
Trace-Driven HW/SW Cosimulation Using Virtual
Synchronization Technique

Dohyung Kim
dhkim@ucsd.edu

Youngmin Yi
ymyi@iris.snu.ac.kr

Soonhoi Ha
sha@iris.snu.ac.kr

ABSTRACT
Poor performance of HW/SW cosimulation is mainly caused by
synchronization requirement between component simulators.
Virtual synchronization technique was proposed to remove the need
of synchronization in cycle accurate cosimulation. But the previous
execution-driven simulation based on virtual synchronization has
limitations in the application area. In this paper, we propose a novel
trace-driven HW/SW cosimulation using virtual synchronization
technique. Through OS modeling and channel modeling, the
proposed cosimulation technique could be applied more widely
while improving the simulation performance further. Experiments
with a DIVX player example prove the viability of the proposed
technique.

Categories and Subject Descriptors
B.7.2 [Design Aids]: Simulation and Verification

General Terms: Performance, Verification

Keywords: Trace-driven cosimulation, virtual synchronization,

1. INTRODUCTION
Hardware/software (HW/SW) cosimulation verifies the system
performance replacing real processing components with component
simulators running concurrently. Since faster estimation of the
system performance promises wider design space exploration,
boosting the simulation speed has been a major focus in HW/SW
codesign research. It is also the main theme of this paper.
Performance of HW/SW cosimulation depends on the speed of
component simulators and synchronization overhead between them.
Figure 1 shows the experimental result. We have applied three
different synchronization methods that have huge difference in
synchronization overhead. Three curves in Figure 1 display the
simulation time of component simulators in the total elapsed time of
cosimulation as we vary the simulator speed for three different
synchronization methods. When the simulator speed is 18M cycles
per second and synchronization is achieved by a function call, 10%
of the total elapsed time is due to the simulation time of the
component simulators and 90% is spent for synchronization.
Therefore the synchronization overhead becomes the major

bottleneck of cosimulation as the simulator performance increases.
We have proposed the virtual synchronization technique [1][2] to
reduce the synchronization overhead almost to zero by removing the
synchronization requirement between component simulators. The
basic idea of the virtual synchronization technique is to separate
global time management of simulation from local simulators
utilizing algorithm model. When a local simulator produces output
samples, the time differences between output samples are recorded
from the simulator. The actual global time of output samples is
computed by the simulation backplane.
However the technique has the following limitations. Since it is an
execution-driven simulation, the simulation backplane should wait
to receive output data from all component simulators to safely
advance the global time considering the resource contention
between components. Moreover static delays are assumed for local
and shared memory accesses and no blocking is allowed during the
execution of a task.
The main contribution of this paper is to combine the trace-driven
simulation and virtual synchronization techniques while the
previous works used execution-driven simulation. It consists of two
parts running concurrently. In the first part, it captures the execution
traces from processing components ignoring the global time
management. In the second part, it reconstructs the global time
information for cycle accurate simulation behavior using trace-
driven cosimulation. The proposed trace-driven simulator models
both the communication architecture and the OS behavior. Blocking
behavior can also be considered in trace-driven simulation. As a
result, we can maintain good performance of virtual synchronization
while overcoming the limitations of the previous execution-driven
simulation in terms of application domain and modeling accuracy.
Another contribution of this paper is to propose a formulation on the
speed of a conventional conservative cosimulation technique as
discussed in section 2. The proposed formula gives insight to
understand the diverse cosimulation techniques to improve the
performance.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006…$5.00.

Figure 1. (Simulation time of the slowest simulator/total
cosimulation time) versus the speed of the slowest simulator
adopting different synchronization methods

0 1K 10K 100K10 100 1M

33K (50%)

3.7K (90%)

5K (50%)

555 (90%)

45K (10%) 303K (10%)

2M (50%)

0%

100% 222K (90%)

10M

18M (10%)

simulator speed

simulation
time of
component
simulators

Function call : 0.5 us
TCP/IP (local) : 30 us (18 us using Pthread)
TCP/IP (remote) : 200 us *Linux 2.4, Pentium 1.8GHz dual, 100M LAN

School of Computer Science and Engineering, Seoul Nation University, 151-742, Seoul, Korea

2. ANALYSIS OF COSIMULATION TIME
In this chapter, we extract key factors that affect cosimulation
performance and present a simple formula on cosimulation time.
We separate the simulation of processing components and the
simulation of communication architecture. This separation makes
performance analysis of cosimulation environment easier because
two simulations have different performance factors. And different
accuracy levels can be applied to enhance cosimulation performance
In HW/SW cosimulation, the simplest approach to achieve accurate
timing behavior is to synchronize all component simulators at every
clock. It is called a conservative approach and most existent
cosimulators use this approach for its simplicity. So we formulate
the cosimulation time of a conservative cosimulation approach as
definition 1. In equation (1), simulation time to advance one clock
cycle, synchronization overhead, transaction count, and transaction
simulation time are recognized as the major performance factors.
Simulation time of a simulator depends on the design complexity as
well as the modeling accuracy of the simulator.

Definition 1. Analysis of conservative cosimulation time
T : Total simulated cycles

ist : Simulation time to advance one cycle of simulator i

sync : Synchronization overhead

numtran : The total number of communication transactions

transt : Simulation time to process a transaction

trannumi
i

sttran)}syncTstT{ ×+×+×∑
∀

 (1)

Figure 2 shows a motivational example, DIVX player, which is
composed of three tasks: reader task, H.263 decoder task and MP3
decoder task. The reader task is invoked at every 1/30 second and
sends data packets to other tasks. The H.263 decoder task is
activated when data is available and the MP3 decoder task invoked
at every 1/60 second. In the H.263 decoder task, the motion
compensation (MC) block is mapped to the hardware simulator
(HS) and all other tasks are executed on the processor simulator
(PS). At the left table of Figure 2, information on the execution
cycle and the memory access count of each task is shown. At the
bottom of Figure 2, a runtime schedule is displayed.
In equation (2), the cosimulation time of conservative simulation of
the DIVX player is computed based on equation (1).

ussttranussyncusstusstMT trannumHSPS 154,332021,40,100,1,5 ======

susususususM 956154332021)}40100()401{(5 =×++++× (2)

Although performance parameters are 10 times faster than measured
from Seamless CVE [3], the cosimulation speed is less than
6Kcycles/s (5M/956s).

3. RELATED WORK
In this section, we review the related approaches from the viewpoint
of how they improve the performance factors in equation (1).
Transaction level model (TLM) enhances simulation performance
adapting higher abstraction level in communication and
computation respectively, which reduces synchronization points and
simulation times (trani stst ,) [4]. However, cycle-accurate
cosimulation of TLM approach performs still less than
100Kcycles/s because of conservative synchronization and
operating system running on the processor simulator.
Trace-driven simulation [5] stores memory traces from cycle-
accurate cosimulation without considering any delay due to resource
contention. Then, it evaluates different communication architectures
very fast (almost zero ist and synchronization overhead) by
simulating dynamic behavior from communication architecture
using memory traces. However, trace-driven simulation requires
large external storages which become the performance bottleneck of
the approach. In addition, it can not consider dynamic behavior
from multiple processors and operating systems because of pre-
determined trace order.
In optimized synchronization [6], all simulators notify the next
event time to one another. Then each simulator can safely advance
its time until the smallest next event time of simulators. In optimistic
synchronization [7], each simulator advances its local clock
assuming that no event will arrive. If this assumption fails, it rolls
back its local time to the event arrival time canceling all the results
that have been processed after that time. These approaches reduce
synchronization overhead (T x sync) but their application area and
performance enhancement are limited by their prerequisites.
SeamlessCVE [3] reduces synchronization overhead (T x sync) by
making only shared memory accesses delivered to the
communication simulator (hardware simulator). But it loses time
accuracy without considering bus contention for local memory
accesses and still shows poor performance.

4. TRACE-DRIVEN COSIMULATION
The proposed trace-driven HW/SW cosimulation consists of two
parts (Figure 3). In the first part, the simulation engine executes
tasks on component simulators, captures execution traces, and
provides them to the task representatives of the second part of the
cosimulator. The trace-driven simulator models the behavior of
operating system and communication architecture. If the trace-
driven simulator consumes all input traces or cannot determine the
next trace to evaluate, it requests new execution traces to the
simulation engine of the first part and waits until they arrive.

4.1 Trace Generation
Capturing execution traces is done by executing tasks on component
simulators (software or hardware) according to the algorithm model
as shown in Figure 2. An execution of a task continues until it is
blocked by data or by period. During task execution the memory
model of each simulator stores memory traces and important events
of task behavior as behavior traces. After each task execution, the
component simulator delivers execution (memory, behavior) traces
to the simulation engine as shown in Figure 3. Since a component

Reader

MP3

Header
decoder

MC

H.263
decode Display

Period
1/60

period
1/30

Processor
simulator

Hardware
simulator

Reader MP3 H263 MP3 H263Reader MP3 H263 MP3 H263

H.263
Decoder

MC

Processor

Hardware

Channel
bus contention

5000000

44550178200MC

2628613965626H263

22448217601MP3

216210505Reader

Memory
access

CyclesBlock

44550178200MC

2628613965626H263

22448217601MP3

216210505Reader

Memory
access

CyclesBlock

Figure 2. Motivational example: DIVX player

simulator usually gives a way to define the memory model for
global memory access, no modification on the component simulator
itself is not needed.
Note that the execution traces contain the local time information of
the component simulators. In the first part global time need not be
managed. So each trace stores the time difference compared with
the previous trace. It also means that each simulator does not need
to advance its local clock when they have nothing to execute. An
example of trace generation is illustrated in Figure 4 where absolute
times of traces are meaningless.
For SW simulator, assignments to the special control address are
automatically annotated to generate behavior traces in the memory
model. In HW simulator, the memory model catches control signals
from interface codes (IF) to generate behavior traces. Table I shows
trace types and their descriptions of six behavior traces and four
memory traces that are currently recorded in the proposed
cosimulator.

Table I. Trace types and their description

Behavior trace type Behavior trace description
TASK_START (TS) indicate the start of a task
TASK_END (TE) indicate the end of a task
WAIT_READ_INTR (WRI) wait data availability
WAIT_WRITE_INTR (WWI) wait buffer availability
SEND_READ_INTR (SRI) notify buffer availability
SEND_WRITE_INTR (SWI) notify data availability
Memory trace type Memory trace description
SEQ_READ (SR) sequential read
NSEQ_READ (NSR) non-sequential read
SEQ_WRITE (SW) sequential write
NSEQ_WRITE (NSW) non-sequential write

4.2 Trace-Driven Cosimulation
Using execution traces obtained from the simulation engine, we
perform trace-driven cosimulation. Compared to the trace-driven
simulation approach [5], our approach requires only a small portion

of execution traces because trace generation and consumption are
performed simultaneously. So there is no storage and performance
problem. Moreover the proposed trace-driven cosimulation models
dynamic behavior using behavior traces such as preemptions by
other tasks and interrupts from other processors.
Trace-driven cosimulation is further divided into two steps. First,
the operating system model determines a sequential order of
execution traces from all tasks for each processor. It also computes
operating system delays like interrupt overhead and context switch
overhead, and applies them to the sequence. Because every
occurrence of behavior traces in any processor (interrupts from
other components, blocked on channel, and end of task) affects the
sequence of execution traces, the OS model selects the next
candidate task with the earliest active time of each processor every
time when it happens.
Figure 5 shows an example scenario of OS model. OS model starts
the H.263 decoder task (TS) when data is available from the reader
task. The MP3 decoder task with a higher priority preempts the
H.263 decoder task at the next tick interrupt. The H.263 decoder
task is resumed when the MP3 task ends. Also note that the H.263
decoder task is blocked (WRI) until data become available from the
MC block. Finally OS model ends the execution of the H.263
decoder task.
Second the channel model resolves the conflicts on the
communication architecture. It chooses a processor with the earliest
access time among processors. Then it computes inter-connection
and memory latency for memory traces. It delivers an interrupt to
the destination processor for SEND_WRITE_INTR or
SEND_READ_INTR behavior traces. Once the communication
architecture produces an additional delay by bus contention and
memory, all memory traces after the point are postponed by the
delay if the access times are overlapped as shown in Figure 6.
The OS model and the channel model can be easily modified to
model different architectures. Our previous research [2] shows that
the OS model without cache is achieved very accurately under 0.1%
error and with cache at moderate error level (under 7%). The
channel model in the trace-driven cosimulation is similar to that in
transaction based channel model [4] that is successfully achieved
through transaction level modeling.

SW Simulator

memory
model

C task code

HW Simulator

memory
model

C task codeC task code
VHDL

task codeIF

Simulation Engine

OS

Memory

tasktaskSW task HW task

capture task behavior
through execution traces

supply execution traces
to task representatives

perform
trace-driven cosimulation
using execution traces

Figure 3. Framework for trace-driven cosimulation

Figure 6. Channel model example

additional delay by bus contention

additional delay from memory delay (NSEQ)

time

processor

Hardware MC

processor

channel

channel

channel

memory traces from OS model

preemption resume block resume

TS SWI WRI TE
Execution traces
from H.263

TS WWI WRI TE

time

Hardware, MC

Processor, H.263

Processor, MP3

WWI SRI

SWI SRI

Figure 5. Operating system model scenario

behavior trace

memory trace

TS WWI SRI TE

1st 2nd

SWI WRI

MC

Processor

Hardware

Simulation
engine

Reader MP3 MP3H263H263Reader MP3 MP3H263H263

1st 2nd

Figure 4. Capturing execution traces

4.3 Performance Analysis
Definition 2 explains how virtual synchronization achieves huge
performance enhancement compared to other approaches. First,
because each simulator is not synchronized with other simulators
during trace generation, it greatly reduces synchronization counts of
the simulators (isc). Second, because an execution trace stores a
time difference to the previous trace, the local clock of each
simulator does not need to be synchronized with other simulators. It
means that a simulator need not execute idle duration of the
processor (Tui ×). Lastly, efficient implementation of trace-driven
simulation makes the communication simulation very fast by having
small

transt .

Definition 2. Cosimulation time of the proposed approach
iu : Utilization of simulator i

isc : Synchronization counts of simulation i

trannumiii
i

sttran}syncscstuT{ ×+×+××∑
∀

 (3)

Compared to cosimulation time of the conservative approach in
equation 2, trace-driven cosimulation achieves 42% performance
gain without time synchronization and 51% without idle duration as
calculated in equation 4. As a result, it shows 43 times better
performance.

ussttranussyncscsc
uusstuusstMT

trannumHSPS

HSHSPSPS

75.0,332021,40,1,5
%6.3,100%,88,1,5
=====

=====

sus
ususMususM

4.2275.0332021
)}401036.01005()40588.015(

=×
+×+××+×+××

(4)

5. EXPERIMENTS
We use ARMulator for processor simulators and ModelSim for a
hardware simulator on Linux 2.4 with Xeon 2.6Ghz dual CPUs.
Table II shows different architectures for the DIVX player and
Table III cosimulation results of decoding 20 frames for each
architecture. In Table III, the second column shows simulation times,
the third column shows simulated cycles and the final column
shows simulator performances as cycles per second.

Table II. Different architectures from the partition step

 FPGA Arm922T (Proc 1) Arm922T (Proc 2)
Arch. 1 All tasks
Arch. 2 IDCT Other tasks
Arch. 3 MC Other tasks
Arch. 4 IDCT Other tasks
Arch. 5 IDCT MC, MP3 Other tasks

Table III. Cosimulation performance: simulation time,
simulated cycles w/o considering utilization, performance

 Time Cycles Speed
Arch. 1 64s 100,076,232 1,564K
Arch. 2 109s 119,053,960 1,092K
Arch. 3 79s 89,678,834 1,135K
Arch. 4 168s 101,553,023 604K
Arch. 5 173s 72,601,086 420K

Table IV. Performance comparison with other approaches from
Arch. 4 for decoding 3 frames

 App. Cycles Time Speed
Virtual sync. DVIX 14944028 26s 575K
Seamless CVE H.263 8839060 9755s 0.91K
CoCentric Studio M-JPEG 10185864 303s 33K

Table IV shows performance comparison for the architecture 4 with
commercial cosimulation tools. Although the result comes from a
little different application and environment, it could be regarded
reasonable because the architecture has similar design complexity.
The result shows that our approach is even much faster than a TLM
simulator, CoCentric Studio from Synopsys.

6. CONCLUSION
The proposed approach based on virtual synchronization technique
separates generation of execution traces and timing management of
execution traces in HW/SW cosimulation. It removes
synchronization overhead between component simulators and
boosts simulator speed about two orders of magnitude compared
with the conservative approach. Implementation in PeaCE provides
automatic generation of cosimulation environments for different
architectures and design steps.
Reduced synchronization overhead enables effective execution of
distributed simulators at the simulator engine. So the advantage of
the proposed technique will be greater for multi-processor SoC
targets. Since the simulation accuracy depends on the OS model and
the channel model, future research will be focused on the modeling
of real systems.

7. ACKNOWLEDGMENTS
This work was supported by National Research Laboratory Program
(Grant No. M1-0104-00-0015) and IT R&D Project funded by
Korean MIC. The ICT and ISRC at Seoul National University
provided research facilities for this study.

8. REFERENCES
[1] D. Kim, C. Rhee, and S. Ha, “Combined Data-driven and

Event-driven Scheduling Technique for Fast Distributed
Cosimulation”, IEEE Transactions on VLSI Systems Vol. 10
pp 672-679 Oct. 2002

[2] Y. Yi, D. Kim, S. Ha, “Fast and Time-Accurate Cosimulation
with OS Scheduler Modeling”, Design Automation for
Embedded Systems, Kluwer Academic Publishers Vol. 8 pp
211-228 Sep. 2003

[3] B. Bailey, “Co-Verification: From Tool to Methodology,”
Mentor Consulting Technical Publication, June 2002

[4] T. Grotker, S. Liao, G. Martin and S. Swan, “System Design
with SystemC”, Kluwer Academic, Norwell, Mass., 2002

[5] K. Hines and G. Borriello, “Optimizing communication in
embedded system cosimulation”, in Proc. Intl. Symp. on
Hardware/Software Codesign, pp.121-125, Mar. 1997.

[6] Wonyong Sung and Soonhoi Ha, “Optimized Timed Hardware
Software Cosimulation without Roll-back”, DATE 98, Paris,
France February 1998

[7] S. Yoo and K. Choi, “Optimistic Distributed Timed
Cosimulation Based on Thread Simulation Model”, Proc. of
Proc. 6th Int’l Workshop on HW/SW Co-Design, Mar. 1998

