a read
or write by the masters, namely the two traffic generators.
When executed for 80,000 transactions, there are 12032 to-
tal possible traces. It took 89.47 mins to explore all these
traces, whereas while checking for deadlocks in the program,
our tool found all these traces to be equivalent to only one
trace, which was executed in 1.3 secs. Although, for this
example simulation has same coverage as our tool, simula-
tion cannot provide correctness guarantee that is provided
by our tool.

8. CONCLUSION AND FUTURE WORK
We have presented a scalable approach for testing Sys-

temC in a query-based framework, Satya. Our approach
combines static and dynamic POR techniques to reduce the
number of interleavings required to expose all behaviors of
SystemC. Our approach exploits SystemC specific semantics
to reduce the number of backtracking points. Our experi-
ments on a set of examples show the efficacy of our approach.
Our ongoing work seeks to combine symbolic execution and
property specific slicing approaches.
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