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ABSTRACT 
Poor performance of HW/SW cosimulation is mainly caused by 
synchronization requirement between component simulators. 
Virtual synchronization technique was proposed to remove the need 
of synchronization in cycle accurate cosimulation. But the previous 
execution-driven simulation based on virtual synchronization has 
limitations in the application area. In this paper, we propose a novel 
trace-driven HW/SW cosimulation using virtual synchronization 
technique. Through OS modeling and channel modeling, the 
proposed cosimulation technique could be applied more widely 
while improving the simulation performance further. Experiments 
with a DIVX player example prove the viability of the proposed 
technique.   

Categories and Subject Descriptors 
B.7.2 [Design Aids]: Simulation and Verification 

General Terms: Performance, Verification 

Keywords: Trace-driven cosimulation, virtual synchronization,  

1. INTRODUCTION 
Hardware/software (HW/SW) cosimulation verifies the system 
performance replacing real processing components with component 
simulators running concurrently. Since faster estimation of the 
system performance promises wider design space exploration, 
boosting the simulation speed has been a major focus in HW/SW 
codesign research. It is also the main theme of this paper. 
Performance of HW/SW cosimulation depends on the speed of 
component simulators and synchronization overhead between them. 
Figure 1 shows the experimental result. We have applied three 
different synchronization methods that have huge difference in 
synchronization overhead. Three curves in Figure 1 display the 
simulation time of component simulators in the total elapsed time of 
cosimulation as we vary the simulator speed for three different 
synchronization methods. When the simulator speed is 18M cycles 
per second and synchronization is achieved by a function call, 10% 
of the total elapsed time is due to the simulation time of the 
component simulators and 90% is spent for synchronization. 
Therefore the synchronization overhead becomes the major 

bottleneck of cosimulation as the simulator performance increases. 
We have proposed the virtual synchronization technique [1][2] to 
reduce the synchronization overhead almost to zero by removing the 
synchronization requirement between component simulators. The 
basic idea of the virtual synchronization technique is to separate 
global time management of simulation from local simulators 
utilizing algorithm model. When a local simulator produces output 
samples, the time differences between output samples are recorded 
from the simulator. The actual global time of output samples is 
computed by the simulation backplane. 
However the technique has the following limitations. Since it is an 
execution-driven simulation, the simulation backplane should wait 
to receive output data from all component simulators to safely 
advance the global time considering the resource contention 
between components. Moreover static delays are assumed for local 
and shared memory accesses and no blocking is allowed during the 
execution of a task. 
The main contribution of this paper is to combine the trace-driven 
simulation and virtual synchronization techniques while the 
previous works used execution-driven simulation. It consists of two 
parts running concurrently. In the first part, it captures the execution 
traces from processing components ignoring the global time 
management. In the second part, it reconstructs the global time 
information for cycle accurate simulation behavior using trace-
driven cosimulation. The proposed trace-driven simulator models 
both the communication architecture and the OS behavior. Blocking 
behavior can also be considered in trace-driven simulation. As a 
result, we can maintain good performance of virtual synchronization 
while overcoming the limitations of the previous execution-driven 
simulation in terms of application domain and modeling accuracy. 
Another contribution of this paper is to propose a formulation on the 
speed of a conventional conservative cosimulation technique as 
discussed in section 2. The proposed formula gives insight to 
understand the diverse cosimulation techniques to improve the 
performance. 
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Figure 1. (Simulation time of the slowest simulator/total 
cosimulation time) versus the speed of the slowest simulator 
adopting different synchronization methods 
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2. ANALYSIS OF COSIMULATION TIME 
In this chapter, we extract key factors that affect cosimulation 
performance and present a simple formula on cosimulation time. 
We separate the simulation of processing components and the 
simulation of communication architecture. This separation makes 
performance analysis of cosimulation environment easier because 
two simulations have different performance factors. And different 
accuracy levels can be applied to enhance cosimulation performance 
In HW/SW cosimulation, the simplest approach to achieve accurate 
timing behavior is to synchronize all component simulators at every 
clock. It is called a conservative approach and most existent 
cosimulators use this approach for its simplicity. So we formulate 
the cosimulation time of a conservative cosimulation approach as 
definition 1. In equation (1), simulation time to advance one clock 
cycle, synchronization overhead, transaction count, and transaction 
simulation time are recognized as the major performance factors. 
Simulation time of a simulator depends on the design complexity as 
well as the modeling accuracy of the simulator.  

Definition 1. Analysis of conservative cosimulation time 
T          : Total simulated cycles 

ist  : Simulation time to advance one cycle of simulator i 

sync   : Synchronization overhead 

numtran  : The total number of communication transactions 

transt  : Simulation time to process a transaction 

trannumi
i

sttran)}syncTstT{ ×+×+×∑
∀

 (1) 

Figure 2 shows a motivational example, DIVX player, which is 
composed of three tasks: reader task, H.263 decoder task and MP3 
decoder task. The reader task is invoked at every 1/30 second and 
sends data packets to other tasks. The H.263 decoder task is 
activated when data is available and the MP3 decoder task invoked 
at every 1/60 second. In the H.263 decoder task, the motion 
compensation (MC) block is mapped to the hardware simulator 
(HS) and all other tasks are executed on the processor simulator 
(PS). At the left table of Figure 2, information on the execution 
cycle and the memory access count of each task is shown. At the 
bottom of Figure 2, a runtime schedule is displayed. 
In equation (2), the cosimulation time of conservative simulation of 
the DIVX player is computed based on equation (1). 

ussttranussyncusstusstMT trannumHSPS 154,332021,40,100,1,5 ======

susususususM 956154332021)}40100()401{(5 =×++++× (2)  

Although performance parameters are 10 times faster than measured 
from Seamless CVE [3], the cosimulation speed is less than 
6Kcycles/s (5M/956s). 

3. RELATED WORK 
In this section, we review the related approaches from the viewpoint 
of how they improve the performance factors in equation (1). 
Transaction level model (TLM) enhances simulation performance 
adapting higher abstraction level in communication and 
computation respectively, which reduces synchronization points and 
simulation times ( trani stst , ) [4]. However, cycle-accurate 
cosimulation of TLM approach performs still less than 
100Kcycles/s because of conservative synchronization and 
operating system running on the processor simulator. 
Trace-driven simulation [5] stores memory traces from cycle-
accurate cosimulation without considering any delay due to resource 
contention. Then, it evaluates different communication architectures 
very fast (almost zero ist  and synchronization overhead) by 
simulating dynamic behavior from communication architecture 
using memory traces. However, trace-driven simulation requires 
large external storages which become the performance bottleneck of 
the approach. In addition, it can not consider dynamic behavior 
from multiple processors and operating systems because of pre-
determined trace order. 
In optimized synchronization [6], all simulators notify the next 
event time to one another. Then each simulator can safely advance 
its time until the smallest next event time of simulators. In optimistic 
synchronization [7], each simulator advances its local clock 
assuming that no event will arrive. If this assumption fails, it rolls 
back its local time to the event arrival time canceling all the results 
that have been processed after that time. These approaches reduce 
synchronization overhead (T x sync) but their application area and 
performance enhancement are limited by their prerequisites. 
SeamlessCVE [3] reduces synchronization overhead (T x sync) by 
making only shared memory accesses delivered to the 
communication simulator (hardware simulator). But it loses time 
accuracy without considering bus contention for local memory 
accesses and still shows poor performance. 

4. TRACE-DRIVEN COSIMULATION 
The proposed trace-driven HW/SW cosimulation consists of two 
parts (Figure 3). In the first part, the simulation engine executes 
tasks on component simulators, captures execution traces, and 
provides them to the task representatives of the second part of the 
cosimulator. The trace-driven simulator models the behavior of 
operating system and communication architecture. If the trace-
driven simulator consumes all input traces or cannot determine the 
next trace to evaluate, it requests new execution traces to the 
simulation engine of the first part and waits until they arrive.  

4.1 Trace Generation 
Capturing execution traces is done by executing tasks on component 
simulators (software or hardware) according to the algorithm model 
as shown in Figure 2. An execution of a task continues until it is 
blocked by data or by period. During task execution the memory 
model of each simulator stores memory traces and important events 
of task behavior as behavior traces. After each task execution, the 
component simulator delivers execution (memory, behavior) traces 
to the simulation engine as shown in Figure 3. Since a component 
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simulator usually gives a way to define the memory model for 
global memory access, no modification on the component simulator 
itself is not needed. 
Note that the execution traces contain the local time information of 
the component simulators. In the first part global time need not be 
managed. So each trace stores the time difference compared with 
the previous trace. It also means that each simulator does not need 
to advance its local clock when they have nothing to execute. An 
example of trace generation is illustrated in Figure 4 where absolute 
times of traces are meaningless.  
For SW simulator, assignments to the special control address are 
automatically annotated to generate behavior traces in the memory 
model. In HW simulator, the memory model catches control signals 
from interface codes (IF) to generate behavior traces. Table I shows 
trace types and their descriptions of six behavior traces and four 
memory traces that are currently recorded in the proposed 
cosimulator. 

Table I. Trace types and their description 

Behavior trace type Behavior trace description 
TASK_START (TS) indicate the start of a task 
TASK_END (TE) indicate the end of a task 
WAIT_READ_INTR (WRI) wait data availability 
WAIT_WRITE_INTR (WWI) wait buffer availability 
SEND_READ_INTR (SRI) notify buffer availability 
SEND_WRITE_INTR (SWI) notify data availability 
Memory trace type Memory trace description 
SEQ_READ (SR) sequential read 
NSEQ_READ (NSR) non-sequential read 
SEQ_WRITE (SW) sequential write 
NSEQ_WRITE (NSW) non-sequential write 

4.2 Trace-Driven Cosimulation 
Using execution traces obtained from the simulation engine, we 
perform trace-driven cosimulation. Compared to the trace-driven 
simulation approach [5], our approach requires only a small portion 

of execution traces because trace generation and consumption are 
performed simultaneously. So there is no storage and performance 
problem. Moreover the proposed trace-driven cosimulation models 
dynamic behavior using behavior traces such as preemptions by 
other tasks and interrupts from other processors. 
Trace-driven cosimulation is further divided into two steps. First, 
the operating system model determines a sequential order of 
execution traces from all tasks for each processor. It also computes 
operating system delays like interrupt overhead and context switch 
overhead, and applies them to the sequence. Because every 
occurrence of behavior traces in any processor (interrupts from 
other components, blocked on channel, and end of task) affects the 
sequence of execution traces, the OS model selects the next 
candidate task with the earliest active time of each processor every 
time when it happens. 
Figure 5 shows an example scenario of OS model. OS model starts 
the H.263 decoder task (TS) when data is available from the reader 
task. The MP3 decoder task with a higher priority preempts the 
H.263 decoder task at the next tick interrupt. The H.263 decoder 
task is resumed when the MP3 task ends. Also note that the H.263 
decoder task is blocked (WRI) until data become available from the 
MC block. Finally OS model ends the execution of the H.263 
decoder task. 
Second the channel model resolves the conflicts on the 
communication architecture. It chooses a processor with the earliest 
access time among processors. Then it computes inter-connection 
and memory latency for memory traces. It delivers an interrupt to 
the destination processor for SEND_WRITE_INTR or 
SEND_READ_INTR behavior traces. Once the communication 
architecture produces an additional delay by bus contention and 
memory, all memory traces after the point are postponed by the 
delay if the access times are overlapped as shown in Figure 6.  
The OS model and the channel model can be easily modified to 
model different architectures. Our previous research [2] shows that 
the OS model without cache is achieved very accurately under 0.1% 
error and with cache at moderate error level (under 7%). The 
channel model in the trace-driven cosimulation is similar to that in 
transaction based channel model [4] that is successfully achieved 
through transaction level modeling. 
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4.3 Performance Analysis 
Definition 2 explains how virtual synchronization achieves huge 
performance enhancement compared to other approaches. First, 
because each simulator is not synchronized with other simulators 
during trace generation, it greatly reduces synchronization counts of 
the simulators ( isc ). Second, because an execution trace stores a 
time difference to the previous trace, the local clock of each 
simulator does not need to be synchronized with other simulators. It 
means that a simulator need not execute idle duration of the 
processor ( Tui × ). Lastly, efficient implementation of trace-driven 
simulation makes the communication simulation very fast by having 
small

transt .  

Definition 2. Cosimulation time of the proposed approach 
iu  : Utilization of simulator i 

isc   : Synchronization counts of simulation i  

trannumiii
i

sttran}syncscstuT{ ×+×+××∑
∀

  (3) 

Compared to cosimulation time of the conservative approach in 
equation 2, trace-driven cosimulation achieves 42% performance 
gain without time synchronization and 51% without idle duration as 
calculated in equation 4. As a result, it shows 43 times better 
performance. 
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trannumHSPS
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(4)  

5. EXPERIMENTS 
We use ARMulator for processor simulators and ModelSim for a 
hardware simulator on Linux 2.4 with Xeon 2.6Ghz dual CPUs. 
Table II shows different architectures for the DIVX player and 
Table III cosimulation results of decoding 20 frames for each 
architecture. In Table III, the second column shows simulation times, 
the third column shows simulated cycles and the final column 
shows simulator performances as cycles per second. 

Table II. Different architectures from the partition step 

 FPGA Arm922T (Proc 1) Arm922T (Proc 2) 
Arch. 1   All tasks 
Arch. 2  IDCT Other tasks 
Arch. 3  MC Other tasks 
Arch. 4 IDCT  Other tasks 
Arch. 5 IDCT MC, MP3 Other tasks 

Table III. Cosimulation performance: simulation time, 
simulated cycles w/o considering utilization, performance 

 Time Cycles  Speed 
Arch. 1 64s  100,076,232 1,564K
Arch. 2 109s  119,053,960 1,092K
Arch. 3 79s  89,678,834 1,135K
Arch. 4 168s  101,553,023 604K
Arch. 5 173s  72,601,086 420K

Table IV. Performance comparison with other approaches from 
Arch. 4 for decoding 3 frames 

 App. Cycles Time Speed
Virtual sync. DVIX 14944028 26s 575K
Seamless CVE H.263 8839060 9755s 0.91K
CoCentric Studio M-JPEG 10185864 303s 33K

Table IV shows performance comparison for the architecture 4 with 
commercial cosimulation tools. Although the result comes from a 
little different application and environment, it could be regarded 
reasonable because the architecture has similar design complexity. 
The result shows that our approach is even much faster than a TLM 
simulator, CoCentric Studio from Synopsys. 

6. CONCLUSION 
The proposed approach based on virtual synchronization technique 
separates generation of execution traces and timing management of 
execution traces in HW/SW cosimulation. It removes 
synchronization overhead between component simulators and 
boosts simulator speed about two orders of magnitude compared 
with the conservative approach. Implementation in PeaCE provides 
automatic generation of cosimulation environments for different 
architectures and design steps.  
Reduced synchronization overhead enables effective execution of 
distributed simulators at the simulator engine. So the advantage of 
the proposed technique will be greater for multi-processor SoC 
targets. Since the simulation accuracy depends on the OS model and 
the channel model, future research will be focused on the modeling 
of real systems. 
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