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Abstract— Dynamic Power Management or DPM refers to the
problem of judicious application of various low power techniques
based on runtime conditions in an embedded system to minimize
the total energy consumption. To be effective, often such decisions
take into account the operating conditions and the system-level
design goals. DPM has been a subject of intense research in
the past decade driven by the need for low power consumption
in modern embedded devices. We present a comprehensive
overview of two closely related approaches to designing DPM
strategies, namely competitive analysis approach, and model
checking approach based on adversarial modeling. Although
many other approaches exist for solving the system-level DPM
problem, these two approaches are closely related and are based
on a common theme. This commonality is in the fact that the
underlying model is that of a competition between the system
and an adversary. The environment that puts service demands
on devices is viewed as an adversary, or to be in competition with
the system to make it burn more energy, and the DPM strategy
is employed by the system to counter that.

I. I NTRODUCTION

A. Dynamic Power Management

M INIMIZATION of power consumption is rapidly be-
coming the chief optimization criterion in system de-

sign for a range of systems from general purpose computing
to embedded, mobile computing devices. To be useful, such
optimizations must often be done against other competing
criteria, such as functionality delivery within performance and
timing constraints. Often a balance is sought between the
amount of computing (as in local processing) vs the amount
of communication that would be needed as computation is
reduced [1], [2], [3].

This paper is tutorial in nature, and complements the
previous tutorials [4], [5] on DPM, the last of which dates
back to 2000, when none of the approaches surveyed here were
published. Our focus here is on system-level dynamic power
management that can be implemented in the operating sys-
tem. These power saving measures allow for observation and
incorporation of application behavior [6], [7], [4] in aPower
Manager (PM). The PM can change the power consumption
of a device through selection of shutdown/sleep/wakeup states
for the device, or by changing its speed through voltage or
frequency scaling. For historical reasons, system level DPM
generally refers to the techniques that save energy in devices
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by turning these on and off under operating system control.
From an OS point of view, shutdown/wakeup remains a key
decision in effective power management because the effec-
tiveness of speed-scaling is sometimes called into question
due to the process technology effects such as dominance of
leakage [8]. DPM has been studied by several research groups
[9], [10], [7], [6], [11], [12], [13], [14], as well as concerted
industry efforts such as Microsoft’s OnNow [15] and ACPI
[16].

B. Previous Survey

A survey of the DPM techniques developed prior to 2000
can be found in [4], [5]. In these extensive reviews, the solu-
tion approaches to DPM have been classified intopredictive
schemesandstochastic optimum controlschemes [17]. Predic-
tive schemes attempt to predict a device’s usage behavior in
the future, usually based on the past history of usage patterns,
and decide to change power states of the device accordingly.
The chief parameter of interest here is the idleness threshold,
i.e., the time period for a device to transition from an active
state to a sleep state. Work on prediction based dynamic power
management can be categorized into two groups:adaptive
and non-adaptive. Non-adaptive strategies set the idleness
thresholds for the algorithm once and for all and do not alter
them based on observed input patterns. Adaptive strategies,
on the other hand, use the history of idle periods to guide the
decisions of the algorithm for future idle periods. There have
been a number of adaptive strategies proposed in the literature
[9], [18], [13], [10]. In [9], a system-level power management
technique for power savings in event-driven applications is
presented. It discusses a predictive system shutdown method
which uses an exponential-average approach to predict the
upcoming idle period and exploits sleep mode operations for
power saving. [18] presents randomized online algorithms for
snoopy-caching and spin-block problems, that can be applied
to the DPM problem considered here. [19] introduces a finite-
state, abstract system model for power-managed systems based
on Markov decision processes. Under this model, the problem
of finding policies that optimally tradeoff performance for
power can be cast as a stochastic optimization problem and
solved exactly and efficiently. [13] presents two methods for
characterizing non-stationary service requests by means of a
prediction scheme based on sliding windows. It also describes
how control policies for non-stationary models can be derived.
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In [10], authors describe architectural techniques for energy
efficient implementation of programmable computation, par-
ticularly focussing on the computation needed in portable
devices where event-driven user interfaces, communication
protocols, and signal processing play a dominant role.

Stochastic approaches make probabilistic assumptions
(based on observations) about usage patterns and exploit
the nature of the probability distribution to formulate an
optimization problem, the solution to which drives the DPM
strategy. Examples are in [13], [19], [20], [21], [22], [23],
[24], [25], [26]. Until very recently predictive schemes have
been mostly based on devices with two power saving states
(e.g., standby and sleep). In case of multiple states, the
predictive schemes can be extended to use a sequence of
idleness thresholds to determine when to transition to the next
power state. By comparison, multi-state systems are naturally
modeled in most stochastic optimum control approaches [4],
[21], [22], [19], [13], [20], [23]. In particular, [21] formulates
policy optimization for dynamic power management as a
constrained optimization problem on continuous-time Semi-
Markov decision processes (SMDP). [22] discusses a modular
approach for design and simulation of hardware and software
energy consumption at the system level. [20] introduces a
continuous-time, controllable Markov process model of a
power-managed system. In that paper, the problem of dynamic
power management in such a system is formulated as a policy
optimization problem and solved using an efficient “policy
iteration” algorithm. [23] also formulates the problem of
system-level power management as a controlled optimization
problem based on the theories of continuous-time Markov
decision processes and stochastic networks. Examples of ses-
sion clustering and prediction strategies are in [27], online
strategies are in [12], and adaptive learning based strategies
are in [28]. [10] describes architectural techniques for energy
efficient implementation of programmable computation. Lu
et. al. in [29] provide a quantitative comparison of various
power management strategies. Most adaptive dynamic power
management strategies [9], [10], [12], [18], [13], [27] use
a sequence of past idle period lengths to predict the length
of the next idle period. These strategies typically describe
their prediction for the next idle period with a single value.
Given this prediction, they transition to the power state that
is optimal for this specific idle period length. In the case
the prediction is wrong, they transition to the lowest power
state if the idle period extends beyond a fixed threshold value.
For the sake of comparison with other approaches, we shall
call these predictive DPM schemesSingle-Value Prediction
schemes (SVP). Among SVPs, of particular interest is [28]
that addresses multiple idle state systems using a prediction
scheme, based on adaptive learning trees, that improves the
hit ratio of the predicted interval significantly.

C. Competitive and Adversarial Modeling

Online algorithms [30] have been designed and analyzed
in the theoretical computer science arena primarily using
competitive analysis. The idea behind this technique is that
an online algorithm is presented input in a continuous stream

as it is executing, and hence cannot analyze the input in its
entirety before processing it. In this scenario, the usual worst-
case analysis can force any algorithm to perform arbitrarily
badly and therefore does not provide a meaningful way to
distinguish between different algorithms. Therefore, we com-
pare the performance of an online algorithm that processes
the input in a continuous stream to anoffline algorithmthat
gets the same input in advance and can process the entire input
before producing any output. Thecompetitive ratiois the worst
case over all input sequences of the performance of the online
algorithm divided by the performance of the offline algorithm.
Another way to view this type of analysis is to think of the
online algorithm as playing against an adversary. While the
adversary is devising the worst possible input sequence for
the algorithm, he must keep in mind that he must also process
the input sequence, but in an offline manner. The adversary
is devising an input sequence that will maximize the ratio
between the cost of the online algorithm and the cost of the
optimal offline algorithm.

Now consider another approach. Model checking [31] is a
technique of verifying systems which can be looked upon as
if an adversary is creating a path into a state transition model
of the system to falsify a property that the model checking
engine is trying to prove correct. In other words, if a system
is trying to save power, and the designer of the system wants
to guarantee that the system will never burn more than a
certain amount of energy within a certain number of steps, an
adversary can create an input sequence which may violate that,
and in that case the designer’s bound is disproved. If designers
bound is proven by the model checker, that establishes a
competitive ratio. This view was experimentally validated in
[11], and the SMV model checker was used to establish the
competitive ratio of a number of DPM strategies which were
already calculated using analytical arguments in [32].

The parallel drawn between competitive analysis and model
checking in [11] by itself is not as useful other than the
analogy it draws between the two. However, it indicated an ad-
versarial framework in which DPM strategies can be designed
and analyzed. What became potentially more interesting was
the work in [24], [33] where probabilistic model checking tool
PRISM was used to carry out this adversarial view further
into the domain of stochastic DPM design and analysis using
probabilistic models. This tutorial therefore brings together for
the first time the main results in competitive analysis based
techniques and model checking based techniques under the
unified theme of adversarial reasoning/modeling based DPM.

D. The System Model

Consider a single peripheral device whose power state is
managed by the operating system. The device can be in one
of the n power states denoted by{s1, ..., sn}. The power
consumption for statei is denoted byαi. Without loss of
generality, we assume that the states are ordered so that
αi > αj for i < j. Thus, states1 is the ready state which
is the highest power consumption state. (As an example, the
ACPI [16] standard specifies the different devices classes and
their recommended power states in an Intel PC platform.)
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In addition to the states, we are also given (typically either
measured or from the device manufacturer’s specification)
the transition powerpij , and transition timestij , to move
from statesi to sj . Often, the power needed and time spent
to go from a higher (power consumption) state to a lower
state is negligible. In these cases, stronger results can be
obtained. However, this condition does not necessarily hold for
all systems. Predictive schemes often consider the transition
power and transition time numbers as deterministic as we
do here [7], [13], [28], [9], [14], [34], [12], whereas in
stochastic approaches these numbers are used as parameters
to the probability distributions assumed. In some cases, these
numbers are experimentally determined [27], [29], [35]. An-
other characteristic of predictive schemes is that they generally
transition to the ready state when powering up and not to an
intermediate (higher powered) state. Schemes using predictive
wake-up [29], [28] are a notable exception and beyond the
scope of this paper. However, stochastic strategies often have
probabilistic predictive wakeup built into DPM algorithm. As
a result, when discussing deterministic DPM we only need the
time and total energy consumed (βi) in transitioning up from
each statei to the ready state.

The input to the PM is a sequence of requests for service
that arrive over time. If the device is busy when a new request
arrives, it enters a queue and is served on a first-come-first-
serve basis. In this case, there is no idle period and the device
remains active through the time that the request is finished.
Thus, the number of idle periods is less than the number of
requests serviced. Whenever a request terminates and there
are no outstanding requests waiting in the system, an idle
period begins. In these situations, the PM determines the power
consumption states the device should transition and at what
times.

If the device is not busy when a new request arrives, it
will immediately transition to the ready state to serve the
new request if it is not already there. In the case where
the device is not already in the ready state, the request can
not be serviced immediately, but will have to incur some
latency in waiting for the transition to complete. This delay
will cause future idle periods to be shorter. In fact, if a
request is delayed, some idle periods may disappear. Thus,
the behavior of the algorithm affects future inputs (idle period
lengths) given to the algorithm. Similarly, note that without
performance constraints, delaying the servicing of a request
will tend to lower the power usage. Consider the extreme
case where the power manager remains in the deepest sleep
state while it waits for all the requests to arrive and then
processes all of them consecutively. This extreme case is not
allowed to happen in our model since we require that the
strategy transition to the ready state as soon as any request
appears. However, it illustrates the natural trade-off which
occurs between power consumption and latency. See [12] for
a more extensive discussion of this trade-off.

E. Model Checking Approach for DPM

A common method for prediction of the next idle period
is to use some form of regression equation over the pre-

vious idle periods, and/or use of interpolation or learning-
based techniques. In contrast to thesead hoc techniques, the
stochastic DPM literature tends to be more formal in the
sense that assumptions are made as to the characteristics of
the probability distribution of idle periods, device response
times etc. These are then used to formulate the optimization
problems. Much of the stochastic DPM strategy literature uses
Markov models, based on assumptions about how and when
requests can arrive (whether at certain time points or at any
time). For example, discrete-time and continuous-time Markov
chains have been used.

Our focus on formal methods is from the point of view of
developing DPM strategies that attempt to ensure bounds on
the efficiency of achievable power reduction and power/latency
tradeoffs without the need for time consuming simulation
techniques. We seek methods that can determine these bounds
either in the deterministic or probabilistic sense.

The remainder of this tutorial paper is organized as fol-
lows. Section 2 focuses mostly on predictive schemes. This
presentation complements the survey in [4] by focusing on the
more recent work in the area. We introduce the basic concepts
of online algorithms and competitive analysis in the context
of DPM. Section 3 considers the stochastic approaches to
DPM. Section 4 describes the most recent approaches based on
probabilistic model checking. Finally, Section 5 summarizes
the tutorial.

II. DPM AS AN ONLINE PROBLEM

Dynamic power management is an inherentlyonline prob-
lem, in that the power manager must make decisions about
the expenditure of resources before all the input to the system
is available [36]. The input here is the length of an upcoming
idle period and the decision to be made is whether to transition
to a lower power dissipation state while the system is idle. A
short idleness threshold will lead to higher power-up costs,
whereas a large threshold would lead to suboptimal power
usage. Analytical solutions to such online problems are often
best characterized in terms of acompetitive ratio[30] that
compares the cost of an online algorithm to the optimal
offline solution which knows the input in advance (and thus
chooses the best assignment of power states). Earliest work on
competitive analysis of dynamic power management strategies
presents bounds on the quality of the DPM solutions [12], [18],
[37].

A. Competitve Analysis of Deterministic DPM

An algorithm isc− competitive if, for any input, the cost
of the online algorithm is bounded byc times the cost of
the optimal offline algorithm for that input. Thecompetitive
ratio of an algorithm is the infimum over allc such that the
algorithm isc-competitive. It has been known for some time
that 2 is the optimal competitive ratio that can be achieved for
any two-state system by a deterministic algorithm. A succint
proof of this fact can be found in [30]. We will sketch the
idea behind this result in order to illustrate how competitive
analysis works. Since the system has only two states, we call
these the active and the sleep state. Letβ be the energy cost to
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transition from the sleep to the active state. Letα be the power
dissipation rate in the active state. Without loss of generality,
we assume that the power dissipation in the sleep state is zero.

The optimal offline algorithm is assumed to know the length
T of the idle period in advance. Thus, it chooses the best
state for this idle period length and stays in that state for the
duration of the idle period. Staying in the active state costsαT .
Transitioning immediately to the sleep state costsβ because
the algorithm must transition back to the active state at the
end of the idle period. This means that the cost for the optimal
offline algorithm for an idle period of lengthT is min{αT, β}.

Since the online algorithm does not know the length of the
idle period in advance, it selects a threshold,τ (conceptually
same as timeout) and stays in the active state for timeτ after
which it transitions to the sleep state if the system is still idle.
If the idle period lengthT is less thanτ , its cost isαT . If
the idle period is longer thanτ , its cost isβ +ατ . The online
algorithm seeks to minimize the ratio of its cost to the cost of
the optimal offline algorithm for allT . It can be shown that
if τ = β/α, this ratio is never more than two. The worst case
for the online algorithm is if the idle period ends immediately
after it transitions to the sleep state. This puts a tight bound
of 2 for the competitive ratio of any deterministic algorithm.

For multi-state systems, the situation is a bit more complex
in that the optimal competitive ratio will, in general, depend on
the parameters of the system (e.g. the number of states, power
dissipation rates, start-up costs, etc.). In [34], a generalization
of the 2-competitive algorithm for two-state systems is given
for multi-state systems that also achieves a competitive ratio of
2. In general, this bound is not tight because it may be possible
to attain a better competitive ratio for specific systems. The
bound holds under the assumption that the cost to transition
from a higher power state to a lower power state is negligible.
We note that in the special case where for anyi < j < k, the
cost to go fromi to j and then fromj to k is the same as
the cost of going fromi directly down tok (i.e. there is no
penalty for stopping at a state on the way to another state),
the costs to transition downward can be folded into the cost
to transition back up to the active state. The algorithm is non-
adaptive since it does not use any information about the arrival
sequence of jobs to the device.

More recently, [38] have developed competitive algorithms
for multi-state systems that work for arbitrary transition costs
on the states. The authors give an online algorithm that obtains
a competitive ratio of 8. This can be improved to 5.828 under
the very reasonable assumption that the transition power to
move from statesi to sj , pij is greater than the transition
power to move from statesi to sl, pil for any i < l < j.
They also develop ameta-algorithm(i.e., a DPM algorithm
generator) that takes as input the parameters of a system and
produces a DPM strategy (sequence of states and threshold
times). The strategy they produce is guaranteed to achieve
a competitive ratio that is within an arbitraryε of the best
possible competitive ratio for that system. The running time
of the meta-algorithm is polynomial in the number of states
and1/ε. The algorithm uses a decision algorithm which, given
a value for ρ and a description of a device (states, power
consumption rates and transition costs), determines if there

is a ρ-competitive algorithm for that system. Then a binary
search for the optimalρ can be performed since it is known
to lie in the interval between one and eight.

Another direction that has recently been undertaken is to
combine DPM strategies with Dynamic Speed Scaling (DSS)
for devices that have both the ability to run at varying speeds
and the ability to shut down when idle [39]. Note that we
choose the more general termDynamic Speed Scalingin order
to ecompassDynamic Frequency ScalingandDynamic Voltage
Scaling. The basic idea of all of these is that the speed of a
device can be reduced to save power. In the combined DSS
and DPM problem, the power consumption rate of a device is
assumed to be a continuous function of the speed at which it
runs. In addition, the power consumption rate when the speed
is zero (i.e. the device is idle) is greater than zero. The system
has the option to transition to a sleep state when idle in order
to reduce the power consumption rate. There is a fixed cost
then to transition back to the active state. The input to this
problem consists of a set of jobs with release times, number
of execution cycles and deadlines. Each job must be completed
in the interval between its release times and deadline.

Combining the two problems of DSS and DPM, introduces
challenges which do not appear in either of the original
problems. In DPM, the lengths of the idle intervals are given
as part of the input whereas in the combined problem they
are created by the scheduler which decides when and how
fast to perform the tasks. In DSS, it is always in the best
interest of the scheduler to run jobs as slowly as possible
within the constraints of the arrival times and deadlines due
to the convexity of the power function. By contrast in the
combined problem, it may be beneficial to speed up a task in
order to create an idle period in which the system can sleep.
An offline algorithm is described that is within a factor of two
of the optimal algorithm as well as an online algorithm with a
constant competitive ratio. Some of the same issues are dealt
with in [40] in which process schedulers have some latitude
in scheduling the execution of tasks so as to maximize the
benefit of dynamic power scheduling.

B. Probabilistic Analysis

As discussed above, competitive analysis often gives overly
pessimistic bounds for the behavior of algorithms. This is
because competitive analysis is a worst-case analysis. In many
applications there is structure in the input sequence that can
be utilized to fine tune online strategies and improve their
performance. Indeed, important earlier works in this area [19],
[20] have relied on modeling the distribution governing inter-
arrival times as an exponential distribution. In practice, such
stochastic modeling seems to hold well for specific kinds of
applications. However, these assumptions have led to compli-
cations in other settings due to phenomena such as the non-
stationary nature of the arrival process, clustering, and the lack
of independence between subsequent events. These problems
have been addressed to some extent in [27], [28].

In [34], we introduced an approach that models the up-
coming input sequence by a probability distribution that is
learnt based on historical data. One of the strengths of this
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method is that it makes no assumptions about the form
of this distribution. Once the distribution is learnt, we can
automatically generate a probability-based DPM strategy that
minimizes theexpectedpower dissipation given that the input
is generated according to that distribution based on the notion
of a probabilistic competitive ratio[14].

The strategies discussed below use a probability distribution
governing the length of the idle periods to determine the
optimal power-down strategy. The strategy once produced is
completely deterministic. It is well known that if the input to
an algorithm is generated by a known probability distribution,
then using a probabilistic strategy gives no benefit [34]. This
is in contrast to the work discussed in the previous section
which examines strategies using a worst-case analysis. In
analyzing strategies under a worst-case scenario, the use of
randomization can improve upon deterministic strategies.

1) Optimizing Power Based on a Probability Distribution:
Let us suppose that the length of the idle interval is generated
by a fixed, known distribution whose density function isπ. Let
us consider systems with two states. As before, letβ be the
start-up energy of the sleep state andα the power dissipation
of the active state. Suppose that the online algorithm usesτ as
the timeout or threshold at which time it will transition from
the active state to the sleep state if the system is still idle.
In this case, theexpectedenergy cost for the algorithm for a
single idle period is given as:

∫ τ

0

π(t)(αt)dt +
∫ ∞

τ

π(t)[ατ + β]dt.

The best online algorithm will select a value forτ which
minimizes this expression. On the other hand, the offline opti-
mal algorithm which knows the actual length of an upcoming
idle period will have an expected cost of:

∫ β/α

0

π(t)(αt)dt +
∫ ∞

β/α

π(t)βdt.

It has been shown that for the 2-state case, the online algorithm
can pick its thresholdτ so that the ratio of its expected
cost to the expected cost of the optimal algorithm is at most
e/(e − 1) = 1.58 [18], [34]. Furthermore, the result is tight
in that there are distributions for whiche/(e − 1) is the best
ratio that can be achieved. A generalization of the two-state
algorithm to the multi-state case is given in [14]. The gen-
eralized algorithm is called the Probabilistic Lower Envelope
Algorithm (or PLEA) and the authors have shown that for any
probability distribution and any system in which power-down
costs are negligible, PLEA is no worse thane/(e − 1) times
the optimal offline algorithm. The results in [38] show that
PLEA is optimal in that it minimizes the expected cost over
all power-down strategies for any probability distribution for
any system in which power-down costs are negligible. (Note
that thee/(e − 1) bound is only tight for some but not all
distributions.) The results in [38] generalize PLEA even further
to give a power-down strategy which is provably optimal for
any multi-state system, with no restriction on transition costs,
when the length of the idle period is generated by a known
probability distribution. The analysis of the two-state case

plays an important role in all of these extensions to multi-state
systems. In particular, it is proven in [38] that if the optimal
strategy transitions from some statei directly to some state
j, the optimal time for that transition will be the same as the
optimal transition time for a two-state system in which state
i and statej are the only two states in the system. Thus, the
problem of simultaneously optimizing many transition times
is reduced to finding pair-wise optimal transitions.

Thus, a knowledge of the input pattern and its use can help
bridge the gap between the performance of an online strategy
and that of the optimal offline strategy. Results show the the
worst case competitive ratio can be improved by 21%, with
respect to the deterministic case [34].

2) Learning the Probability Distribution:The algorithm
PLEA above assumes perfect knowledge of the probability
distribution governing the length of the idle period. Rather
than assuming such a distribution, it can be learnt based on
recent history. For instance, a learning scheme in conjunction
with PLEA is called the Online Probability-Based Algorithm
(OPBA). The probability estimator works as follows: a win-
dow sizew is chosen in advance and is used throughout the
execution of the algorithm. The algorithm keeps track of the
last w idle period lengths and summarizes this information in
a histogram. Periodically, the histogram is used to generate a
new power management strategy.

The set of all possible idle period lengths(0,∞) is par-
titioned into n intervals, wheren is the number of bins in
the histogram. Letri be the left endpoint of theith interval.
The ith bin has a counterci which indicates the number of
idle periods among that lastw idle periods whose length fell in
the range[ri, ri+1). Instead of using the continuous probability
distributionπ with PLEA as described in the previous section,
we use a discrete distribution, where the probability the idle
period has lengthri is ci/w. A similar approach was taken
for a two state system in the context of determining virtual
circuit holding time policies in IP-over-ATM Networks [37].

Efficient implementation of such an algorithm is important
to ensure overall gains in power reduction. In [34], we present
an implementation for finding them − 1 thresholds in time
O(mn), where m is the number of states andn is the
number of bins in the histogram. Two important factors which
determine the cost (in time expenditure) of implementing our
method is the frequency with which the thresholds are updated
and the number of bins in the histogram. Selecting the right
granularity for the histogram is an important consideration
since there is a tradeoff between efficiency and accuracy. The
algorithm employs non-uniform bin sizes so as to have a high
degree of accuracy in critical regions. The reader is referred
to [34] for a description of how system parameters are used
to select bin sizes.

While the approach in [34] is provably close to optimal
if the probability distribution is known, the techniques used
to learn and represent the probability distirbution based on
recent history are heuristic. A more formal approach to this
problem is taken in [41] which looks at the complexity of
determining the optimal power-down treshold in a two-state
system in which a long sequence of idle periods is generated
by a fixed but unknown probablity distribution. They give a
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method which usesO(1) time and space and converges to
the optimal online algorithm for that distribution. It would be
intersting to extend these ideas to a multi-state case.

III. STOCHASTIC APPROACHES TODPM

We now discuss the stochastic version of the DPM prob-
lem. The problem basically requires one to devise a strategy
(policy) which isprobabilistic, in the sense that the actions to
be taken by the strategy have probabilities attached to them.
Unlike deterministic strategies, where a particular state of the
system will lead the strategy to take a deterministic action,
here, the strategy can choose between multiple actions with
pre-designated probabilities.

A. Stochastic Learning Feedback Hybrid Automata for DPM

Hybrid automata are composed of discrete states, the states
of automaton, and continuous dynamics, the differential equa-
tions that govern the continuous variables in each state. In
the DPM approach presented in [42], [43], this compositional
similarity of hybrid automata with embedded systems (having
multiple power-down modes) is exploited to model such
systems with a timed hybrid automaton. The discrete states
of the hybrid automaton are used to model the power modes
of the system, while the continuous dynamics account for the
power consumed in each mode. The DPM is formulated as
a hybrid automaton control problem where the control strat-
egy is learnt dynamically using Stochastic Learning Hybrid
Automata (SLHA) with feedback learning algorithms.

First, a mathematical model of the system is constructed,
which includes various states, each representing a power mode
of the system. The model uses dynamically updated internal
variables for evaluating the total energy spent by the system
and the temporary clock. These are governed by the continuous
dynamics specific to each state. The total latency incurred
by requests in the system and the cumulative request length
are updated regularly. Control is added to the model to guide
the automaton through power modes while the system is idle.
For this, an externally handled control variable is used which
manages the sequence of states that the system follows during
an idle period.

Next, a stochastic learning feedback hybrid automata
(SLHA) model for DPM is developed [42], [43], where the
value of the control variable is managed using probabilities
of switching between states. For this, a stochastic control is
incorporated to the hybrid automaton, and learning feedback is
added to the previous mathematical model. In this model, the
system attempts to learn the length of the future idle period
probabilistically and, accordingly, decides on the behavior to
observe during idle time. For this, the external variable of
the mathematical model is replaced by the action probabil-
ities, which are frequently recomputed using reinforcement
techniques. Every allowed state transition is labeled by an
action probability that represents the probability of switch-
ing from one state to the other. Several feedback stochastic
learning algorithms (General Linear Reward- Penalty Scheme,
Symmetric Linear Reward-Penalty Scheme, Linear Reward-
Inaction Scheme etc.) are incorporated in this model for

educating the system to choose the optimal action. Given a
set of permitted actions in every state of a system, the system
chooses the optimal action to execute at every stage using
these learning techniques.

Two power-up strategies are used in this work, namely,
wake-up “On-Demand” and “Preemptive” activation. In both
these approaches, the system is ordered to switch to a lower
power mode at the start of the idle period. Wake-up “On
Demand” orders the system to remain in the lower-power
mode until receipt of a request. The system must immediately
switch to the active state upon the receipt of a request. With
“Preemptive” activation, the system remains in the lower-
power state for a lesser period of time, powering-up to the
active state in order to be active at the arrival of the request.

To study the behavior of the SLHA systems, a model of
a four-state mobile hard-drive from IBM was employed for
simulating DPM [42], [43]. First, the simulations were per-
formed to determine the optimal configurations of the SLHA
model to reach the correct convergence in stationary environ-
ments. Then, these configurations were used to simulate the
SLHA model with the real input distributions, obtained using
input files that were adapted from trace data obtained from
the auspex file server archive. Simulations were performed
in two categories: optimization of energy and latency, and
optimization of only energy.

From the competitive ratios, it was observed that “On
Demand” wake-up tends to better minimize energy and la-
tency expenditure than the “Preemptive” wake-up method.
Moreover, configurations corresponding to the first nonlinear
reinforcement scheme with high reward and penalty param-
eters perform the best minimization of energy for the pre-
sented traces. Furthermore, configurations corresponding to
the second non-linear updating scheme with a high reward
parameter and a high degree of nonlinearity perform the best
minimization of latency for the presented traces.

In general, the SLHA mathematical model is claimed to
prove its superiority compared to the former DPM strategies
presented in literature with “Preemptive” wake-up for the
examined input patterns. For wake-up “On Demand”, results
were enhanced either for the conservation of energy or the
prevention of latency, but optimality was not reached for both
figures simultaneously. The proposed SLHA model is also
claimed to offer a high versatility for the DPM problem.

B. Other Stochastic Approaches

In recent years, several other approaches for designing
stochastic DPM strategies have been proposed [44], [19], [4],
[13], [20], [23], [45], [21], [22]. These methodologies are
based on a stochastic model of the DPM problem, which
incorporates the probabilistic characteristics of request arrivals
to the device, the device response time distribution, the power
consumption by the device in various states and the distri-
bution of energy consumption in changing states. From this
stochastic model, an exact optimization problem is formulated,
the solution to which is the required optimal stochastic DPM
policy. The strategy devised must ensure that power savings
are not achieved at an undue cost in performance. For example,
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a new request should be always served in a reasonable time.
The constructed policy optimizes theaverageenergy usage
while minimizing average delay. The policies are usually
validated by simulation to check for the soundness of the
modeling assumptions, and the effectiveness of the strategies
in practice [20], [44].

The stochastic models which have been used in the literature
are discrete-time Markov chains [44], [19], continuous-time
Markov Chains [20], [23], [45] or their variants [21], [22]. The
approaches vary in the model of time. In the continuous-time
case,modeswitching commands can be issued at any time,
and events can happen at any time. In the discrete-time case,
all events and actions occur at certain discrete time points.
The continuous-time assumption makes the formulation of the
problem easier. In practice, such stochastic modeling seems
to work well for specific kinds of applications. Generally, the
stochastic matrices for these models are created manually. In
[45], stochastic Petri nets are used, which allows automatic
generation of the stochastic matrices and formulation of the
optimization problems. [44] describes power-managed systems
using a finite-state, stochastic model. In [23], authors formulate
the problem of system-level power management as a controlled
optimization problem based on the theories of continuous-
time Markov decision processes and stochastic networks. [21]
formulates policy optimization as a constrained optimization
problem on continuous-time Semi-Markov decision processes
(SMDP). [22] presents a modular approach for design and
simulation of hardware and software energy consumption at
the system level.

IV. DPM A NALYSIS USING PRISM

A. Short Introduction to Probabilistic Model Checking

Probabilistic Model Checking(PMC) offers a promising
way to verify stochastic approaches to DPM as shown in [24],
[33]. The idea is to construct a probabilistic model of the
system under study. As in the deterministic case, this is usually
a labeled transition system which defines the set of all possible
states and the transitions between these states. In PMC, the
model is augmented with information about the likelihood
that each transition will take place. Examples of such models
are discrete-time Markov chains (DTMCs), continuous-time
Markov chains (CTMCs) and Markov decision processes
(MDPs). The properties to be verified, are specified typically
in probabilistic extensions of temporal logic. These allow
specification of properties such as: “shutdown occurs with
probability at most 0.01”; or “the video frame will be delivered
within 5ms with probability at least 0.97.” The properties can
be verified with a probabilistic model checker either as graph-
based analysis and solution of linear equation systems or linear
optimization problems [46].

Like the conventional, non-probabilistic case, probabilistic
model checking usually constitutes verifying whether or not
some temporal logic formula is satisfied by a model. The
two most common temporal logics for this purpose are PCTL
[47], [48] and CSL [49], [50], both extensions of the logic
CTL. PCTL is used to specify properties for DTMCs and
MDPs and CSL is used for CTMCs. One common feature

of the two logics is the probabilisticP operator, which
allows one to reason about the probability that executions
of the system satisfy some property. For example, the for-
mula P≥1[♦ terminate] states that with probability 1, the
system will eventually terminate. On the other hand, the
formula P≥0.95[¬repair U≤200 terminate] asserts that with
probability 0.95 or greater, the system will terminate within
200 time steps and without requiring any repairs. These
properties can be seen as analogues of the non-probabilistic
case, where a formula would typically state thatall executions
satisfy a particular property, or thatthere existsan execu-
tion which satisfies it. CSL also provides theS operator to
reason about steady-state (long-run) behavior. The formula
S<0.01[queue size = max], for example, states that in the
long-run, the probability that a queue is full is strictly less
than 0.01. Further properties can be analyzed by introducing
the notion of costs (or, conversely,rewards). If each state
of the probabilistic model is assigned a real-valued cost, one
can compute properties such as the expected cost to reach a
certain states, the expected accumulated cost over some time
period, or the expected cost at a particular time instant. As in
the previous paragraph, such properties can also be expressed
concisely and unambiguously in temporal logic [51], [52].

B. PRISM

PRISM [46], [24], [33] is a probabilistic model checker
developed at the University of Birmingham in England. In
[24] and [33], PRISM was used for deriving stochastic DPM
policies for disk-drives, and was shown to be a uniform frame-
work in which DPM policies can be derived and evaluated. The
basic approach is to build a probabilistic model of the DPM
system from which, for a given constraint, an optimization
problem is constructed. The solution to this problem is the
optimum randomized power management policy satisfying this
constraint.

Once an optimal power management policy has been con-
structed, it must be validated to ensure it performs as intended.
Possible approaches are to use trace-based simulation or to
actually implement the schemes in device drivers. The advan-
tage of PMC is that it allows one to validate and analyze the
policies statically leading to a wide range of useful information
about the policy to be generated.

Modeling DPM in PRISM:While PMC has been applied
to both DTMCs [44], [19] as well as CTMCs [20], [23],
[45], we focus on the former here. The approach is described
through the example of [44], [19], an IBM TravelStar VP disk-
drive [53]. The device has 5 power states, labelledsleep, stby,
idle, idlelp andactive. It is only in the stateactivethat the drive
can perform data read and write operations. In stateidle, the
disk is spinning while some of the electronic components of
the disk drive have been switched off. The stateidlelp (idle low
power) is similar except that it has a lower power dissipation.
The statesstby and sleepcorrespond to the disk being spun
down. Based on the fastest possible transition performed by
system, one can choose a time resolution of 1ms for the model,
i.e., each discrete-time step of the DTMC will correspond to
1ms.
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The system model shown in Figure 1 [19] consists of:
a Service Provider (SP), which represents the device under
power management control; a Service Requester (SR), which
issues requests to the device; a Service Request Queue (SRQ),
which stores requests that are not serviced immediately; and
the Power Manager (PM), which issues commands to the
SP, based on observations of the system and a stochastic
DPM policy. Each component is represented by an individual
PRISM module, which we now consider in turn. Below, we
provide the examples of some of those components.

Service Provider 
(SP)

CommandsState Observations

(SR)

(SRQ)

Power Manager (PM)

Requester 

Service Request Queue

Service

Fig. 1. The System Model

Modeling the Power Manager(PM), Service Requester (SR)
and Queue(SRQ) :The PM decides to which state the SP
should move at each time step. To model this, each step is
split into two parts: in the first, the PM (instantaneously)
decides what the SP should do next (based on the current
state); and in the second, the system makes a transition
(with the SP’s move based on the choice made by the PM).
These steps are synchronized with other components using two
synchronization actionstick1 and tick2. Figure 3 shows an
example PM in PRISM.

Both the SRQ and the SR will synchronize ontick2. The
SR has two states:idle where no requests are generated and
1req where one request is generated per time step (1ms). The
module of the SR is given by:

module SR

sr : [0..1] init 0;
// 0 - idle and 1 - 1req

[tick2] sr=0 → 0.898 : (sr′=0) + 0.102 : (sr′=1);
[tick2] sr=1 → 0.454 : (sr′=0) + 0.546 : (sr′=1);

endmodule

The transitions between the states of the SR module are
based on time-stamped traces of disk access measured on real
machines [19]. The above module specifies that if SR is in the
idle state, then it will remain in the same state with probability
0.898, and will transition to the1req state with probability
0.102. On the other hand, if SR is in the1req state, then it
will remain in the same state with probability 0.546, and will
transition to theidle state with probability 0.454. Both these
transitions will take place attick2.

The SRQ models queue of service requests. It responds to
the arrival of requests from the SR and the service of requests
by the SP. The queue size will only decrease when the SR and
SP are in statesidle andactive, respectively. Similarly, it will
only increase when the SR is in state1req and the SP is not
active. The PRISM code is as follows:

const QMAX = 2; //maximum size of the queue

module SRQ

q : [0..QMAX] init 0; // size of queue

// SP is active
[tick2] sr = 0 ∧ sp = 0 → q′ = max(q − 1, 0);
[tick2] sr = 1 ∧ sp = 0 → q′ = q;
// SP is not active
[tick2] sr = 0 ∧ sp > 0 → q′ = q;
[tick2] sr = 1 ∧ sp > 0 → q′ = min(q + 1, QMAX);

endmodule

C. Policy Construction and Analysis

Using the PRISM language description detailed in the
previous section, the PRISM model checking tool can be
used to construct a generic model of the power manage-
ment system. From the transition matrix of this system, the
linear optimization problem whose solution is the optimal
policy can be formulated, as described in [44], [19]. This
optimization problem is then passed to the MAPLE symbolic
solver. Policies can be constructed such that they satisfy
any required constraints. This helps to formulate policies for
practical purposes which work under the given constraints.
Figure 2 shows policies constructed in this way for a range of
constraints on the average size of the service request queue.
The first column lists the constraints values; the second column
summarizes the corresponding constructed policy.

Average size of SRQ Constructed Optimum Policy

≤ 2 remain sleeping
≤ 1.5 SP active and queue not full: goto idle

SR in state 0, SP sleeping and queue full:
remain sleeping with probability 0.99999953
go to active with probability 0.00000047

SR in state 1, SP idle: goto active
≤ 0.5 SP active and queue not full: goto idle

SR in state 0, SP sleeping and queue full:
remain sleeping with probability 0.99999418
go to active with probability 0.00000582

SR in state 1 and SP idle: goto active
≤ 0.05 SP active, SR in state 0 and queue empty:

remain active with probability 0.63683933
go to idle with probability 0.36316067

SP idle: go to active
SP sleeping: go to active

Fig. 2. Optimum policies under varying constraints on the average queue
size

Once a policy has been constructed, its performance can
be investigated using probabilistic model checking. For this,
the generic power manager PRISM module is modified to
represent a specific policy. Figure 3 shows an example of this
for the constraint “queue size is less than 0.05”. This can be
seen to correspond to the policy in the 4th row of the table
in Figure 2. There, the constructed policy states that under
this constraint, for cases where SP is active, SR is idle (state
= 0), and the queue is empty, SP should remain active with
probability 0.63683933 and it should go to the idle state with
probability 0.36316067. It also states that if SP is either in
the idle state or the sleep state, then it should transition to the
active state. PRISM is then used to construct and analyze the
DTMC for this policy.

The analysis shows that the average power consumption of
a policy decreases as the constraint on queue length used to
construct it is relaxed (i.e. the queue size is larger). One can
also validate the policy by confirming that the expected size of
the queue matches the value in the constraint which was used
to construct it. Finally, it is observed that a side-effect of this
is that the average number of requests lost is also increased.
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module PM

// policy when constraint on queue size equals 0.05
pm : [0..4];
// 0 − go to busy, 1 − go to idle, 2 − go to idlelp
// 3 − go to standbyand4 − go to sleep

[tick1] sr=0 ∧ sp=0 ∧ q=0 →
0.63683933 : pm′=0 //active
+ 0.36316067 : pm′=1; //idle

[tick1] sp=1 → pm′=0; //active
[tick1] sp=9 → pm′=0; //active
[tick1] ¬(sp=9 ∨ sp=1 ∨ (sr=0 ∧ sp=0 ∧ q=0)) →

pm′=pm;

endmodule

Fig. 3. Example input to PRISM for a derived Policy under performance
constraint = 0.05

In Figure 4, the graphical results for a range of policies are
shown from [33]. Using PRISM, one can associate a cost with
each state and then compute the expected accumulated cost of
the system until the required time. Using this assignments of
model states to costs, for a range of values ofT , “expected
power consumption by timeT ”, “expected queue size at time
T ”, and “expected number of lost customers by timeT ”,
are computed and plotted. The first and third properties are
determined by computing expected cost cumulated up until
time T ; the second by computing the instantaneous cost at
time T . Again, we see that policies which consume less power
have larger queue sizes and are more likely to lose requests.
Here, though, one can get a much clearer view of how these
properties change over time. We see, for example, that the
expected queue size at timeT initially increases and then
decreases. This follows from the fact that the strategies wait
for the queue to become full before switching the SP on.

In Figure 5, the probability that a request is served by time
T , given that it arrived into a certain position in the queue is
plotted based on [33]. Figure 6 shows the probability thatN
requests get lost by timeT for N = 500 andN = 1000. Again
this information has been computed for a range of policies and
for a range of values ofT . These properties are computed by
adding additional state variables to the PRISM model. For
those in Figure 6, for example, a variable is added which is
initially zero and is increased each time a customer is lost (up
to a maximum onN ). Then, the probability of reaching any
state where this variable’s value is equal toN , is calculated.

The graphs show that the probability of requests being lost
within a certain time bound increases more quickly for those
strategies that consume less power. These results are to be
expected since, to reduce power, the strategies must force the
service provider to spend more time in low power states which
cannot service requests, e.g.sleepandstandby (stby).

Probabilistic model checking has also been applied [24] to
the stochastic optimum control approach of [20], [23], [45],
which is based on CTMCs rather than DTMCs. Since the
model is a CTMC, components change state according to
exponentially distributed delays and the PM acts when such a
state transition occurs. The construction of optimum policies
from the PRISM model follows the approach of [20], [23],
[45] but is essentially the same overall process. For analysis
of policies, one can consider similar properties to the DTMC
case. The main differences are that the logic CSL is used
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Fig. 4. Power and performance by timeT (ms)

as opposed to the logic PCTL, and that the time boundT
used in the properties is now a real-value as opposed to
a number of discrete steps. In addition, in this case, using
the approach of [25] one can also analyze the policies for
alternative inter-arrival distributions, to give a more realistic
model of the arrival of service requests. For example, Figure 7
shows the performance (average power consumption, average
queue size and average number of lost requests) for optimum
policies under five different inter-arrival distributions. All the
chosen distributions have the same mean and it can be seen
that, with the exception of the Pareto distribution, the long-
run performance and costs are reasonably close to those of
the exponential arrival process. For the Pareto distribution,
the average queue size is generally much smaller. This is due
to the Pareto distribution’sheavy tail: in the long run, many
requests will not arrive for a very long time, in which case the
service provider (SP) will serve all pending requests, leaving
the queue empty.

V. SUMMARY

In this tutorial, we focused on techniques for power manage-
ment that rely on an adversarial modeling approach, namely
competitive analysis, and stochastic model checking for the
evaluation of the effectiveness of DPM algorithms. For de-
terministic models of the system, competitive analysis along
with learning techniques provide a reaonsable framework for
their analysis. Stochastic optimization approaches to DPM can
be analyzed using advances in probabilistic model checking
techniques.
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Fig. 5. Probability that a request is served by timeT (ms)
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Fig. 6. Probability thatN requests gets lost by timeT (ms)

We showed (from [24], [33], [26]) how probabilistic model
checking allows generation of a wide range of performance
measures for the analysis of DPM policies. Statistics such as
power consumption, service queue length and the number of
requests lost can be computed both in the average case and for
particular time instances over a given range. Furthermore, the
policies’ behavior can be examined under alternative service
request inter-arrival distributions such as Erlang and Pareto.
In addition to the exhaustive analysis (including corner-case
scenarios), probabilistic model checking presents an attractive
unified framework for automated construction, validation and
analysis of DPM policies. Unfortunately, the details require
elaboration which we feel is inappropriate for this article, as
it would unnecessarily obscure the main focus. The full details
of the handling of non-exponential distribution based arrival
processes using PRISM can be found in [26].

In this article, we have not been able to cover some new
efforts in power management in the context of power aware
ad-hoc network protocols. Notable among these are the use
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Fig. 7. Analysis of the CTMC case for a variety of inter-arrival distributions

of an economics-based model for networking protocols in [3]
and power aware source routing in [54]. We also did not
discuss DPM models that consider the battery model which
is not considered in any of the approaches discussed above.
In [55], Rong and Pedram provide a stochastic model that
takes into account the current discharge rates by the batteries
in formulating stochastic DPM strategies.
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