Energy Aware Task Scheduling with Task Synchronization
for Embedded Real Time Systems

Ravindra Jejurikar and Rajesh Gupta
Center for Embedded Computer Systems,
Department of Information and Computer Science,
University of California at Irvine,

Irvine, CA 92697

{jezz,rgupta@ics.uci.edu

ABSTRACT

have to judiciously manage time and power to achieve our goal

Slowdown factors determine the extent of slowdown a computing of mir_limizi_ng energy. DVS (Dynamic Voltage Scaling) techniques
system can experience based on functional and performance re_e_xplonthe idle time of the prqcessorto _reduce the energy consump-
quirements. Dynamic Voltage Scaling (DVS) of a processor based tion O_f a_system. We deal with computing the voltage schedule for
on slowdown factors can lead to considerable energy savings. The? Fl’e”ﬁ_d'c task set. ¢ h level

problem of DVS in the presence of task synchronization has not " this paper, we focus on the system level power management
yet been addressed. We compute slowdown factors for tasks which"i2 COmputation of static slowdown factors. We assume a real-time
synchronize for access to shared resources. Tasks synchronize t3y5t§|r_n Whe_lfﬁ the taskks run pebrlodlcsllg Iln (:he syst_eml and have
enforce mutually exclusive access to these resources and can béjea ines. These tasks are to be scheduled on a sing € processor
blocked by lower priority tasks. We compute static slowdown fac- system based on a preemptive scheduler such as the Earliest Dead-

tors for the tasks which guarantee meeting all the task deadlines.IIne First (EDF) [12] or Rate Monotpnlc Scheduler (RM.S) [11).
Our simulation experiments show on an average 25% energy gainsThe tasks access sharec_zl resources in a mutually exgluswe manner.
over the known slowdown techniques. Tasks nqed to synchronize t_o enforce mutual exclusion. We_ com-

pute static slowdown factors in the presence of task synchronization
to minimize the energy consumption of the system.

Shin et al. [20] have computed uniform slowdown factors for
an independent task set. In this technique, rate monotonic analy-
sis is performed on the task set to compute a constant static slow-
down factor for the processor. Gruian [4] observed that perform-
ing more iterations gives better slowdown factors for the individual

Categories and Subject Descriptors
D.4.1 [Operating System$ Scheduling

General Terms

Algorithms task types. Yao, Demers and Shanker [22] presented an optimal
off-line speed schedule for a setdfjobs. The time complexity of
Keywords their algorithm isO(N2) and can be reduced @N log?N) by the

use of segment trees [15]. The analysis and correctness of the algo-
rithm is based on an underlying EDF scheduler, which is an optimal
scheduler [12]. An optimal schedule for tasks with different power
consumption characteristics is considered by Aydin, Melhem and
INTRODUCTION Mos [1]. The same authors [2] have proven that the utilization
Power is one of the important metrics for optimization in the de- factor is the optimal slowdown when the deadline is equal to the
sign and operation of embedded systems. There are two primaryP€riod. Quan and Hu [16] [17] discuss off-line algorithms for the
ways to reduce power consumption in embedded computing sys-case of fixed priority scheduling. _
tems: processor shutdown and processor slowdown. Slowdown Since the worst case execution time (WCET) of a task is not usu-
using frequency or voltage scaling is more effective in power con- ally reached, there is dynamic slack in the systeitiaifand Shin
sumption. Scaling the frequency and voltage of a processor leadsl14] recalculate the slowdown when a task finishes before its worst
to an increase in the execution time of a job. In real-time systems, CaS€ execution time. They use the dynamic slack while meeting the
we want to minimize energy while adhering to the deadlines of the deadlines. Low-power scheduling using slack estimation heuristic
tasks. Power and deadlines are often contradictory goals and wel6] is studied by Kim et al.

All the above techniques assume the tasks to be independentin
nature. Scheduling of task graphs on multiple processors has also
been considered. Luo and Jha [13] have considered scheduling of

Permission to make digital or hard copies of all or part of this work for periodic and aperiodic task graphs in a distributed system. Non-
personal or classroom use is granted without fee provided that copies arepreemptive scheduling of a task graph on a multi processor system
not made or distributed for profit or commercial advantage and that copies is considered by Gruian and Kuchcinski [5]. Zhang et al. [23] have

bear this notice and the full citation on the first page. To copy otherwise, 10 ivan 3 framework for task scheduling and voltage scheduling of
republish, to post on servers or to redistribute to lists, requires prior specific

power aware scheduling, real-time, frequency / voltage scaling,
task synchronization, priority ceiling protocol.

1.

permission and/or a fee.
CASES 200X)ctober 8-11, 2002, Grenoble, France.
Copyright 2002 ACM 1-58113-575-0/02/00165.00.

dependent tasks on a multi-processor system. They have formu-
lated the voltage scheduling problem as an integer programming

problem. They prove the voltage scheduling problem for the con- point to note is when we perform a slowdown we change both the
tinuous voltage case to be polynomial time solvable. frequency and voltage of the processor. We use the terms slowdown
However the effect of task synchronization on slowdown factors state and power state interchangeably. We assume that the speed
has notyet been addressed. In real life applications, tasks access thean be varied continuously fro, to the maximum supported
shared resources in the system. We consider a uniprocessor systerspeenax We normalize the speed to the maximum speed to have
where tasks synchronize for access to shared resources. Due to thia continuous operating range[skin, 1], whereSmin = Smin/ Smax
task synchronization, tasks can get blocked for a shared resource . .
In this paper, we compute static slowdown factors in the presence2-3 Motlvatlng example
of task synchronization. We gain as much as 40% to 60% energy Consider a simple real time system with two periodic tasks hav-
savings over the known techniques. ing the following parameters :
The rest of the paper is organized as follows: Section 2 formu-
lates the problem \F/)vit?l a moti\?ating example. In Section 3, we give 1=1{882}1p={15157} 1
the slowdown algorithms in the presence of task synchronization.

The implementation and experimental results are given in Section N citical section
4. Section 5 concludes the paper with future directions. [] noncritical section
4 deadline\v
2. PRELIMINARIES = S S
: S
In this section, we introduce the necessary notation and formu- (8) |
late the problem. We first describe the system model followed by Ll L
an example to motivate the problem. 0 2 14 6 8 110 {12 14 (16 18 (0 2
2.1 System Model f missed
iodi iodi i i @) =073
A periodic task set ofi periodic real time tasks is represented as L
- A = S5 S
= {t1,...,Tn}. A 3-tuplet; =< T;,D;,C; > is used to represent (b) * [L ==
each tasktj, whereT; is the period of the taskD; is the relative T ”2‘0'7\3 5 SH: 1. [TH S|
deadline, and; is the WCET for the task, given it is the only task o 2 4 6 '8 10 112 14 1?im6184>20 2 24
running in the system. The system has a set of shared resources.
Access to the shared resources are mutually exclusive in nature ' |1 -qs
and the accesses to the resources have to be serialized. Common e — 5 — S
synchronization primitives include semaphores, locks and monitors (c)
[21]. We assume that semaphores are used for task synchroniza- 7, |n2=95] — K |
tion. All tasks are assumed to be preemptive, however the access 0 2 4 6 8 10 12 14 16 18 20 2 2
to the shared resources need to be serialized. Due to the resource }
sharing, task can kalockedby lower priority tasks. ta [ML=0.875 5
' - S S
When a task has been granted access to a shared resource, itis T, S] L =
said to be executing in itsritical section Thek" critical section @ | ,-ss ;
of taskT; is represented ag. Each task specifies the access to p S 1 8] [§ & B
the shared resources and the worst case execution time of each crit- o2 4 6 8 10 12 24 16 18 20 2 A4

ical section. With the specified information we can compute the
maximum blocking time for a task. The blocking time for tasks de- Figure 1: Motivation for Static slowdown techniques (a) Task
pends upon the resource access protocol being used; betthe arrival times and deadlines (period=deadline) with critical sec-
maximum blocking time for task under the given resource access tjons. (b) Constant slowdown of) = % =0.733 job 11 3 misses
protocol. We assume critical sections of a task are properly nested.deadline. (c) Slowdown ofn; = n, = 0.5 with critical sec-

Each invocation of the task is calledab and thekth invocation tion at maximum speed. (d) Uniform constant slowdown of
of taskr; is denoted as k. The tasks are scheduledon asingle pro- n = % = 0.875 meets deadlines while observing blocking.
cessor which supports rtiple frequencies. Every frequency level
has a power consumption value and is also referred to as power
state of the processor. Our aim is to schedule the given task set Both tasks access a shared resource through a semépfidre
and the processor speed such that all tasks meet their deadlines andritical section for tasky is z; 1 = [1,2] and that forty is 251 =
the energy consumption is minimized. The processor speed can bg0.5,5.5]. This task set is shown in Figure 1(a). The jobs for
varied to minimize energy usage. Thlewdown factoat a given each task are shown at their arrival time with their workload. The
instance is the ratio of the scheduled speed to the maximum pro-jobs are to be scheduled on a single processor by a rate monotonic
cessor speed . If the processor speed is a constant value over thecheduler. The task setis schedulable at full speed. We cannot com-
entire time interval, it is called @onstant slowdownT he execution pute slowdown factors ignoring the blocking factors. To keep the
time of a job is proportional to the processor speed. The goal is to task set schedulable, at least 11 units of computation is needed in

minimize the energy consumption while meeting deadlines. 15 time units, allowing for a uniform slowdown gf= % =0.733.
. However jobty 3 misses its deadline, as it is blocked by task
2.2 Variable Speed Processors for 6.5 time units. This is shown in Figure 1(b). Thus we need to

A wide range of processors support variable voltage and fre- consider the blocking times to compute the slowdown factors for
quency levels. Voltage and frequency levels are in a way coupled the task.
together. When we change the speed of a processor we change We consider executing the critical sections at no slowdown and
its operating frequency. We proportionately change the voltage to acompute the slowdown for the task set. Up to tilme 15, there
value which is supported at that operating frequency. The important are 7 time units of critical sections and 4 time units of noitiead

sections. Executing the non critical sections as a slowdown of 3.1 Critical Section at Maximum Speed (CSMS)
N1=nN2= 15— = 0.5, meets all deadlines. This scheduleis shown \we compute the static slowdown factors for the tasks with all
in Figure 1(c). Having a uniform slowdown for the entire task can critical sections being executed at full speed. We make a distinc-
be more energy efficient. Since taskcan be blocked for upto 5 ion between the critical and noniical section of a task. Legncs

time units an; = 2, a constant slowdown of = g = 0.875guar- andCes be the non-dtical section and critical section of taskre-
anteeg; meeting the deadlines. At this slowdownalso meets all spectively(C"®S+ CES = G;). Using Equation 4, we compute static
deadlines and is shown in Figure 1(d). slowdown factors for all the tasks. Tasks are ordered in descend-

We use the simplistic power model 8= n® to compare the ing order of their deadline (priority). We compute the slowdown
energy consumption. We compute the energy consumed up to timefactors in an iterative manner, from the higher to the lower priority
t=15. 8Fr70m Figure 1(d) energy consumed up to time 15 i tasks. An indexj points to the latest task that has been assigned a
E =115(§)% = 9.625. The energy consumed from Figure 1(c) is slowdown factor. Initiallyq = 0. Each of the task, q< i < n has
E=7+ 4.%(%)2 = 9. In this case the constant slowdown consumes to be assigned a slowdown factor. For each scheduling |8gint
more energy. However as we show later that the constant statictaskt; exactly meets its deadline if:
slowdown is more energy efficient in practice. cnes s cnes

B+ Y (= =L

Si
+CF + Ly =5
1<r<q I7 S)|—Tr-| q<zp§i(Nij PS)[Tp] j

3. STATIC SLOWDOWN FACTORS (5)

We compute static slowdown factor for a system with an un- .
derlying rate monotonic scheduler. In this section, we give an al- Note that the tasks;, 1 <r < q have already been assigned
gorithm to compute the static slowdown factors for tasks which & Slowdown facton,. For the rest of the tasks we assume that
share the resources in the system. We assume that the access to tﬁ@ey W'!l use the same and yet to be co_mpute_d slowdown factor,
shared resources is granted in mutual exclusion [21] by the use of'ii: which is dep_endent_on the scheduling point. For t_he WSK
semaphores [21]. The schedLilip test of independent tasks is the best sc_hedullng choice, fr_om the energy point of_ view, is the
given by Lehoczky et al. [10]. Using this schedulability test, static smallest of it;j. Atthe same_tlme ffom Equatlon_5, t.h's hasto be
slowdown factors have been computed by Shin [20] and Gruian eql_JaI for all tasksp, g < p< . There is a task with indem for
[4]. They consider the case where all tasks are independent of eacHNh'Ch the best SIOW‘_jOW” factoris the Iarg_es_t among all Other tasks:
other. However in real-life applications, tasks share the resources in™ini (Nmj) = max(min;(n;;)). Note that this is not necessarily the
the system. This could lead to tasks being blocked for a particular 125t t8sk.n. Having the indexm, all tasks between andm can
resource. Blocking of tasks can cause priority inversion [19] and P€ slowed down by a factor equal to the slowdown factor of task

result in deadline misses. Resource access protocols sumti as Im : an(nmi)‘ Thus, we ass_ign them _slowdown factorrph =
ority inheritance protocalpriority ceiling protocol priority limit min;(nij), g <r <m. The algorithm terminates when all tasks have

protocol stack resource protoc@ndminimal stack resource pro- been assigned a slowdown factor.

tocol [3, 19] have been studied to minimize the blocking time of 3 2 Constant Static Slowdown (CSS)
tasks. Any resource management protocol can be used to manage .)
A constant slowdown for the processor is a desired feature. There

the access to the resource. IBtbe themaximum blocking time . . .)
for taskt; under the given resource access protocol. isan overhegd _assouat(_ad with changing power states and a constant
Lehoczky et al. [10] showed that the schedulability analysis is s!owdown e_hmmates this overhead. A constant slov_vdown IS de_—
sired especially if the resource does not support run time change in

needed only at discrete points, called §iesbeduling pointslt is as- h ; dF h scheduli : KT |
sumed that the tasks are sorted in descending order of their priority.%:e‘)tg?trsaggg;?nieif} or each scheduling pBjnttask; exactly

The set of scheduling points for tagkis defined by

S=1{kTjli=1,.,i;k=1..,[=]} (2 —(Bi+ Col2) =5 (6)
T i 0<Zp§i o]
when the period is the same as the deadline; ;. A slowdown ofn) = max(minj(nij)) gives a constant static slow-

If Dj is different fromT;, Equation 2 can be modified to a set of yown for all the tasks.
scheduling poin§ as follows :
3.3 Examples
§=1{(teS)A(t<D)}u{Di} ®) We compute the slowdown factors for the example in Section 2.
The task set ig1 = {8,8,2},12 = {15,157} and their blocking
factors aredB; = 5 andB, = 0.
We compute the uniform constant slowdown:

The schedulability test in the presence of blocking time is given by
Sha et al. [19]1; can be scheduled without violating its deadline,
if thereexistsone or more scheduling poiréy € S, which satisfy

min(nj) = min(Z£%) = 7 — 0.875and

i
. Sj) . . (24740) 2(2)+740 11
B.-I—kZlefT—k] <S§;j (4) mln(r]zj):mln((—s),()T): 1£=0.733
) o This gives a constant static slowdownrp& 0.875.
whereB; is the blocking time for task;. The slowdown factors with critical sections at maximum speed

We give two methods to compute static slowdown factors for pe- gre:
riodic task set. One method computes slowdown factors for the

. o . . ; inna:) = mi 1 1
tasks with the critical sections being executed at maximum speed. min(n1j) = Min(g=g35y) = 3 = 0.5 and
: . . : 2(1)+05+15
The other method computes a constant slowdown for the entire pe min(nz;) = min(8_&+5)7 1(51J(r5+2J(r1)))=3%=05

riodic task set. The non-tical and critical sections of each task
have a uniform slowdown factor. This gives a slowdown af; = n2 = 0.5 for the non-dtical section.

3.4 Computation time

The CSMS algorithm has the same time complexity as that of the
slowdown computation algorithm for independent tasks by Gruian
[4]. The CSS algorithm has the same time complexity as that of the
algorithm by Shin et al. [20]. Theoretically, all algorithms have a
pseudo polynomial time complexity. The is due to the fact that the
total number of scheduling points arising in the exact rate mono-
tonic has a pseudo polynomial complexity. However, in practice
the number of scheduling points is not large and the algorithms are
efficient. The computation time on an average takes a fraction of
a second. We conducted the experiments on a sparc SUNW, Sun-
Blade-100 running SunOS.

4. EXPERIMENTAL RESULTS

We have written a simulator iparsec[8], a C based discrete
event simulation language. We have implemented the scheduler
and the slowdown algorithms in this simulator. The simulator block
diagram is shown in Figure 2. It consists of two main entities, the
Task Manageand theReal Time Operating System(RTOShe

Power(P)

1 T T T T
P=f(s£ J/
P=s® - 4
08 4
0.6 F 4
04 -]
02 1
0 il L L L
0 0.2 0.4 0.6 0.8 1

slowdown factor(s)

Figure 3: Power function f(s) vs. §?

The plot of the power function in shown in Figure 3. It is seen
that it trackss? closely. The switching capacitance and the relation

task manager has the information of the entire task set. It generateetween gate delay and the operating speed are used to accurately
jobs for each task type depending on its period and sends it to thederive the power function.

4.1 Static slowdown

RTOS entity.
Task Mamanger RTOS
Static speed h
[Task Execution Tinle| [
- k1 cycles resource
-P(s)
- k2cycles « _ shared
al) % Ll E resource
Task, [2 Resource| | &
— S (processor) 2 shared
z @ :(‘3 resource
o8 o8 (o8 5 .
. 2
© g .
L] o .
Taskr,
Profile shared
Manager resource

‘ PARSEC Simultion Platform ‘

Figure 2: Generic simulator

The RTOS is the heart of the simulator. It schedules the jobs on
the resource(processor) and checks for deadline misses. The jobs
access the shared resource by the resource access protocol. The
static speed regulator changes the speed of the processor at run-
time. Theprofile manageprofiles the energy consumed by each
task and calculates the total energy consumption of the system. It
keeps track of all the relevant parameters viz. energy consumed,
missed deadlines, voltage changes and context switches.

We use the power model as given in [18] [7] to compute the
energy usage of the system. The poRess a function of slowdown
is given by

P = f(s) = 0.248+ 5>+ 0.225+ 5? + 0.0256+ S+

V/31116+ 24 28224+ 5+ (0.0064+5+0.014112 5D (7)

The above equation is obtained by substitutigg= 5V andVi, =
0.8V and equating the power and speed equations given below. The
speedsis the inverse of the delay.

2
Pswitching= Cef Viq f

®)

Delay= 9)

We compare the processor energy usage for the following tech-
niques:

e Critical Section at Maximum Speed (CSMS) The algo-

rithm to compute the slowdown factors for each task is dis-
cussed in Section 3. The static factors are computed by per-
forming Rate Monotonic Analysis (RMA) with no slowdown
for the critical sections. The caseDf< pis also considered.

Constant Static Slowdown (CSS)A constant static slow-
down is computed for all the tasks including the critical sec-
tions. The algorithm is given in the Section 3.

We compare the results of our algorithm to the static slow-
down algorithm for independent tasks by Shin et al. [20]. A
constant static slowdown is computed for the task set. Since
all tasks have the same slowdown, the blocking time will in-
crease by the same factor and we guarantee deadlines. (If
tasks have different slowdown factors, the blocking time can
increase more than expected and lead to deadline misses.)
We transform the task set to an independent task set.

Transformation | (T1) : For each task;, the execution time
Ci is increased by its blocking timB;. Since a task can ex-
perience a maximum blocking time &, it is guaranteed
to meet its deadline in the presence of blocking (provided
all blocking tasks have the same or higher slowdown). The
transformed task set i§ = {1;,---,T,} where each task

T, =< T, D, (G + Bi) >. The transformed tasks can be con-
sidered independent and we compute slowdown factors. A
constant slowdown for all tasks guarantees deadlines.

Transformation 11 (T2) : We add a new task called the block-
ing taskty, in the system. LeE, = max(B;) andT, = max(T;),
then the blocking tasky =< Ty, Tp,Cp >. This task is as-
signed the highest priority task in the system (regardless of
its period). Given the sorted list of tasks in descending order
of priority, T is added at the head of the list. By adding task
Tp with highest priority,C, will be added in the computa-
tion of the slowdown at each scheduling pdjt Satisfying

the schedulability task for this transformed task set satisfies

Table 1: Energy Consumption

[example] CSS | CSMS | T1 [T2 |
FCS | 3254.08| 3395.18| 4362.43| 3463.57
EES | 1163.78| 1443.13| 1634.14| 1209.54
MRS | 1731.69| 2325.60| 2802.53| 1754.80

the schedulability test given in Equation 4. A constant slow-
down for all tasks guarantee deadlines. Thus the computed
slowdown factors will guarantee meeting all deadlines.

The above algorithms were used for three application sets given
in the Prototyping Environment for Embedded Real Time Systems
[9] (PERTS) software. The application sets are from various do-
mains and comprise dflight Control System (FCSENd to End
Scheduling (EES)and Multiple Resource Scheduling (MRS

consumption. Energy consumption of T2 is the closest to that of
CSS. The workload of the blocking task in T2 is the maximum
over the blocking factors of each task. Since the blocking time is
only a small fraction of the total execution time, the difference is
small. Energy consumption of CSMS is also greater than that of
T2. Thus running the ical section at full speed is not energy ef-
ficient. However we have to note that in the transformation T2, the
blocking taskneeds to have the highest priority. This task violates
the rate monotonic property and special care needs to be taken to
enforce its priority. This may not be easy to apply and changes in
existing algorithm might be needed.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have given algorithms to compute static slow-
down factor for a periodic task set. We take into consideration the
effect of blocking that arises due to task synchronization. Exper-

task set on multiple resources is converted to an equivalent taskimental results show that the computed slowdown factors save on

set by scaling the execution period.

Comparison of Energy consumption
normalized to the CSS schedule
1.8
1.6 T
5 _ 14 = —
2.8 1.2 - |mcss
5 g 14 - |mcsms
-
N 208 - — OoT2
w® S
£8 067 — (aT1
S 04 —
0.2 1 —
0
FCS EES MRS
Examples
Figure 4: Normalized energy consumption for the slowdown
methods

an average 25%-30% energy over the known techniques. The algo-
rithms have the same computational complexity as that of the slow-
down algorithms in literature [4] [20]. The techniques are practi-
cally fast and very energy efficient. These techniques can be easily
implemented in a RTOS. This will have a great impact on the en-
ergy utilization of portable and battery operated devices.

We plan to further exploit the static and dynamic slack in the
system to make the system more energy efficient. We have com-
puted slowdown factor for a rate monotonic scheduler. As a future
work, we plan to compute the slowdown factors for other schedul-
ing policies such as earliest deadline first (EDF) and fixed priority
scheduling. We will be implementing the techniques in a RTOS
such as eCos and measure the power consumed on a real processor.

Acknowledgments

The authors acknowledge support from National Science Foun-
dation (Award CCR-0098335) and from Semiconductor Research
Corporation (Contract 2001-HJ-899). We would like to thank Man-
jari Chhawchharia and Cristiano Pereira at the Center for Embed-
ded Computing Systems (CECS), for the helpful discussions. We
would also like to thank the reviewers for their useful comments.

Each system (example) has resources which are shared by the

tasks in a mutually exclusive manner. We have used the priority
ceiling protocol (PCP) to manage the resousiceesses and have
computed the maximum blocking time for each task under this pro-

tocol. The slowdown factors have been computed using the various

algorithms and the task set is simulated for a time period equal to

the hyper-period of the task set. The energy consumption is shown

in Table 1. It is seen that the CSS algorithm performs better than
the other algorithms in all the examples. It does better than the
CSMS where a slowdown is computed for the non critical sections
of all the tasks. A uniform slowdown is more energy efficient if an
equal amount of slack idilized (due to slowdown). The apoint of
slack utilized by the CSMS algorithm is not much greater than the
the slack utilized by the CSS algorithm. So an uniform slowdown
is more energy efficient. Figure 4 shows the energy consumption

of each method normalized to the energy consumption of the CSS

algorithm.
The slowdown factors computed by T1 are worse compared to

CSS as the blocking factors are added to each task. Thus in the [5]

static slowdown analysis, we add up the blocking factors of the
higher priority tasks for every instance of the higher priority task.

This adds up to an additional (unnecessary) blocking time in the
analysis, leading to a higher (worse) slowdown factor. This re-
sults in a lot of slack in the system and T1 has the worst energy

6. REFERENCES

[1] H. Aydin, R. Melhem, D. Moss, and P. M. Alvarez.

Determining optimal processor speeds for periodic real-time

tasks with different power characteristics Haromicro

Conference on Real-Time Systedslft, Holland, June

2001.

H. Aydin, R. Melhem, D. Moss, and P. M. Alvarez.

Dynamic and aggressive scheduling techniques for

power-aware real-time systems.Real-Time Systems

Symposiuiondon, England, December 2001.

[3] T. P. Baker. Stack-based scheduling of realtime processes. In

RealTime Systems Journphges 67-99, 1991.

F. Gruian. Hard real-time scheduling for low-energy using

stochastic data and dvs processorgnternational

Symposium on Low Power Electronics and Desjiages

46-51, 2001.

F. Gruian and K. Kuchcinski. Lenes: task scheduling for

low-energy systems using variable supply voltage

processors. IfProceedings of the Asia South Pacific Design

Automation Conferenc001.

[6] W. Kim, J. Kim, and S. L. Min. A dynamic voltage scaling
algorithm for dynamic-priority hard real-time systems using

[4]

slack time analysis. IDesign Automation and Testin
Europe 2002.

[7] P. Kumar and M. Srivastava. Predictive strategies for
low-power rtos scheduling. IRroceedings of IEEE
International Conference on Computer Design: VLSl in
Computers and Processopages 343—-348, 2000.

[8] P.C. Laboratory. Parsec: A c-based simulation language.
University of Califronia Los Angeles.
http://pcl.cs.ucla.edu/projects/parsec.

[9] R. T. S. Laboratory. Prototyping environment for real-time
systems (perts). University of lllinois at Urbana Champaign
(UIUC). http://pertsserver.cs.uiuc.edu/software/.

[10] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm: exact characterization and average
case behaviour. IReal-Time Systems Symposipages
166-171, 1989.

[11] C.L.LiuandJ.W. Layland. Scheduling algorithms for
multiprogramming in a hard real time environment. In
Journal of the ACMpages 4661, 1973.

[12] J. W. S. Liu.Real-Time SystemBrentice-Hall, 2000.

[13] J. Luo and N. Jha. Power-conscious joint scheduling of
periodic task graphs and a periodic tasks in distributed
real-time embedded systems litternational Conference on
Computer Aided Desigr2000.

[14] P. Pillai and K. G. Shin. Real-tim&ynamic voltage scaling
for low-power embedded operating systemsPtaceedings
of 18th Symposium on Operating Systems Princjj2ee1.

[15] F. P. Preparata and M. I. Sham@amputational Geometry,
An Introduction Springer Verlag, 1985.

[16] G. Quan and X. Hu. Energy efficient fixed-priority
scheduling for real-time systems on variable voltage
processors. IfProceedings of the Design Automation
Conferencepages 828—-833, June 2001.

[17] G. Quan and X. Hu. Minimum energy fixed-priority
scheduling for variable voltage processorsDesign
Automation and Test in Europpages 782—-787, March 2002.

[18] V. Raghunathan, P. Spanos, and M. Srivastava. Adaptive
power-fidelity in energy aware wireless embedded systems.
In IEEE Real-Time Systems Symposigéo1.

[19] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization. In
IEEE Transactions on Computepsages 1175-85, 1990.

[20] Y. Shin, K. Choi, and T. Sakurai. Power optimization of
real-time embedded systems on variable speed processors. In
Proceeding of the International Conference on
Computer-Aided Desigpages 365-368, 2000.

[21] A. Silberschatz, P. B. Galvin, and G. Gag@perating
System Concept3ohn Wiley and Sons, Inc., 2001.

[22] F. Yao, A. J. Demers, and S. Shenker. A scheduling model
for reduced CPU energy. lEEE Symposium on
Foundations of Computer Sciengages 374—-382, 1995.

[23] Y. Zhang, X. S. Hu, and D. Z. Chen. Task scheduling and
voltage selection for energy minimization. Pmoceedings of
the Design Automation Conferen@902.

