
Loop Shifting and Compaction for the High-Level Synthesis
of Designs with Complex Control Flow

Sumit Gupta† Nikil Dutt† Rajesh Gupta§ Alexandru Nicolau†

Center for Embedded Computer Systems
†School of Information and Computer Science §Dept. of Computer Science and Engineering

University of California at Irvine University of California at San Diego
{sumitg, dutt, nicolau}@cecs.uci.edu gupta@cs.ucsd.edu

http://www.cecs.uci.edu/∼spark

Abstract
Emerging embedded system applications in multimedia

and image processing are characterized by complex control
flow consisting of deeply nested conditionals and loops. We
present a technique called loop shifting that incrementally
exploits loop level parallelism across iterations by shifting
and compacting operations across loop iterations. Our ex-
perimental results show that loop shifting is particularly
effective for the synthesis of designs with complex control
especially when resource utilization is already high and/or
under tight resource constraints. In situations when further
loop unrolling (or initiating another iteration of the loop
body) leads to a sharp increase in the longest combinational
path in the circuit and the circuit area, loop shifting is able
to achieve up to 20 % reduction in the input-to-output de-
lay in the synthesized circuit. We implemented loop shifting
within the SPARK parallelizing high-level synthesis frame-
work and present results for experiments on designs derived
from multimedia and image processing applications.

1 Introduction

The computationally expensive portions of multimedia
and image processing applications typically consist of arith-
metic operations embedded in deeply nested loops with a
complex mix of conditional (if-then-else) constructs. The
focus of our work is improving the synthesis results of these
codes by exposing and increasing the parallelism available
in the algorithmic description [1]. In the past, specula-
tive code motions have been used to significantly improve
the performance, area, and resource utilization of the syn-
thesized circuits by moving operations across conditional
boundaries [2, 3].

The presence of nested loops in our application codes,
however, limits the scope of parallelizing code motion
transformations to within one loop iteration. To achieve the
next level of performance improvement, we must look be-
yond loop iterations. In this paper, we present a loop trans-
formation, called loop shifting, that moves operations from
one iteration of the loop body to its previous iteration. It
does this by shifting a set of operations from the beginning
of the loop body to the end of the loop body; a copy of
these operations is also placed in the loop head or prologue.
In contrast to loop pipelining techniques that initiate a new

iteration of the loop body at constant time (initiation) inter-
vals, loop shifting shifts a set of operations one at a time,
thereby, exposing just as much parallelism as can be ex-
ploited by the available resources. Parallelizing transforma-
tions can then operate on the shifted operations to further
compact the loop body.

Although loop unrolling and pipelining have been pro-
posed previously for high-level synthesis, we found that
when the resource utilization is already high – because of
either high instruction level parallelism in the design or as a
result of loop unrolling – the control and interconnect (mul-
tiplexing) costs of further loop unrolling or loop pipelining
outweigh the gains achieved in performance. This is be-
cause frequently the longest combinational path in the cir-
cuit (the critical path length) increases so much that the in-
put to output circuit delay becomes worse (we demonstrate
this through experiments in Section 5). In such a situation,
we propose applying loop shifting to incrementally move
code in a structured way so that operations can be com-
pacted further without excessive increase in controller costs.

We implemented our loop shifting technique in the
SPARK parallelizing high-level synthesis framework. This
framework synthesizes a behavioral description specified in
C (with restrictions on pointers, irregular jumps, and func-
tion recursion) using a set of aggressive compiler, paralleliz-
ing compiler and synthesis techniques and generates a re-
source bound RTL VHDL description. We demonstrate the
utility of loop shifting by presenting scheduling and logic
synthesis results for experiments performed on designs de-
rived from the multimedia and image processing domains.

The rest of this paper is organized as follows: we first
review previous related work. In Section 3, we present the
loop shifting technique and its various aspects. We briefly
describe loop unrolling in Section 3.4. We present an algo-
rithm for loop shifting in Section 4, followed by the experi-
mental setup and finally the results in Section 5.

2 Related Work

Loop unrolling and loop pipelining (or software pipelin-
ing) have been explored extensively in the software com-
munity for exploiting inter-iteration parallelism ([4, 5, 6, 7,
8, 9] to name a few). Loop shifting was first proposed as a
part of the resource-directed loop pipelining (RDLP) tech-

1530-1591/04 $20.00 (c) 2004 IEEE

Block
Loop BB0

BB1

BB2

BB3
Exit
Loop

Block
Loop BB0

BB4

Exit

BB2

BB1

BB3

Loop

BB4

BB2

BB1

Exit
Loop

BB4

BB3

Block
Loop BB0...

...

... ...
...

...

c

a c

S4

S3

S0

S1

S2

b

T F

d

f

(a)

T F

b

d

f

(b)

T F

b c

da

f

(c)

a c

c

a

a

< < <

Figure 1. Loop Shifting: (a) An example with a loop. (b)
Operations a and c are shifted to the end of loop body (ba-
sic block BB2) and copies are inserted in the loop head
(BB0). (c) Shorter schedule length after code compaction.

nique [7]. RDLP first unrolls the loop several times and then
attempts loop shifting and compaction.

Early work on loop pipelining in high-level synthesis fo-
cused on the innermost loops of DSP applications with no
conditional constructs. These works include loop winding
[10], rotation scheduling [11], percolation based synthesis
[12], and loop folding [13]. More recent work on designs
with conditional branches includes work on scheduling op-
erations on the most probable path first [14], extending ro-
tation scheduling [15], speculatively executing operations
from future loop iterations [16], and extending loop folding
for CDFGs [17].

Although several parallelizing code transformations and
loop transformations have been proposed in the paralleliz-
ing compiler community, we found that these transforma-
tions are not directly useful for high-level synthesis (HLS).
The cost functions and optimization criteria for compilers
are different from those of HLS. Whereas, compilers of-
ten pursue maximum parallelization, we found that in HLS,
parallelizing transformations have to be tempered by their
effects on the control and area (in terms of interconnect)
costs. Indeed, the very nature of transformations that are
useful for HLS is different from those that are useful for
compilers. In some cases, this means that we actually end
up moving operations into the conditional blocks by reverse
and conditional speculation [3]. Similarly, in this paper, we
show that loop unrolling can lead to worse circuit delays and
area; instead an incremental loop transformation technique
such as loop shifting is more useful for HLS.

3 Loop Shifting
Loop shifting is a technique whereby an operation op is

moved from the beginning of the loop body to the end of
the loop body, along the back-edge of the loop. To preserve
the correctness of the program, a copy opc of operation op
is placed in the loop head/prologue. Thus, opc is executed
before the first iteration of the loop body and the original
operation op is then executed at the end of the loop body.
This execution corresponds to the execution of op from the
next loop iteration as per the original code.

We demonstrate loop shifting with an example in Figure
1. In this example, basic blocks BB1 and BB2 form the body

i < n i < nBB2 BB2

F

BB1BB1

2: d = a + c
....2: d = a + c

Loop
For

1: a = d + c

1: a’ = d + c

BB4

BB5

Exit
Loop

Loop
For

BB3BB3 T TF

(b)

BB4

BB5

Exit
Loop

(a)

3: i = i + 1

4: f = a + e 4: f = a + e

5: a = a’

3: i = i + 1

6: a’ = d + c

Figure 2. (a) An example design. (b) Copy operation, a = a′

is left in place of shifted op 1 to ensure code correctness.

of a loop and BB0 is the loop head and BB3 is the loop exit
or tail. Solid arrows indicate data flow and dashed arrows
indicate control flow. Consider that we shift operations a
and c from the loop body in the original design in Figure
1(a) to the end of the loop body (BB2) and copies of a and
c are inserted in the loop head (BB0). The resultant design
is shown in Figure 1(b).

We can now compact the code inside the shifted loop
body using parallelizing transformations. In the shifted de-
sign, it is possible to schedule operation a concurrently with
operation d and c concurrently with operation b. The resul-
tant, compacted design is shown in Figure 1(c). The state
assignments (S0 to S4) for these three designs are demar-
cated by dashed lines. Clearly, the design in Figure 1(c),
after shifting and compaction, has a shorter schedule length
than the original design in Figure 1(a).

Thus, as a result of loop shifting and compaction, the
loop body executes in fewer cycles. These fewer cycles
multiplied by the loop iteration count give us the reduction
in execution cycles of the design. However, loop shifting
is useful only when the gains in performance of the loop
body is larger than the overhead of the copies of the shifted
operations that are placed in the loop head.

3.1 Ensuring the Correctness of Code
Shifting an operation leads to one extra execution of the

operation over the number of times it is executed in the orig-
inal code. This can be understood by the shifted design
shown earlier in Figure 1(c). In this design, if the loop ex-
ecutes for 8 iterations, then the shifted operation a executes
8 times inside the loop body plus once in the loop head (ba-
sic block BB0). In contrast, in the original design in Figure
1(a), operation a executes only 8 times inside the loop body.

To ensure that executing the shifted operation one extra
time does not change the behavior of the program, we write
the result of the shifted operation, op, to a new variable,
newVar and in place of op, we leave a copy operation from
newVar to the result variable of the original operation op.

We demonstrate this through an example in Figure 2(a).
Here, the result of operation 1 in the loop body (in basic
block BB3) is read by operation 4 after the loop. Consider
that we shift operation 1 to the end of the loop body and
place a copy as operation 6 in the loop head. Both these
operations write to a new variable a′ and a copy operation
a = a′ is left in place of the original operation 1. This en-

BB1

BB2
BB4BB3

If Block

BB6

S3

S4

S5

S2

S6

BB5

S1

S7

Exit
Loop

BB7

BB2

BB7

BB1

BB0

BB4

Loop
Exit

BB6

BB5

BB3

If

Block
Loop Loop

Block

BB7

BB2
BB3
Block

If

BB5
Loop
Exit

BB1

BB0

BB4

BB6

Loop
Block

BB0

......
...

g

d

bg

T F

f

b

da’

(c)

ca

c’ g

T F

f

(b)

a

a c

c

F

f

(a)

T

b

d

ca

c"

a"

<<<

Figure 3. (a) A design with a if-then-else conditional block
inside a loop. (b) Operations a and c are shifted from the
longer conditional, BB3. (c) Code compaction by dupli-
cating operations a and c into both conditional branches.

sures that operation 4 gets the correct value of a after loop
shifting. The resultant design is shown in Figure 2(b).

We also have to maintain the inter and intra-iteration data
dependencies while applying loop shifting since a shifted
operation may have data dependencies across loop itera-
tions. In the example in Figure 2(a), operation 1 reads the
variable d that is written by operation 2. Hence, after shift-
ing operation 1, we have to add a data dependency arc from
operation 2 to shifted operation 1.

3.2 Shifting Loops with Conditional Branches
In loops with conditional constructs, operations can be

shifted from within a conditional branch. Since the goal of
our approach is to minimize the length of the longest path
through the design, we shift operations from the branch of
the conditional with the longer schedule length.

Consider the example in Figure 3(a). This example has
an if-then-else conditional block within the body of a loop.
Since the true branch (basic block BB3) of this if-block has
a longer schedule length (of 3) than the false branch (BB4),
we choose to shift operations from basic block BB3.

Hence, consider that we shift operations a and c from
BB3, as shown in Figure 3(b). The parallelizing code trans-
formations can now compact the shifted code by duplicating
operations a and c into both branches of the if-block, as op-
erations a′ and a′′ and c′ and c′′. The resultant design is
shown in Figure 3(c). Note that, we employ a code motion
called conditional speculation [1] for operation duplication.

3.3 Our Approach to Loop Shifting
We perform loop shifting after scheduling the loop body

once. The scheduler may schedule some operations to exe-
cute concurrently in the same cycle. We term a set of con-
current operations in a basic block as a scheduling step.

In our approach, instead of shifting one operation at a
time, we shift an entire scheduling step across loop itera-
tions. This is because shifting only one of several concur-
rent operations will not eliminate the scheduling step and
thus, the schedule length of the basic block (and loop body)
will not decrease. In the design in Figure 3(a), we chose to
shift the first scheduling step in BB3, i.e., both operations a
and c (instead of just one of them).

/* Shifts one scheduling step in the loop body */
ShiftLoopBody(LoopNode)
1: f irstBB← FirstBB(LoopNode→loopBody)
2: stepToShi f t ← FindStepToShift(f irstBB)
3: BB(stepToShi f t)← BB(stepToShi f t) - stepToShi f t
4: lastBB← LastBB(LoopNode→loopBody)
5: lastBB← lastBB ∪ stepToShi f t
6: loopHeadBB← LastBB(LoopNode→loopHead)
7: loopHeadBB← loopHeadBB ∪ Copy(stepToShi f t)
8: Reschedule(LoopNode)

(a)

/* Recursive function that returns a step to shift from */
/* the basic block in the longer conditional branch */
FindStepToShift(currBB)

Returns: The step to shift
1: stepToShi f t ← FirstNonCondStep(currBB)
2: if (stepToShi f t = /0) {
3: Find nextBB ∈ SUCCS(currBB) with the

maximum NumSteps(nextBB)
4: stepToShi f t ← FindStepToShift(nextBB)
5: }
6: return stepToShi f t

(b)

Figure 4. Loop Shifting Algorithm: shifts one scheduling
step in a loop body.

3.4 Loop Unrolling
Loop unrolling is a code transformation in which a dupli-

cate of one or more iterations of the loop body is placed at
the end of the current loop body. The loop bounds and loop
index variable increment are updated as necessary. Loop
unrolling is used for exposing parallelism across loop itera-
tions and thus, enable code compaction of the unrolled loop
body. However, loop unrolling can lead to code explosion;
so, loops are usually unrolled one iteration at a time.

In our synthesis framework, the number of unrolls for
each loop is user-directed. Our synthesis tool first unrolls
the loop as specified by the designer and then schedules the
design. We can thus study the effects of different unrolling
factors on hardware costs and circuit performance.

4 Loop Shifting Algorithm
Our loop shifting algorithm is listed in Figure 4(a). This

algorithm takes the loop node to be shifted as input and
shifts one scheduling step from the beginning of the loop
body to its end.

We use an intermediate representation called Hierar-
chical Task Graphs (HTGs) [18, 1] that encapsulates con-
structs such as loops, if-then-else blocks, et cetera in hi-
erarchical nodes that in turn may have sub-nodes. Us-
ing this intermediate representation, we can access the
sub-parts (loop head, body, and tail) of a loop by re-
ferring to LoopNode→loopHead, LoopNode→loopBody
and LoopNode→loopTail. The loop head and loop tail
each contain one basic block, whereas the loop body is a
hierarchical node that may contain other hierarchical nodes
(including if-then-else blocks and other loops). By defini-
tion, each HTG node HtgNode has a Start (or first) basic

Resources
Design

Ifs Loops BBs Ops +− == << [] / ∗

pred1 4 2 17 123 2 2 2 2 - -
pred2 11 6 45 287 2 2 2 2 - -
tiler 11 2 35 150 3 2 2 2 1 1

Table 1. Characteristics of the designs used in our experi-
ments and the resources allocated for scheduling them.

block and a Stop (or last) basic block that can be obtained
by FirstBB(HtgNode) and LastBB(HtgNode) [1].

The loop shifting algorithm starts by looking for a
scheduling step to shift. To do this, it calls the function
FindStepToShi f t with the first basic block in the loop as
argument. This function, listed in Figure 4(b), calls the
function FirstNonCondStep for each basic block currBB.
This function returns a NULL step if currBB is empty (due
to past shift operations) or currBB only has scheduling
steps with conditional Boolean checks (denoted by trian-
gles in our figures). If FirstNonCondStep does not find a
scheduling step, the FindStepToShi f t function recursively
traverses the basic blocks in the loop body till it finds a
scheduling step in one of them. If a basic block has several
successor basic blocks (branches), the algorithm traverses
to the branch with the larger number of scheduling steps.

Once the FindStepToShi f t function returns a scheduling
step stepToShi f t, this step is removed from its basic block,
and added to the last basic block in the loop body (lines 3
to 5 in Figure 4(a)). A copy of stepToShi f t is also added to
the loop head (lines 6 and 7). We then reschedule the loop
by calling the function Reschedule. Note that, by adding or
removing a scheduling step, we mean that the operations in
that step are added or removed from a basic block.

In the worst case, this algorithm may end up traversing
all the basic blocks in a loop. In practice, it usually tra-
verses not more than 2 to 3 basic blocks. Rescheduling the
loop, on the other hand, can be computationally expensive.
However, in practice, only the shifted operations have to be
repacked in the schedule. In our experiments, we find that
the run times of our synthesis tool, on a 1.6 Ghz PC running
Linux, range from 1-3 usecs (user seconds) with no loop
shifting, 2 to 6 usecs with loop shifting and 5 to 10 usecs
with loop unrolling (see next two sections). 60 % of this
time is spent in resource binding, since it is formulated as a
network flow problem. In contrast, the logic synthesis tool
takes between 2 to 8 hours for synthesizing these designs.

5 Experimental Setup and Results

We implemented the loop unrolling and shifting trans-
formations, along with the shifting algorithm in the SPARK
high-level synthesis framework [1]. The SPARK frame-
work takes an input in ANSI-C (with restrictions of no
pointers, irregular jumps, and recursive functions) and pro-
duces synthesizable RTL VHDL. The framework applies a
range of compiler transformations (loop-invariant code mo-
tion, CSE, copy propagation, dead code elimination) and
parallelizing compiler transformations (speculative code
motions, dynamic CSE) [1]. So all the results presented in
this section represent improvements over a design already
optimized by these code transformations.

Transform MPEG-1 pred1 MPEG-1 pred2
Applied # States # cycles # States # cycles

No Unrolls 38 899 69 2127
1 Unroll 48(+26.3%) 803(-10.7%) 79(+14.5%) 2031(-4.5%)
3 Unrolls 66(+37.5%) 723(-10%) 97(+22.8%) 1951(-3.9%)
Total Reduc +73.7 % -19.6 % +40.6 % -8.3 %

Table 2. Scheduling results after unrolling the inner loops
in pred1 and pred2.

Transformation GIMP tiler
Applied # States # cycles

No Unrolls 32 2534
1 Unroll 52 (+62.5 %) 2284 (-9.9 %)
4 Unrolls 97 (+86.5 %) 1834 (-19.7 %)
Total Reduction +203.1 % -27.6 %

Table 3. Scheduling Results after unrolling for tiler.

In this section, we present results for experiments per-
formed using designs derived from two moderately complex
real-life applications: the pred1 and pred2 functions from
the Prediction block of the MPEG-1 algorithm and the tiler
transform from the GIMP image processing tool [19]. For
the experiments presented below, we apply loop unrolling
and loop shifting to inner loops of the three designs. All
three designs have doubly nested loop pairs that form the
main kernel of these application codes.

Table 1 lists the characteristics of the various designs in
terms of the number of if-then-else blocks, for-loops, non-
empty basic blocks and operations in the input description.
The resources allocated to schedule these designs are also
listed: +− does add and subtract, == is a comparator, ∗ a
multiplier, / a divider, [] an array address decoder and <<
is a shifter. The multiplier (∗) executes in 2 cycles and the
divider (/) in 5 cycles. All other resources are single cycle.
5.1 Synthesis Results for Loop Unrolling

We first present the scheduling results for loop unrolling
in Tables 2 and 3. The unroll factors are determined as fol-
lows: for a loop with an iteration count of N, we allow un-
rolling the loop by M times such that N/(1+M) is an inte-
ger and less than or equal to 1. The loops that are unrolled
in pred1, pred2 and tiler have N equal to 8, 8 and 10 re-
spectively. Hence, for N=8, possible values of M are 1, 3
and 7, and for N=10, M can be 1, 4 or 9.

The scheduling results are in terms of the number of
states in the FSM controller and the cycles on the longest
path. Longest path for loops is the cycles on the longest path
through the loop body multiplied by the number of loop it-
erations. The first row in the two tables lists the results for
the case when no loop unrolling is done, the second row for
one loop unroll, and the third row for 3 loop unrolls for the
pred1 and pred2 designs and 4 unrolls for tiler. The per-
centage reductions of each row over the previous row are
given in parentheses. The last row gives the total reduction
of the third row over the first row.

The results in the second row of Tables 2 and 3 show
that with one unroll, we can achieve improvements ranging
from 4 % to 10 % in the cycles on the longest path for the
three designs. Unrolling the loop further (three times for the
pred1 and pred2 designs and four times for tiler) leads to a
further improvement of 10, 4 and 19.7 % respectively.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Critical
Path (c

ns)

Total
Delay
(c*l)

Unit
Area

MPEG-1 Pred1 Function

0
0.2
0.4
0.6
0.8

1
1.2

Critical
Path (c

ns)

Total
Delay
(c*l)

Unit
Area

MPEG-1 Pred2 Function

0

0.5

1

1.5

2

2.5

Critical
Path (c

ns)

Total
Delay
(c*l)

Unit
Area

GIMP Tiler Function

No Unrolls 1 Unroll 3 Unrolls for MPEG/4 for tiler

Figure 5. Logic synthesis results after loop unrolling.

However, the results in Tables 2 and 3 also show that
loop unrolling leads to a large increase in the size of the
FSM controller (number of states). This is because when
the loop body is duplicated, the number of control steps in
the schedule increases, even though the number of execu-
tions of the loop body may reduce.

To study the impact on circuit area and delay, we per-
formed logic synthesis on the RTL VHDL generated af-
ter scheduling, binding, and controller generation by the
SPARK high-level synthesis tool. We used Synopsys De-
sign Compiler with the TSMC 0.13 micron technology li-
brary. The logic synthesis results are presented in the graphs
in Figure 5. The metrics mapped in these graphs are the crit-
ical path length in nanoseconds (as determined by the static
timing analysis tool), the longest input to output delay or
latency of the circuit (longest path cycles multiplied by the
critical path length), and the unit area of the circuit (in terms
of the technology library). All values are normalized by the
no unrolling case. The critical path length is longest com-
binational path through the circuit and hence, dictates clock
period or frequency.

The results in these graphs show that when the loops are
unrolled, the critical path lengths increase by 10 to 25 %.
This increase works against the gains achieved in cycles
through the longest path. As a result, the longest input to
output delay or latency through the three designs remains
almost constant as the loops are unrolled. However, there is
a substantial increase in area – from 22 % to up to 150 %.

The increases in critical path length and area are due
to the larger controller size and more complex steering
logic (multiplexers, de-multiplexers and associated control
logic). As the loops are unrolled, the number of operations
in the design increases. Hence, a larger number of oper-
ations are mapped to the same number of resources. This
increases resource utilization, which in turn leads to an in-
crease in the size and complexity of the steering logic.
5.2 Synthesis Results for Loop Shifting

Tables 4 and 5 list the scheduling results for the three
designs as the inner loops are shifted, starting from no loop
shifting (first row) to three shifts (fourth row). The percent-
age reductions of each row over the previous row are given
in parentheses. The last row gives the total reduction of the
fourth row (3 loop shifts) over the first row (no loop shifts).

The results in this table show that as the loops are shifted,
the schedule length (cycles on the longest path) can some-
times increase. This happens when a set of concurrent op-
erations is shifted from one branch of an already balanced
conditional block. This means that, potentially, after shift-

Transform MPEG-1 pred1 MPEG-1 pred2
Applied # States # cycles # States # cycles

No Shifts 38 899 69 2127
1 Shift 36(-5.3 %) 771(-14%) 67(-2.9 %) 1999(-6 %)
2 Shifts 37(+2.8 %) 779(+1 %) 68(+1.5 %) 2007(+0.4 %)
3 Shifts 36(-2.7 %) 715(-8.2 %) 67(-1.5 %) 1943(-3.2 %)
Total Reduc -5.3 % -20.5 % -2.9 % -8.7 %

Table 4. Scheduling results after loop shifting.

Transform GIMP tiler
Applied # States # cycles

No Shifts 32 2534
1 Shift 30 (-6.3 %) 2334 (-7.9 %)
2 Shifts 30 (0 %) 2244 (-3.9 %)
3 Shifts 29 (-3.3 %) 2054 (-8.5 %)
Total Reduc -9.4 % -18.9 %

Table 5. Results after shifting the inner loops. Further
shifting does not improve scheduling results.

0
0.2
0.4
0.6
0.8

1
1.2

Critical
Path(c

ns)

Total
Delay
(c*l)

Unit
Area

MPEG-1 Pred1 Function

0
0.2
0.4
0.6
0.8

1

Critical
Path (c

ns)

Total
Delay
(c*l)

Unit Area

MPEG-1 Pred2 Function

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Critical
Path (c

ns)

Total
Delay
(c*l)

Unit
Area

GIMP Tiler Function

No Shifts 3 Shifts 2 Shifts1 Shifts

Figure 6. Logic synthesis results after loop shifting.

ing the scheduler is unable to compact the loop body to its
size before shifting. However, in such a case, we can usu-
ally get back to the original schedule length by shifting once
more; this time the scheduling step from the other branch of
the conditional gets shifted.

If two consecutive shifts produce worse results, this indi-
cates that we should stop shifting. The worse results mean
that it is not possible to compact the loop body with any
more shifted operations. We are currently developing more
deterministic ways to determine the number of loop shifts.
For now, we can experiment with different loop shifts due to
low run times of our synthesis tool for fairly large designs.

From the results in Tables 4 and 5, we can see that the
best scheduling results are achieved for all the designs after
shifting the loop 3 times. The total reductions (last row)
range from 8 to 20 % in the cycles on the longest path and
2 to 9 % in the states in the FSM controller.

These scheduling results translate over to the critical path
length and area results obtained after logic synthesis. These
are presented in Figure 6. The bars in these graphs corre-
spond to no shifts, 1 shift, 2 shift and 3 shifts. These logic
synthesis results show that we can achieve 5-20 % improve-
ments in the delay through the circuit by employing loop
shifting, while incurring marginal increases in circuit area
compared to loop unrolling. Recall that the base case (no
shifts) represents a design that is already optimized by a
range of parallelizing compiler transformations [1].

5.3 Results with Higher Resource Allocation
We ran our experiments again with a higher resource al-

location for the MPEG designs1. We used 4 adders and 3

1Due to a lack of space, we left out results for tiler in this section

Transform MPEG-1 pred1 MPEG-1 pred2
Applied # States # cycles # States # cycles

No Unrolls 36 771 68 1935
1 Unroll 42(+16.7%) 611(-20.8%) 72(+5.9%) 1775(-8.3%)
3 Unrolls 56(+33.3%) 563(-7.9%) 86(+19.4%) 1727(-2.7%)
Total Reduc +55.6 % -27 % +26.5 % -10.7 %
Table 6. Higher resource allocation: Scheduling results
after unrolling the inner loops in pred1 and pred2.

Transform MPEG-1 pred1 MPEG-1 pred2
Applied # States # cycles # States # cycles

No Shifts 36 771 68 1935
3 Shifts 36(0 %) 659(-14.5%) 66(-2.9%) 1823(-5.8%)
5 Shifts 36(0 %) 603(-8.5%) 66(0 %) 1767(-3.1%)
7 Shifts 37(+2.8%) 555(-8 %) 67(+1.5%) 1719(-2.7%)
Total Reduc +2.8 % -28 % -1.5 % -11.2 %

Table 7. Higher resource allocation: Scheduling results
after shifting loops in pred1 and pred2.

array decoders instead of 2 each, with other resources being
the same as before (increasing the other resources did not
affect scheduling results). The scheduling results for loop
unrolling and shifting are listed in Tables 6 and 7 respec-
tively. With a higher resource allocation, the improvements
are larger for both loop unrolling and loop shifting. Also,
loop unrolling leads to a smaller increase in controller size
because the unrolled operations get compacted more easily
due to the higher resource allocation. Also, we are able to
do more loop shifting: 7 shifts versus the earlier 3.

The logic synthesis results for these experiments are pre-
sented in Figure 7. There results again demonstrate that
loop unrolling leads to a large increase circuit area with
only modest improvements in circuit delay. In contrast, loop
shifting again leads to 5 to 25 % improvement in circuit de-
lay with fairly constant circuit area.

6 Conclusions and Future Directions
We presented a loop transformation technique called

loop shifting that incrementally exposes parallelism across
loop iterations by shifting operations from one iteration of
the loop body to the previous one. Experimental results
on designs derived from multimedia and image applications
show that loop shifting results in up to 20 % lower delays
with increases in area between 0-20 %. These represent im-
provements over designs already optimized by our synthe-
sis framework using a range of parallelizing code motions
and code transformations. In contrast, the control and multi-
plexing overheads of loop unrolling undo the gains achieved
in schedule lengths. The length of the critical path (longest
combinational path) and thus, circuit delay increases. Cir-
cuit area increases by up to 150 %. In future work, we want
to develop cost models to guide our loop transformation
heuristics that estimate the impact of the loop transforma-
tions on circuit control and interconnect costs.

References
[1] S. Gupta, N.D. Dutt, R.K. Gupta, and A. Nicolau. SPARK:

A high-level synthesis framework for applying parallelizing
compiler transformations. VLSI Design, 2003.

[2] K. Wakabayashi and H. Tanaka. Global scheduling indepen-
dent of control dependencies based on condition vectors. In
Design Automation Conference, 1992.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Critical
Path (c

ns)

Total
Delay
(c*l)

Unit
Area

MPEG-1 Pred1 Function

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Critical
Path (c

ns)

Total
Delay
(c*l)

Unit
Area

MPEG-1 Pred2 Function

No Unrolls 1 Unroll 3 Unrolls

0
0.2
0.4
0.6
0.8

1
1.2

Critical
Path(c

ns)

Total
Delay
(c*l)

Unit
Area

MPEG-1 Pred1 Function

0
0.2
0.4
0.6
0.8

1

Critical
Path (c

ns)

Total
Delay
(c*l)

Unit Area

MPEG-1 Pred2 Function

No Shifts 3 Shifts 5 Shifts 7 Shifts

Figure 7. Higher resource allocation: Logic synthesis re-
sults after loop unrolling and loop shifting.

[3] S. Gupta, et al. Conditional speculation and its effects on
performance and area for high-level synthesis. In Intl. Symp.
on System Synthesis, 2001.

[4] B. R. Rau and C. D. Glaeser. Some scheduling techniques
and an easily schedulable horizontal architecture for high
performance scientific computing. In Annual Workshop on
Microprogramming, 1981.

[5] A. Aiken, A. Nicolau. Perfect Pipelining: A new loop paral-
lelization technique. Euro Symp. on Programming, 1988.

[6] M. Lam. Software pipelining: An effective scheduling tech-
nique for VLIW machines. PLDI, 1988.

[7] S. Novack and A. Nicolau. An efficient, global resource-
directed approach to exploiting instruction-level parallelism.
In Conference on PACT, 1996.

[8] A. Aiken, A. Nicolau, and S. Novack. Resource-constrained
software pipelining. IEEE Transactions on Parallel and Dis-
tributed Systems, 6(12), December 1995.

[9] R. Jones and V. Allan. Software pipelining: A comparison
and improvement. In Proceedings of the Micro-23, 1990.

[10] E. Girczyc. Loop winding - a data flow approach to func-
tional pipelining. Intl. Symp. of Circuits and Systems, 1987.

[11] L.-F. Chao, A. S. LaPaugh, and E. H.-M. Sha. Rotation
scheduling: A loop pipelining algorithm. DAC, 1993.

[12] R. Potasman, J. Lis, A. Nicolau, and D. Gajski. Percolation
based synthesis. In Design Automation Conference, 1990.

[13] G. Goossens, J. Vandewlle, and H. De Man. Loop optimiza-
tion in register-transfer scheduling for DSP-systems. In De-
sign automation conference, 1989.

[14] U. Holtmann and R. Ernst. Combining MBP-speculative
computation and loop pipelining in high-level synthesis. In
European Design and Test Conference, 1995.

[15] T. Z. Yu, E. H.-M. Sha, N. Passos, and R. D.-C. Ju. Al-
gorithms and hardware support for branch anticipation,. In
Great Lakes Symposium on VLSI, 1997.

[16] G. Lakshminarayana, A. Raghunathan, and N.K. Jha. In-
corporating speculative execution into scheduling of control-
flow intensive behavioral descriptions. DAC, 1998.

[17] I. Radivojevic and F. Brewer. Analysis of conditional re-
source sharing using a guard-based control representation.
In International Conference on Computer Design, 1995.

[18] M. Girkar and C.D. Polychronopoulos. Automatic extrac-
tion of functional parallelism from ordinary programs. IEEE
Trans. on Parallel & Distributed Systems, Mar. 1992.

[19] GNU Image Manipulation Program. http://www.
gimp.org.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

