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Abstract— Dynamic Power Management or DPM refers to the by turning these on and off under operating system control.
problem of judicious application of various low power techniques  From an OS point of view, shutdown/wakeup remains a key
based on runtime conditions in an embedded system to minimize gyecision in effective power management because the effec-
the total energy consumption. To be effective, often such decisions . . . . . .
take into account the operating conditions and the system-level tiveness of speed-scaling is sometimes called into .questlon
design goals. DPM has been a subject of intense research indue to the process technology effects such as dominance of
the past decade driven by the need for low power consumption leakage [8]. DPM has been studied by several research groups
in modern embedded devices. We present a comprehensive[9], [10], [7], [6], [11], [12], [13], [14], as well as concerted

overview of two closely related approaches to designing DPM j,qystry efforts such as Microsoft's OnNow [15] and ACPI
strategies, namely competitive analysis approach, and model [16]

checking approach based on adversarial modeling. Although

many other approaches exist for solving the system-level DPM

problem, these two approaches are closely related and are based .
on a common theme. This commonality is in the fact that the B. Previous Survey

underlying model is that of a competition between the system A survey of the DPM techniques developed prior to 2000

and an adversary. The environment that puts service demands be f din 141 151 In th stensive reviews. th |
on devices is viewed as an adversary, or to be in competition with can be found in [4], [5]. ese exiensive reviews, the solu-

the system to make it burn more energy, and the DPM strategy tion approaches to DPM have been classified priedictive
is employed by the system to counter that. schemesndstochastic optimum contragichemes [17]. Predic-

tive schemes attempt to predict a device's usage behavior in
the future, usually based on the past history of usage patterns,
and decide to change power states of the device accordingly.
The chief parameter of interest here is the idleness threshold,
INIMIZATION of power consumption is rapidly be- i.e., the time period for a device to transition from an active
coming the chief optimization criterion in system destate to a sleep state. Work on prediction based dynamic power
sign for a range of systems from general purpose computinganagement can be categorized into two grolwamaptive
to embedded, mobile computing devices. To be useful, suahd non-adaptive Non-adaptive strategies set the idleness
optimizations must often be done against other competitiyesholds for the algorithm once and for all and do not alter
criteria, such as functionality delivery within performance anthem based on observed input patterns. Adaptive strategies,
timing constraints. Often a balance is sought between tba the other hand, use the history of idle periods to guide the
amount of computing (as in local processing) vs the amoutécisions of the algorithm for future idle periods. There have
of communication that would be needed as computation bgeen a number of adaptive strategies proposed in the literature
reduced [1], [2], [3]. [9], [18], [13], [10]. In [9], a system-level power management
This paper is tutorial in nature, and complements thechnique for power savings in event-driven applications is
previous tutorials [4], [5] on DPM, the last of which dategpresented. It discusses a predictive system shutdown method
back to 2000, when none of the approaches surveyed here wehich uses an exponential-average approach to predict the
published. Our focus here is on system-level dynamic powgpcoming idle period and exploits sleep mode operations for
management that can be implemented in the operating Sgewer saving. [18] presents randomized online algorithms for
tem. These power saving measures allow for observation arbopy-caching and spin-block problems, that can be applied
incorporation of application behavior [6], [7], [4] in Bower to the DPM problem considered here. [19] introduces a finite-
Manager (PM). The PM can change the power consumptiostate, abstract system model for power-managed systems based
of a device through selection of shutdown/sleep/wakeup statgsMarkov decision processes. Under this model, the problem
for the device, or by changing its speed through voltage of finding policies that optimally tradeoff performance for
frequency scaling. For historical reasons, system level DPpdwer can be cast as a stochastic optimization problem and
generally refers to the techniques that save energy in devisedved exactly and efficiently. [13] presents two methods for

characterizing non-stationary service requests by means of a
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I. INTRODUCTION
A. Dynamic Power Management



In [10], authors describe architectural techniques for energg it is executing, and hence cannot analyze the input in its
efficient implementation of programmable computation, paentirety before processing it. In this scenario, the usual worst-
ticularly focussing on the computation needed in portabtase analysis can force any algorithm to perform arbitrarily
devices where event-driven user interfaces, communicatibadly and therefore does not provide a meaningful way to
protocols, and signal processing play a dominant role. distinguish between different algorithms. Therefore, we com-
Stochastic approaches make probabilistic assumptiqrare the performance of an online algorithm that processes
(based on observations) about usage patterns and exglodt input in a continuous stream to affline algorithmthat
the nature of the probability distribution to formulate amets the same inputin advance and can process the entire input
optimization problem, the solution to which drives the DPMbefore producing any output. Tlkempetitive ratids the worst
strategy. Examples are in [13], [19], [20], [21], [22], [23],case over all input sequences of the performance of the online
[24], [25], [26]. Until very recently predictive schemes havelgorithm divided by the performance of the offline algorithm.
been mostly based on devices with two power saving sta#dgother way to view this type of analysis is to think of the
(e.g., standby and sleep). In case of multiple states, tbmline algorithm as playing against an adversary. While the
predictive schemes can be extended to use a sequencedfersary is devising the worst possible input sequence for
idleness thresholds to determine when to transition to the nélx¢ algorithm, he must keep in mind that he must also process
power state. By comparison, multi-state systems are naturdig input sequence, but in an offline manner. The adversary
modeled in most stochastic optimum control approaches [4#, devising an input sequence that will maximize the ratio
[21], [22], [19], [13], [20], [23]. In patrticular, [21] formulates between the cost of the online algorithm and the cost of the
policy optimization for dynamic power management as @ptimal offline algorithm.
constrained optimization problem on continuous-time Semi- Now consider another approach. Model checking [31] is a
Markov decision processes (SMDP). [22] discusses a modutechnique of verifying systems which can be looked upon as
approach for design and simulation of hardware and softwafen adversary is creating a path into a state transition model
energy consumption at the system level. [20] introducesod the system to falsify a property that the model checking
continuous-time, controllable Markov process model of engine is trying to prove correct. In other words, if a system
power-managed system. In that paper, the problem of dynarisdrying to save power, and the designer of the system wants
power management in such a system is formulated as a polioyguarantee that the system will never burn more than a
optimization problem and solved using an efficient “policgertain amount of energy within a certain number of steps, an
iteration” algorithm. [23] also formulates the problem ofdversary can create an input sequence which may violate that,
system-level power management as a controlled optimizatiand in that case the designer’s bound is disproved. If designers
problem based on the theories of continuous-time Markdound is proven by the model checker, that establishes a
decision processes and stochastic networks. Examples of sesnapetitive ratio. This view was experimentally validated in
sion clustering and prediction strategies are in [27], onlirfé1], and the SMV model checker was used to establish the
strategies are in [12], and adaptive learning based strategiesnpetitive ratio of a number of DPM strategies which were
are in [28]. [10] describes architectural techniques for energjready calculated using analytical arguments in [32].
efficient implementation of programmable computation. Lu The parallel drawn between competitive analysis and model
et. al. in [29] provide a quantitative comparison of varioughecking in [11] by itself is not as useful other than the
power management strategies. Most adaptive dynamic powealogy it draws between the two. However, it indicated an ad-
management strategies [9], [10], [12], [18], [13], [27] useersarial framework in which DPM strategies can be designed
a sequence of past idle period lengths to predict the lengthd analyzed. What became potentially more interesting was
of the next idle period. These strategies typically descritiee work in [24], [33] where probabilistic model checking tool
their prediction for the next idle period with a single valuePRISM was used to carry out this adversarial view further
Given this prediction, they transition to the power state thaito the domain of stochastic DPM design and analysis using
is optimal for this specific idle period length. In the caserobabilistic models. This tutorial therefore brings together for
the prediction is wrong, they transition to the lowest powehe first time the main results in competitive analysis based
state if the idle period extends beyond a fixed threshold valdechniques and model checking based techniques under the
For the sake of comparison with other approaches, we shatiified theme of adversarial reasoning/modeling based DPM.
call these predictive DPM schem&ingle-Value Prediction
schemes (SVPAmong SVPs, of particular interest is [28]
that addresses multiple idle state systems using a predictBn The System Model
scheme, based on adaptive learning trees, that improves th€onsider a single peripheral device whose power state is
hit ratio of the predicted interval significantly. managed by the operating system. The device can be in one
of the n power states denoted b{sy,...,s,}. The power
consumption for staté is denoted bycq;. Without loss of
generality, we assume that the states are ordered so that
Online algorithms [30] have been designed and analyzed > «; for i < j. Thus, states; is the ready state which
in the theoretical computer science arena primarily usirig the highest power consumption state. (As an example, the
competitive analysis. The idea behind this technique is th&CPI [16] standard specifies the different devices classes and
an online algorithm is presented input in a continuous streaheir recommended power states in an Intel PC platform.)

C. Competitive and Adversarial Modeling



In addition to the states, we are also given (typically eitheious idle periods, and/or use of interpolation or learning-
measured or from the device manufacturer's specificatiobdsed techniques. In contrast to theskehoctechniques, the
the transition powerp;;, and transition timeg;;, to move stochastic DPM literature tends to be more formal in the
from states; to s;. Often, the power needed and time spersiense that assumptions are made as to the characteristics of
to go from a higher (power consumption) state to a lowdhe probability distribution of idle periods, device response
state is negligible. In these cases, stronger results cantinees etc. These are then used to formulate the optimization
obtained. However, this condition does not necessarily hold foroblems. Much of the stochastic DPM strategy literature uses
all systems. Predictive schemes often consider the transitidarkov models, based on assumptions about how and when
power and transition time numbers as deterministic as wequests can arrive (whether at certain time points or at any
do here [7], [13], [28], [9], [14], [34], [12], whereas intime). For example, discrete-time and continuous-time Markov
stochastic approaches these numbers are used as parameiaias have been used.
to the probability distributions assumed. In some cases, thes®ur focus on formal methods is from the point of view of
numbers are experimentally determined [27], [29], [35]. Ardeveloping DPM strategies that attempt to ensure bounds on
other characteristic of predictive schemes is that they generalhe efficiency of achievable power reduction and power/latency
transition to the ready state when powering up and not to tmadeoffs without the need for time consuming simulation
intermediate (higher powered) state. Schemes using predicti@ehniques. We seek methods that can determine these bounds
wake-up [29], [28] are a notable exception and beyond tleiher in the deterministic or probabilistic sense.
scope of this paper. However, stochastic strategies often hav@he remainder of this tutorial paper is organized as fol-
probabilistic predictive wakeup built into DPM algorithm. Aslows. Section 2 focuses mostly on predictive schemes. This
a result, when discussing deterministic DPM we only need tipgesentation complements the survey in [4] by focusing on the
time and total energy consumeg;) in transitioning up from more recent work in the area. We introduce the basic concepts
each state to the ready state. of online algorithms and competitive analysis in the context
The input to the PM is a sequence of requests for serviok DPM. Section 3 considers the stochastic approaches to
that arrive over time. If the device is busy when a new requd3PM. Section 4 describes the most recent approaches based on
arrives, it enters a queue and is served on a first-come-fingtebabilistic model checking. Finally, Section 5 summarizes
serve basis. In this case, there is no idle period and the deuige tutorial.
remains active through the time that the request is finished.
Thus, the number of idle periods is less than the number of II. DPM AS AN ONLINE PROBLEM

requests serviced. Whenever a request terminates and therﬁynamic power management is an inherenhyine prob-

are no ouf[standing reqyest; waiting in the sy;tem, an '%‘?n in that the power manager must make decisions about
period begins. In these situations, the PM determines the po expenditure of resources before all the input to the system

c_onsumpnon states the device should transition and at Wlf@hvailable [36]. The input here is the length of an upcoming
times. L . idle period and the decision to be made is whether to transition
If the device is not busy when a new request arrives, it 5 jower power dissipation state while the system is idle. A
will immediately transition to the ready state to serve g, idleness threshold will lead to higher power-up costs,
new request if it is not already there. In the case whefg,ereas a large threshold would lead to suboptimal power
the device is not already in the ready state, the request G ge Analytical solutions to such online problems are often
not be serviced immediately, but will have to incur SOmgegt characterized in terms of @mpetitive ratio[30] that
Ia_tency in waiting 1_‘or the t_ransmon to complete. This d‘?la¥ompares the cost of an online algorithm to the optimal
will cause future idle periods to be shorter. In fact, if @ine solution which knows the input in advance (and thus
request is delayed, some idie periods may disappear. Thigyoses the best assignment of power states). Earliest work on
the behavior of the algorithm affects future inputs (idle per'oE’ompetitive analysis of dynamic power management strategies

lengths) given to the algorithm. Similarly, note that withou, egents hounds on the quality of the DPM solutions [12], [18],
performance constraints, delaying the servicing of a requ

will tend to lower the power usage. Consider the extreme
case where the power manager remains in the deepest sleep . . L
state while it waits for all the requests to arrive and thefi: COmPpetitve Analysis of Deterministic DPM
processes all of them consecutively. This extreme case is noAn algorithm isc — competitive if, for any input, the cost
allowed to happen in our model since we require that tted the online algorithm is bounded by times the cost of
strategy transition to the ready state as soon as any requbstoptimal offline algorithm for that input. Theompetitive
appears. However, it illustrates the natural trade-off whigltio of an algorithm is the infimum over all such that the
occurs between power consumption and latency. See [12] fdgorithm isc-competitive. It has been known for some time
a more extensive discussion of this trade-off. that 2 is the optimal competitive ratio that can be achieved for
any two-state system by a deterministic algorithm. A succint
. proof of this fact can be found in [30]. We will sketch the
E. Model Checking Approach for DPM idea behind this result in order to illustrate how competitive
A common method for prediction of the next idle periocdnalysis works. Since the system has only two states, we call
is to use some form of regression equation over the ptese the active and the sleep state.f bt the energy cost to



transition from the sleep to the active state. bdie the power is a p-competitive algorithm for that system. Then a binary
dissipation rate in the active state. Without loss of generalisgarch for the optimab can be performed since it is known
we assume that the power dissipation in the sleep state is zéodlie in the interval between one and eight.

The optimal offline algorithm is assumed to know the length Another direction that has recently been undertaken is to
T of the idle period in advance. Thus, it chooses the bestmbine DPM strategies with Dynamic Speed Scaling (DSS)
state for this idle period length and stays in that state for tfier devices that have both the ability to run at varying speeds
duration of the idle period. Staying in the active state ca§ts and the ability to shut down when idle [39]. Note that we
Transitioning immediately to the sleep state cqstbecause choose the more general teBynamic Speed Scalirig order
the algorithm must transition back to the active state at theecompas®ynamic Frequency ScalirmndDynamic Voltage
end of the idle period. This means that the cost for the optim@taling The basic idea of all of these is that the speed of a
offline algorithm for an idle period of length is min{aT, 5}. device can be reduced to save power. In the combined DSS

Since the online algorithm does not know the length of thend DPM problem, the power consumption rate of a device is
idle period in advance, it selects a threshaidconceptually assumed to be a continuous function of the speed at which it
same as timeout) and stays in the active state for tiraffer runs. In addition, the power consumption rate when the speed
which it transitions to the sleep state if the system is still idlés zero (i.e. the device is idle) is greater than zero. The system
If the idle period lengthl" is less thanr, its cost isaT. If has the option to transition to a sleep state when idle in order
the idle period is longer than, its cost isg + ar. The online to reduce the power consumption rate. There is a fixed cost
algorithm seeks to minimize the ratio of its cost to the cost dfien to transition back to the active state. The input to this
the optimal offline algorithm for alll". It can be shown that problem consists of a set of jobs with release times, number
if 7= (/a, this ratio is never more than two. The worst casef execution cycles and deadlines. Each job must be completed
for the online algorithm is if the idle period ends immediatelyn the interval between its release times and deadline.
after it transitions to the sleep state. This puts a tight boundCombining the two problems of DSS and DPM, introduces
of 2 for the competitive ratio of any deterministic algorithm.challenges which do not appear in either of the original

For multi-state systems, the situation is a bit more complg@xoblems. In DPM, the lengths of the idle intervals are given
in that the optimal competitive ratio will, in general, depend oas part of the input whereas in the combined problem they
the parameters of the system (e.g. the number of states, poaer created by the scheduler which decides when and how
dissipation rates, start-up costs, etc.). In [34], a generalizatifast to perform the tasks. In DSS, it is always in the best
of the 2-competitive algorithm for two-state systems is giveinterest of the scheduler to run jobs as slowly as possible
for multi-state systems that also achieves a competitive ratiowithin the constraints of the arrival times and deadlines due
2. In general, this bound is not tight because it may be possilidethe convexity of the power function. By contrast in the
to attain a better competitive ratio for specific systems. Tlwwmbined problem, it may be beneficial to speed up a task in
bound holds under the assumption that the cost to transitiortler to create an idle period in which the system can sleep.
from a higher power state to a lower power state is negligiblan offline algorithm is described that is within a factor of two
We note that in the special case where for ary j < k, the of the optimal algorithm as well as an online algorithm with a
cost to go fromi to j and then fromj to k is the same as constant competitive ratio. Some of the same issues are dealt
the cost of going from directly down tok (i.e. there is no with in [40] in which process schedulers have some latitude
penalty for stopping at a state on the way to another stat@),scheduling the execution of tasks so as to maximize the
the costs to transition downward can be folded into the cdsénefit of dynamic power scheduling.
to transition back up to the active state. The algorithm is non-
adaptive since it does not use any information about the arrival _ ,
sequence of jobs to the device. B. Probabilistic Analysis

More recently, [38] have developed competitive algorithms As discussed above, competitive analysis often gives overly
for multi-state systems that work for arbitrary transition costgessimistic bounds for the behavior of algorithms. This is
on the states. The authors give an online algorithm that obtalvecause competitive analysis is a worst-case analysis. In many
a competitive ratio of 8. This can be improved to 5.828 undepplications there is structure in the input sequence that can
the very reasonable assumption that the transition powerh® utilized to fine tune online strategies and improve their
move from states; to s;, p;; is greater than the transitionperformance. Indeed, important earlier works in this area [19],
power to move from state; to s;, p; for anyi < [ < j. [20] have relied on modeling the distribution governing inter-
They also develop aneta-algorithm(i.e., a DPM algorithm arrival times as an exponential distribution. In practice, such
generator) that takes as input the parameters of a system satwthastic modeling seems to hold well for specific kinds of
produces a DPM strategy (sequence of states and threshagglications. However, these assumptions have led to compli-
times). The strategy they produce is guaranteed to achi@ations in other settings due to phenomena such as the non-
a competitive ratio that is within an arbitrary of the best stationary nature of the arrival process, clustering, and the lack
possible competitive ratio for that system. The running timef independence between subsequent events. These problems
of the meta-algorithm is polynomial in the number of statdsave been addressed to some extent in [27], [28].
andl/e. The algorithm uses a decision algorithm which, given In [34], we introduced an approach that models the up-
a value forp and a description of a device (states, poweroming input sequence by a probability distribution that is
consumption rates and transition costs), determines if théearnt based on historical data. One of the strengths of this



method is that it makes no assumptions about the fonplays an important role in all of these extensions to multi-state
of this distribution. Once the distribution is learnt, we casystems. In particular, it is proven in [38] that if the optimal
automatically generate a probability-based DPM strategy thsitategy transitions from some statairectly to some state
minimizes theexpectedower dissipation given that the inputj, the optimal time for that transition will be the same as the
is generated according to that distribution based on the notioptimal transition time for a two-state system in which state
of a probabilistic competitive ratig14]. 1 and statej are the only two states in the system. Thus, the
The strategies discussed below use a probability distributiproblem of simultaneously optimizing many transition times
governing the length of the idle periods to determine thie reduced to finding pair-wise optimal transitions.
optimal power-down strategy. The strategy once produced isThus, a knowledge of the input pattern and its use can help
completely deterministic. It is well known that if the input tobridge the gap between the performance of an online strategy
an algorithm is generated by a known probability distributiomnd that of the optimal offline strategy. Results show the the
then using a probabilistic strategy gives no benefit [34]. Thigorst case competitive ratio can be improved by 21%, with
is in contrast to the work discussed in the previous sectioespect to the deterministic case [34].
which examines strategies using a worst-case analysis. I12) Learning the Probability Distribution:The algorithm
analyzing strategies under a worst-case scenario, the usd?bEA above assumes perfect knowledge of the probability
randomization can improve upon deterministic strategies. distribution governing the length of the idle period. Rather
1) Optimizing Power Based on a Probability Distributionthan assuming such a distribution, it can be learnt based on
Let us suppose that the length of the idle interval is generateatent history. For instance, a learning scheme in conjunction
by a fixed, known distribution whose density functionrisLet with PLEA is called the Online Probability-Based Algorithm
us consider systems with two states. As beforeSldie the (OPBA). The probability estimator works as follows: a win-
start-up energy of the sleep state anthe power dissipation dow sizew is chosen in advance and is used throughout the
of the active state. Suppose that the online algorithm uses execution of the algorithm. The algorithm keeps track of the
the timeout or threshold at which time it will transition fromlastw idle period lengths and summarizes this information in
the active state to the sleep state if the system is still idie.histogram. Periodically, the histogram is used to generate a
In this case, theexpectedenergy cost for the algorithm for anew power management strategy.

single idle period is given as: The set of all possible idle period lengtki8, co) is par-
. - titioned into n intervals, wheren is the number of bins in

/ 7r(t)(at)dt+/ 7)ot + Gldt. the hiitogram. Let; be the Ieft_endpo_int of the’” interval.
0 - The i** bin has a counter; which indicates the number of

The best online algorithm will select a value forwhich idle periods among that last idle periods whose length fell in

minimizes this expression. On the other hand, the offline opfl€ F@Ng€, 7i+1). Instead of using the continuous probability

mal algorithm which knows the actual length of an upcomin\g\‘;stribution77 with PLEA as described in the previous section,
idle period will have an expected cost of: e use a discrete distribution, where the probability the idle

period has lengthr; is ¢;/w. A similar approach was taken

B/ oo for a two state system in the context of determining virtual
/ m(t)(at)dt +/ m(t)pBdt. circuit holding time policies in IP-over-ATM Networks [37].
0 Bl Efficient implementation of such an algorithm is important

It has been shown that for the 2-state case, the online algorittorensure overall gains in power reduction. In [34], we present
can pick its thresholdr so that the ratio of its expectedan implementation for finding the: — 1 thresholds in time
cost to the expected cost of the optimal algorithm is at moS{mn), where m is the number of states and is the
e/(e — 1) = 1.58 [18], [34]. Furthermore, the result is tightnumber of bins in the histogram. Two important factors which
in that there are distributions for whicly (e — 1) is the best determine the cost (in time expenditure) of implementing our
ratio that can be achieved. A generalization of the two-stateethod is the frequency with which the thresholds are updated
algorithm to the multi-state case is given in [14]. The gerand the number of bins in the histogram. Selecting the right
eralized algorithm is called the Probabilistic Lower Envelopgranularity for the histogram is an important consideration
Algorithm (or PLEA) and the authors have shown that for angince there is a tradeoff between efficiency and accuracy. The
probability distribution and any system in which power-dowalgorithm employs non-uniform bin sizes so as to have a high
costs are negligible, PLEA is no worse thafie — 1) times degree of accuracy in critical regions. The reader is referred
the optimal offline algorithm. The results in [38] show thato [34] for a description of how system parameters are used
PLEA is optimal in that it minimizes the expected cost oveo select bin sizes.

all power-down strategies for any probability distribution for While the approach in [34] is provably close to optimal
any system in which power-down costs are negligible. (Notkethe probability distribution is known, the techniques used
that thee/(e — 1) bound is only tight for some but not allto learn and represent the probability distirbution based on
distributions.) The results in [38] generalize PLEA even furtheecent history are heuristic. A more formal approach to this
to give a power-down strategy which is provably optimal foproblem is taken in [41] which looks at the complexity of
any multi-state system, with no restriction on transition costdetermining the optimal power-down treshold in a two-state
when the length of the idle period is generated by a knovaystem in which a long sequence of idle periods is generated
probability distribution. The analysis of the two-state cadey a fixed but unknown probablity distribution. They give a



method which use$)(1) time and space and converges teducating the system to choose the optimal action. Given a
the optimal online algorithm for that distribution. It would beset of permitted actions in every state of a system, the system

intersting to extend these ideas to a multi-state case. chooses the optimal action to execute at every stage using
these learning techniques.
I1l. STOCHASTIC APPROACHES TODPM Two power-up strategies are used in this work, namely,

We now discuss the stochastic version of the DPM proi’)‘iake'lJp "On-Demand” and “Pr_eemptlve" activation. In both
lem. The problem basically requires one to devise a strat((agg?se approaches, the system is Qrdered to switch to a‘!ower
(policy) which is probabilistic, in the sense that the actions td?° V€' rrlode at the start of the idle .per'lod. Wake-up "On
be taken by the strategy have probabilities attached to th _mand _order_s the system to remain in the '9""er'p9""er
Unlike deterministic strategies, where a particular state of ﬂqéo_de until rece|p_t of a request. The syst_em must |mmed|atgly
system will lead the strategy to take a deterministic actioﬁw'tCh to the active state upon the receipt of a request. With

here, the strategy can choose between multiple actions witjeemptive faCt'V"I"t'on’ the .SﬁStefm. remains in the |°Wer:'
pre-designated probabilities. power state for a lesser period of time, powering-up to the

active state in order to be active at the arrival of the request.
_ ) _ To study the behavior of the SLHA systems, a model of
A. Stochastic Learning Feedback Hybrid Automata for DPM ¢ \,r-state mobile hard-drive from IBM was employed for
Hybrid automata are composed of discrete states, the stafiesulating DPM [42], [43]. First, the simulations were per-
of automaton, and continuous dynamics, the differential eqarmed to determine the optimal configurations of the SLHA
tions that govern the continuous variables in each state. iodel to reach the correct convergence in stationary environ-
the DPM approach presented in [42], [43], this compositionatents. Then, these configurations were used to simulate the
similarity of hybrid automata with embedded systems (havir§LHA model with the real input distributions, obtained using
multiple power-down modes) is exploited to model suchput files that were adapted from trace data obtained from
systems with a timed hybrid automaton. The discrete statke auspex file server archive. Simulations were performed
of the hybrid automaton are used to model the power modestwo categories: optimization of energy and latency, and
of the system, while the continuous dynamics account for thgtimization of only energy.
power consumed in each mode. The DPM is formulated asFrom the competitive ratios, it was observed that “On
a hybrid automaton control problem where the control strabemand” wake-up tends to better minimize energy and la-
egy is learnt dynamically using Stochastic Learning Hybriency expenditure than the “Preemptive” wake-up method.
Automata (SLHA) with feedback learning algorithms. Moreover, configurations corresponding to the first nonlinear
First, a mathematical model of the system is constructaginforcement scheme with high reward and penalty param-
which includes various states, each representing a power meders perform the best minimization of energy for the pre-
of the system. The model uses dynamically updated interrgnted traces. Furthermore, configurations corresponding to
variables for evaluating the total energy spent by the systehe second non-linear updating scheme with a high reward
and the temporary clock. These are governed by the continugiagameter and a high degree of nonlinearity perform the best
dynamics specific to each state. The total latency incurreginimization of latency for the presented traces.
by requests in the system and the cumulative request lengthn general, the SLHA mathematical model is claimed to
are updated regularly. Control is added to the model to guigeove its superiority compared to the former DPM strategies
the automaton through power modes while the system is idjtesented in literature with “Preemptive” wake-up for the
For this, an externally handled control variable is used whigixamined input patterns. For wake-up “On Demand”, results
manages the sequence of states that the system follows dutirge enhanced either for the conservation of energy or the
an idle period. prevention of latency, but optimality was not reached for both
Next, a stochastic learning feedback hybrid automafgures simultaneously. The proposed SLHA model is also
(SLHA) model for DPM is developed [42], [43], where theclaimed to offer a high versatility for the DPM problem.
value of the control variable is managed using probabilities
of switching between states. For this, a stochastic control is
incorporated to the hybrid automaton, and learning feedbacibs
added to the previous mathematical model. In this model, theln recent years, several other approaches for designing
system attempts to learn the length of the future idle periatiochastic DPM strategies have been proposed [44], [19], [4],
probabilistically and, accordingly, decides on the behavior {&3], [20], [23], [45], [21], [22]. These methodologies are
observe during idle time. For this, the external variable dfased on a stochastic model of the DPM problem, which
the mathematical model is replaced by the action probahihcorporates the probabilistic characteristics of request arrivals
ities, which are frequently recomputed using reinforcemetu the device, the device response time distribution, the power
techniques. Every allowed state transition is labeled by aonsumption by the device in various states and the distri-
action probability that represents the probability of switchsution of energy consumption in changing states. From this
ing from one state to the other. Several feedback stochastiochastic model, an exact optimization problem is formulated,
learning algorithms (General Linear Reward- Penalty Schentlee solution to which is the required optimal stochastic DPM
Symmetric Linear Reward-Penalty Scheme, Linear Rewangelicy. The strategy devised must ensure that power savings
Inaction Scheme etc.) are incorporated in this model fare notachieved at an undue cost in performance. For example,

Other Stochastic Approaches



a new request should be always served in a reasonable tiofethe two logics is the probabilistic® operator, which
The constructed policy optimizes treverageenergy usage allows one to reason about the probability that executions
while minimizing average delay. The policies are usuallyof the system satisfy some property. For example, the for-
validated by simulation to check for the soundness of theula P[0 terminate] states that with probability 1, the
modeling assumptions, and the effectiveness of the strategigstem will eventually terminate. On the other hand, the
in practice [20], [44]. formula Px o5[—repair US20 terminate] asserts that with

The stochastic models which have been used in the literatprebability 0.95 or greater, the system will terminate within
are discrete-time Markov chains [44], [19], continuous-tim200 time steps and without requiring any repairs. These
Markov Chains [20], [23], [45] or their variants [21], [22]. Theproperties can be seen as analogues of the non-probabilistic
approaches vary in the model of time. In the continuous-tinease, where a formula would typically state thitexecutions
case,mode switching commands can be issued at any timeatisfy a particular property, or thdhere existsan execu-
and events can happen at any time. In the discrete-time cai&®) which satisfies it. CSL also provides tkte operator to
all events and actions occur at certain discrete time pointeason about steady-state (long-run) behavior. The formula
The continuous-time assumption makes the formulation of ti%e ¢ o1 [queue_size = maz], for example, states that in the
problem easier. In practice, such stochastic modeling seelmisg-run, the probability that a queue is full is strictly less
to work well for specific kinds of applications. Generally, thehan 0.01. Further properties can be analyzed by introducing
stochastic matrices for these models are created manuallytha notion of costs (or, converselyrewardy. If each state
[45], stochastic Petri nets are used, which allows automat€ the probabilistic model is assigned a real-valued cost, one
generation of the stochastic matrices and formulation of tllan compute properties such as the expected cost to reach a
optimization problems. [44] describes power-managed systengstain states, the expected accumulated cost over some time
using a finite-state, stochastic model. In [23], authors formulagperiod, or the expected cost at a particular time instant. As in
the problem of system-level power management as a controltbe previous paragraph, such properties can also be expressed
optimization problem based on the theories of continuousencisely and unambiguously in temporal logic [51], [52].
time Markov decision processes and stochastic networks. [21]
formulates policy optimization as a constrained optimizatio PRISM
problem on continuous-time Semi-Markov decision processes
(SMDP). [22] presents a modular approach for design andPRISM [46], [24], [33] is a probabilistic model checker
simulation of hardware and software energy consumption @gveloped at the University of Birmingham in England. In

the system level. [24] and [33], PRISM was used for deriving stochastic DPM
policies for disk-drives, and was shown to be a uniform frame-

IV. DPM ANALYSIS USING PRISM work in which DPM policies can be derived and evaluated. The

) o ) basic approach is to build a probabilistic model of the DPM

A. Short Introduction to Probabilistic Model Checking system from which, for a given constraint, an optimization

Probabilistic Model CheckingPMC) offers a promising problem is constructed. The solution to this problem is the
way to verify stochastic approaches to DPM as shown in [24]ptimum randomized power management policy satisfying this
[33]. The idea is to construct a probabilistic model of theonstraint.
system under study. As in the deterministic case, this is usuallyOnce an optimal power management policy has been con-
a labeled transition system which defines the set of all possilskeucted, it must be validated to ensure it performs as intended.
states and the transitions between these states. In PMC, Rlossible approaches are to use trace-based simulation or to
model is augmented with information about the likelihoodctually implement the schemes in device drivers. The advan-
that each transition will take place. Examples of such modd&ge of PMC is that it allows one to validate and analyze the
are discrete-time Markov chains (DTMCs), continuous-timgolicies statically leading to a wide range of useful information
Markov chains (CTMCs) and Markov decision processesout the policy to be generated.

(MDPs). The properties to be verified, are specified typically Modeling DPM in PRISM:While PMC has been applied

in probabilistic extensions of temporal logic. These allowo both DTMCs [44], [19] as well as CTMCs [20], [23],
specification of properties such as: “shutdown occurs wifd5], we focus on the former here. The approach is described
probability at most 0.01”; or “the video frame will be deliveredhrough the example of [44], [19], an IBM TravelStar VP disk-
within 5ms with probability at least 0.97.” The properties cadrive [53]. The device has 5 power states, labefigp stby,

be verified with a probabilistic model checker either as graplule, idlelp andactive It is only in the statactivethat the drive
based analysis and solution of linear equation systems or linean perform data read and write operations. In sidi® the
optimization problems [46]. disk is spinning while some of the electronic components of

Like the conventional, non-probabilistic case, probabilistithe disk drive have been switched off. The sidtelp (idle low
model checking usually constitutes verifying whether or ngower) is similar except that it has a lower power dissipation.
some temporal logic formula is satisfied by a model. Thehe statesstby and sleepcorrespond to the disk being spun
two most common temporal logics for this purpose are PCTdown. Based on the fastest possible transition performed by
[47], [48] and CSL [49], [50], both extensions of the logicsystem, one can choose a time resolution of 1ms for the model,
CTL. PCTL is used to specify properties for DTMCs andle., each discrete-time step of the DTMC will correspond to
MDPs and CSL is used for CTMCs. One common featurms.



The system model shown in Figure 1 [19] consists of: const QMAX = 2; //maximum size of the queue

a Service Provider (SP), which represents the device under nodule SRQ

power management control; a Service Requester (SR), which a & [0..QMAX] init 0; // size of queve
issues requests to the device; a Service Request Queue (SRQ), /1 SPs active ,

which stores requests that are not serviced immediately; and kol o 1 om0 S T
the Power Manager (PM), which issues commands to the ) or e n op > 0

SP, based on observations of the system and a stochastic [iicka) sr =1 Asp >0 — ' =min(q+1, QMAX);
DPM policy. Each component is represented by an individual
PRISM module, which we now consider in turn. Below, we
provide the examples of some of those components. C. Policy Construction and Analysis

Using the PRISM language description detailed in the
previous section, the PRISM model checking tool can be
used to construct a generic model of the power manage-

)
Sa.eomamnsT lcOmmams ment system. From the transition matrix of this system, the

endmodule

Power Manager (PM

linear optimization problem whose solution is the optimal

Savice O{& policy can be formulated, as described in [44], [19]. This

iy Ejﬂm—m’ o optimization problem is then passed to the MAPLE symbolic
R solver. Policies can be constructed such that they satisfy

any required constraints. This helps to formulate policies for

Fig. 1. The System Model practical purposes which work under the given constraints.

Figure 2 shows policies constructed in this way for a range of

constraints on the average size of the service request queue.

Modeling the Power Manager(PM), Service Requester (SR first column lists the constraints values; the second column
and Queue(SRQ) The PM decides to which state the SRymmarizes the corresponding constructed policy.
should move at each time step. To model this, each step is

split into two parts: in the first, the PM (instantaneously) [[_Average size of SRQ | Constructed Optimum Pofioy ]
decides what the SP should do next (based on the current = S aotve e e I G e
state); and in the second, the system makes a transition romain sloeping with propabiity 0.69690953
(with the SP’s move based on the choice made by the PM). 93 in st 1. S ide: geto acte
These steps are synchronized with other components using two =00 SR m tate 0, S sleeping and aueus ful
synchronization actionsick1 andtick2. Figure 3 shows an G010 actve with robabilty 0.00000582
example PM in PRISM. =505 S ReTve SR IT Stie 0 s iacs ST

Both the SRQ and the SR will synchronize tink2. The 3ot wi probeiy 036316067
SR has two statesdle where no requests are generated and b sloomng: oo o acive

1lreqgwhere one request is generated per time step (1ms). 'E:he > oni ici g ) raint "
module of the SR is given by: ig. 2. ptimum policies under varying constraints on the average queue

size
nodule SR Once a policy has been constructed, its performance can
st [0..1] nit 0; be investigated using probabilistic model checking. For this,
// 0-idleand 1 - 1req N . apr
ick2] sv0 —» 0,808 : (sr/0) 4 010 + (ox' ) the generic power manager PRISM module is modified to
[tick2] sr=1 — 0.454 : (sx'=0) + 0.546 : (s1/=1); represent a specific policy. Figure 3 shows an example of this
endnodule for the constraint “queue size is less than 0.05". This can be

seen to correspond to the policy in the 4th row of the table
The transitions between the states of the SR module afeFigure 2. There, the constructed policy states that under
based on time-stamped traces of disk access measured ontfg@lconstraint, for cases where SP is active, SR is idle (state
machines [19] The above module specifies that if SR is in tl&eo), and the queue is empty, SP should remain active with
idle state, then it will remain in the same state with probabilitjrobability 0.63683933 and it should go to the idle state with
0.898, and will transition to théreq state with probability probability 0.36316067. It also states that if SP is either in
0.102. On the other hand, if SR is in tHeeq state, then it the idle state or the sleep state, then it should transition to the
will remain in the same state with probability 0.546, and wilhctive state. PRISM is then used to construct and analyze the
transition to theidle state with probability 0.454. Both thesepTMC for this policy.
transitions will take place aftick2. The analysis shows that the average power consumption of
The SRQ models queue of service requests. It respondsatpolicy decreases as the constraint on queue length used to
the arrival of requests from the SR and the service of requestmstruct it is relaxed (i.e. the queue size is larger). One can
by the SP. The queue size will only decrease when the SR aiso validate the policy by confirming that the expected size of
SP are in stateglle andactive respectively. Similarly, it will the queue matches the value in the constraint which was used
only increase when the SR is in stdtgeq and the SP is not to construct it. Finally, it is observed that a side-effect of this
active The PRISM code is as follows: is that the average number of requests lost is also increased.
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25%10

module PM —— constraint=0.05

—=— constraint=0.1
—&— constraint=0.25
2{| —— constraint=0.5
—— constraint=1

// policy when constraint on queue size equals 0.05
pm : [0..4];

// 0 —gotobusy 1 — gotoidle, 2 — go to idlelp
// 3 — go to standbyand 4 — go to sleep

[tickl] st=0 A sp=0 A q=0 —

expected power consumption by time T

0.63683933 : pm’=0 / /active N
+ 0.36316067 : pm/=1; //idle
[tick1l] sp=1 — pm’=0; //active
[tickl] sp=9 — pm’=0; //active 05
[tickl] =(sp=9 V sp=1 V (sr=0 A sp=0 A q=0)) —
pm’=pm; B e NS
2 A‘l 6 8 10
endmodule T x 10"
2
1.8
Fig. 3. Example input to PRISM for a derived Policy under performance METN N
constraint = 0.05 Eval |

—— constraint=0.05
—e— constraint=0.1
—e— constraint=0.25
—+— constraint=0.5
—+ constraint=1

expected queue size at t

In Figure 4, the graphical results for a range of policies are
shown from [33]. Using PRISM, one can associate a cost with
each state and then compute the expected accumulated cost of
the system until the required time. Using this assignments of o ' x1o'
model states to costs, for a range of valuesl'of‘expected i 1o000]) = constni=od
power consumption by timé&”, “expected queue size at time o] —- contan0s.
77, and “expected number of lost customers by tirg,
are computed and plotted. The first and third properties are
determined by computing expected cost cumulated up until
time T'; the second by computing the instantaneous cost at
time T'. Again, we see that policies which consume less power
have larger queue sizes and are more likely to lose requests. z T : 1o
Here, though, one can get a much clearer view of how thesg 4
properties change over time. We see, for example, that the
expected queue size at tini€ initially increases and then
decreases. This follows from the fact that the strategies wa# opposed to the logic PCTL, and that the time bo@hd
for the queue to become full before switching the SP on. used in the properties is now a real-value as opposed to

In Figure 5, the probability that a request is served by tinge number of discrete steps. In addition, in this case, using
T, given that it arrived into a certain position in the queue e approach of [25] one can also analyze the policies for
plotted based on [33]. Figure 6 shows the probability tNat alternative inter-arrival distributions, to give a more realistic
requests get lost by timE for N = 500 andN = 1000. Again model of the arrival of service requests. For example, Figure 7
this information has been computed for a range of policies aatlows the performance (average power consumption, average
for a range of values df'. These properties are computed bgueue size and average number of lost requests) for optimum
adding additional state variables to the PRISM model. Fpplicies under five different inter-arrival distributions. All the
those in Figure 6, for example, a variable is added which @hosen distributions have the same mean and it can be seen
initially zero and is increased each time a customer is lost (tipat, with the exception of the Pareto distribution, the long-
to a maximum onN). Then, the probability of reaching anyrun performance and costs are reasonably close to those of
state where this variable’s value is equalMg is calculated. the exponential arrival process. For the Pareto distribution,

The graphs show that the probability of requests being Id§€ average queue size is generally much smaller. This is due
within a certain time bound increases more quickly for thod@ the Pareto distribution’seavy tail in the long run, many
strategies that consume less power. These results are to@sglests will not arrive for a very long time, in which case the
expected since, to reduce power, the strategies must force $8&vice provider (SP) will serve all pending requests, leaving
service provider to spend more time in low power states whi¢he queue empty.
cannot service requests, egleepand standby (stby)

Probabilistic model checking has also been applied [24] to V. SUMMARY
the stochastic optimum control approach of [20], [23], [45], In this tutorial, we focused on techniques for power manage-
which is based on CTMCs rather than DTMCs. Since thment that rely on an adversarial modeling approach, namely
model is a CTMC, components change state according dompetitive analysis, and stochastic model checking for the
exponentially distributed delays and the PM acts when suclewaluation of the effectiveness of DPM algorithms. For de-
state transition occurs. The construction of optimum policieerministic models of the system, competitive analysis along
from the PRISM model follows the approach of [20], [23]with learning techniques provide a reaonsable framework for
[45] but is essentially the same overall process. For analy#fieir analysis. Stochastic optimization approaches to DPM can
of policies, one can consider similar properties to the DTM@Be analyzed using advances in probabilistic model checking
case. The main differences are that the logic CSL is uststhniques.
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of an economics-based model for networking protocols in [3]
and power aware source routing in [54]. We also did not
discuss DPM models that consider the battery model which
is not considered in any of the approaches discussed above.
In [55], Rong and Pedram provide a stochastic model that
takes into account the current discharge rates by the batteries
in formulating stochastic DPM strategies.
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