
An Environment for Dynamic Component Composition for Efficient Co-Design

Frederic Doucet, Sandeep Shukla, Rajesh Gupta
Center For Embedded Computer Systems

University of California at Irvine
fdoucet,skshukla,rguptag@ics.uci.edu

Masato Otsuka
Fujitsu Ltd, Japan

otsuka.masato@jp.fujitsu.com

Abstract

This article describes the Balboa component integration
environment that is composed of three parts: a script lan-
guage interpreter, compiled C++ components, and a set of
Split-Level Interfaces to link the interpreted domain to the
compiled domain. The environment applies the notion of
split-level programming to relieve system engineers of soft-
ware engineering concerns and to let them focus on system
architecture. The script language is a Component Integra-
tion Language because it implements a component model
with introspection and loose typing capabilities. Compo-
nent wrappers use split-level interfaces that implement the
composition rules, dynamic type determination and type
inference algorithms. Using an interface description lan-
guage compiler automatically generates the split-level in-
terfaces. The contribution of this work is two fold: an ac-
tive code generation technique, and a three-layer environ-
ment that keeps the C++ components intact for reuse. We
present an overview of the environment; demonstrate our
approach by building three simulation models for an adap-
tive memory controller, and comment on code generation
ratios.

1. Introduction

There is currently a trend of research on using general
purpose programming languages in building digital hard-
ware systems, as exemplified by the proliferation of C++
based design languages [21, 19, 26, 16, 13, 23, 8]. The ma-
jor advantage of existing methodologies with C++ is that
the designers can easily build components that can become
a part of intellectual property (IP) libraries. However, de-
sign composition with C++ is still tedious and reuse is ad
hoc in thecurrent compile-link-testmethodologies. A ma-
jor barrier to adoption of system-level design using C++ is
that hardware designers need to understand significant soft-
ware engineering issues related to components and need to
be thoroughly versed in programming abstractions such as

inheritance and polymorphism. Often, such concerns are
quite orthogonal to the hardware system architectures and
design issues, thus actually adding to the time and effort
in the system design process. However, there is a defi-
nite need to leverage the advantages of programming lan-
guages (executable complete system models) in faster and
easier system level model construction. In this work, our
goal is two fold: relieve the system designer/integrator of
the problems of dealing with software engineering and C++
programming issues to enable them to concentrate on hard-
ware system co-design issues, and create a component in-
tegration environment that allows the designer to efficiently
add or delete components, dynamically change design con-
figuration, and quickly run simulation to test functionality
and performance. In this context, we aim at:

1. Creating an abstraction layer to separate concerns
about hardware system architecture, software design
artifacts and EDA tool integration/setup,

2. Creating a rapid design space exploration environment
which avoids a time consuming and programming in-
tensive compile-link-test cycle of a fully compilation
based environment,

3. Providing an abstraction from the class library imple-
mentation to the designer/system integrator,

4. Creating a component integration environment that has
introspection capabilities to dynamically query types
and attributes of components, to create architecture
maintaining type compatibility in the underlying com-
piled object layer.

In this paper we present our approach to the construc-
tion of executable system models that builds upon C++ class
library-based approaches to system modeling. The Balboa
[2] composition environment relies on ”smart wrappers”
that contain information about the types and object mod-
els of the components, and assemble them through an inter-
preted environment with a ”loose” typing. The paper is or-
ganized as follows. The related work is reviewed in Section

2. The key techniques of the Balboa environment presented
in Section 3 are layering, component-based design, wrapper
generation, scripting based split programming, introspec-
tion and typing. Section 4 presents a moderately complex
real design implementation in the environment of the Adap-
tive Memory AMRM [1] system followed by a discussion
and interpretation of the results of using this approach.

2. Related Work

This work builds upon ongoing work in the areas of
component technology, split-programming and specifica-
tion language design. A component is a unit of composi-
tion be it a function, object, library or a complete program.
Component-based design is the activity of assembling small
components focused on one task into a more complex com-
ponent with a richer functionality. Dynamic composition is
performed at run-time when objects acquire references to
other objects. The advantage of dynamic composition over
static composition is that the behavior of a new system will
depend on object relationships being defined at runtime, in-
stead of being defined and hard-coded in the files. Com-
ponent technology is emphasized as a key element [14] in
the development of complex software systems. Component
integration can be done in three different ways: by program-
ming, graphically, or by scripting.

Programming based composition is tedious because
many syntactical details (that are not necessary from an ar-
chitect viewpoint) must be resolved. Also, many program-
ming decisions independent of the nature of a system model
have to be addressed. For example, when building a special
adder, a hardware designer should not necessarily be con-
cerned with inheritance, virtual function, friends and other
C++ specific constructs, but rather focus on hardware spe-
cific characteristics such as bit width, propagation delays,
genericity etc. Architecture description languages (ADL)
have addressed parts of these problems in the software en-
gineering [18], but for system design, they are often focused
on specialized tasks [25], and interoperability can be diffi-
cult to achieve [12]. Graphical integration is easy with in-
tuitive block diagrams as in VCC [3], but it is difficult to
manage for very large designs. The use of UML has been
used also suggested [17] to specify component integration
and object interoperability.

The third component integration method is by using
scripting. Scripting has been used for many years in soft-
ware component integration in CAD frameworks. Ouster-
hout argues that a script language interpreter for component
integration is essential for API abstraction and reuse [20].
Script interfaces for compiled code can be generated using
wrapper generators such as SWIG [22] [10]. However, cur-
rent wrapper generator technology presents two problems:
script syntax is very difficult to generate for complex and

parameterized (template) component types [4], component
navigation is impossible because we cannot go inside en-
capsulated component hierarchies.

Split programming refers to generation of class hierar-
chies in multiple programming environments with hooks
that enable their combined manipulation. NS (network sim-
ulator) uses a split-programming model to create a network
simulation environment, with two layers of programming
facilities: one for building objects, and the other for com-
posing them [6]. A script language is used for network
model composition, and the C++ language is used for build-
ing components. In NS, a C++ design object used in split-
programming has toinherit from a class that is visible to the
scripting layer. Unlike network simulation, where scripted
models are simulated, in hardware system co-design mod-
els, simulation efficiency is an important criterion.

System level and hardware specification languages are
active areas of research. Most approaches are looking to
raise the level of abstraction above the RTL level into ei-
ther the architectural or the behavioral design space. In
system level models, there are many levels of abstraction
that are not yet clearly layered, but the understanding is im-
proving [13] [9]. At functional levels of abstraction, models
of computation are clear, and in many cases, efficient only
for specific application domains. Most of current system
level languages are strongly typed, with the exception of
the Ptolemy framework that has an elaborate type system
[15] that statically resolves data types to the most specific
type that meets all specified constraints.

3. The Balboa Composition Environment

In the current C++-based hardware design methodolo-
gies, the design components and the simulation kernel are
in compiled C++. However, in order to separate the con-
cerns of tool and design setup/control, many design tools
use a scripting interface. In the Balboa environment, there
is a custom interpreter for a special script language that can
execute a number of commands to do component composi-
tion, simulation control, test bench creation, and event mon-
itoring. The script language used is named Component Inte-
gration Language (CIL). Figure 1 shows the UML use case
diagram for the environment. The system architect builds
the model of the system using the CIL to direct the compo-
sition, by manipulating sets of objects and establishing re-
lationships. The library component engineer builds compo-
nents in C++, and exports their interfaces to theupper layer
by using the Balboa Interface Definition Language (BIDL).
The BIDL is basically similar to the CORBA IDL [11], but
it has been customized [5] for the needs of composability.
The environment is implemented through the following lay-
ered architecture:

System
Architect

Library
Component
Engineer

<<uses>>

<<builds>>

<<controls>>

CIL

Component Integration Environment

SLI

Interpreter

C++/BIDL

<<uses>>

Model
Design
C++

DE Simulator
IP

Libraries

Figure 1. Balboa environment has two user
roles: the system architect and the library
component engineer

1. Scripting layer: Designs are assembled from compo-
nents configured by using theComponent Integration
Language(CIL).

2. Wrapper layer : C++ objects are contained and ma-
nipulated inside the component by theSplit-Level In-
terfaces(SLI) that implement the split-programming
model.

3. Component library layer : IP repository where the
C++ classes/objects are stored. This layer is indepen-
dent of the two layers described below. Any compiled
C++ object can be placed in this layer.

The design of library component has to be done by a de-
signer who understands C++, the split-level interface gen-
eration is automated, and the design composition is done by
a system architect with the CIL.

The difference between the previous work and the Bal-
boa environment is the component model driven through
a split-programming model through the separation of the
component and its split-level interface. Unlike other im-
plementations where a component inherits a class interface
implementing the wrapper behavior, in our environment, the
SLI wrappers aggregates the design components. This is to
have composition and reuse less dependent from the class
interface of the internal object, by using object composition
and delegation instead of class inheritance. The motivation
for the separation of the wrapper from the component is to
avoid an inheritance dependency [24]. In other words, reuse
by class interfaceprecedesthe design of the class, while
reuse with the BIDLsucceedsthe design of the class. This
is because the types are compiled in the type system through
the BIDL.

3.1. The Runtime Structure

C3

Simulator
DES

Simulation Commands

Composition Commands

C2

C1

Interpreter

SLI

SLI
SLI

SLI

Figure 2. Runtime composition structure of
the environment: each design component
has a SLI wrapper to process CIL script com-
mands, and runs compiled discrete event
simulation

Figure 2 presents a snapshot of the environment at run-
time where there are three compiled C++ design compo-
nents: C1, and C2, which is composed of C3. Each of
the components has a split-level interface. There is also a
box for a compiled discrete event simulation kernel, such
as SystemC simulation kernel, which also has a split-level
interface.

3.2. Component Design

Figure 3 illustrates the tool flow and design process for
the component designer. The lower part of the figure illus-
trates the flow for component implementations in C++. The
upper part of the figure shows the flow for the component
characterization and the exportation of the interface of the
components to the interpreted domain. The BIDL compiler
generates C++ code to create and configure the split-level
interface of a component and to generate the type system
information and the specific code for the delayed instanti-
ation and delayed typing. The delayed type instantiation
mechanism is explained in Section 3.5. The BIDL com-
piler also generates the object model configuration specific
to the component. The principal steps for using BIDL to
export a C++ class to the interpreter are the following: the
designer uses the header of the class into the BIDL descrip-
tion and removes the part to be hidden from the interpreted
domain. Keywords are also added to configure the genera-
tion, such as component families, versioning and template
classes handling and specification of available types. From
the point of view of system architect, the component and
the split-level interface can be the same entity, as shown in
the Figure 3 by the dashed rectangle.

IP
Libraries

Component
Interface and
Characterization
Exports

C++BIDL
Language

HDL with
Keywords

C++ with
Class Library

Implementation
Component

C++

Compiler
SLI

Component
Compiled

C++

Compiler
C++

Translator

BIDL
Compiler

Figure 3. Component design tool flow: write the component in C++, use the BIDL to character-
ize/export it and generate a SLI

Split Interpreted

methods
variables &

Type

level
Interface

system
information

Component and GUI/script level interactions

compiled objects
interactions

compiled
Internal

object
design

Figure 4. Internal architecture for a Balboa
component

Figure 4 illustrates the internal architecture of a Balboa
component where there are four blocks: the internal object
(for example, such as a SystemC object or any other C++
object or component), the type system information (with an
object model), the interpreted attributes/methods (that can
be a reflection of the compiled attributes/methods), and the
split-level interface routines.

3.3. Interpreted vs. Compiled Domains

As shown in Figure 4, the split-level interfaces are the
links of the interpreted domain with the compiled domain.
But they also have a state and execute commands. The solid
lines on Figure 2 illustrate composition requests from the
CIL script language that are only interpreted in the SLIs.
However, the simulation commands showed by the dotted
lines are delegated to the compiled components. Usually,
the simulation control flow is kept only in the compiled

layer because interpreted command execution in the SLI can
be slower. However, the SLI layer can also interact with the
simulation. For example, in our libraries we have a number
of stimuli generators and monitors that use the interpreter
control flow to compute stimuli and check assertion during
the simulation.

3.4. Component Integration Language

The component integration language is between a mod-
ule interconnection language and an architecture descrip-
tion language. This is because the CIL is used from connec-
tions, and to build new components or compose attributes
or behaviors to existing ones. The basic composition unit
in CIL is an entity. For example, a component calledc1 is
instantiated with the command:

Entity c1

This component can be composed of a subcomponentc2
by the command:

Entity c1.c2
The result of this command is the instantiation of an entity
namedc2 insidec1 . The syntax for the composition is the
dot “.” operator, which is also used to navigate hierarchies.

The CIL also features introspection [7], which is the
capacity of an object to query itself to know its struc-
ture, attribute and methods. It is similar to self-inspection.
For instance, Tcl provides introspection capabilities with
the “info” procedure, and Java also provides introspection
through the reflection packages. The Balboa environment
implement and extend these models to add introspection us-
ing aquery method to the split-level interfaces where the
following characteristics of a component can be queried:
name, SLI type, C++ type, kind, attributes and methods.
For example, the following query:

c1 query attributes

=> c2
returns the list of attributes for componentc1 . In this case,

there is only thec2 attribute that is returned as result of
the command. This attribute is visible in the interpreted do-
main, but other attributes might be present in the compiled
domain, but not visible if they were not exported. Complex
commands can be built to query each subcomponent for in-
formation. For example, a command in our environment
that query a component for a full characteristics introspec-
tion returns the following:

Name: c1

Class: Entity

Type: Entity Imp
Kind: STRUCTURAL

Attributes: c2

Methods:

Tool behavior for design assembly is built through intro-
spection, looking for attributes or methods, and them intro-
specting them further to find out the composition possibili-
ties according to an internal object model.

3.5. Type System and Type Resolution

As illustrated in Figure 4, the type system is distributed
into all the components. The type system is used to deter-
mine the data type for template components. For example,
a queue between two components will be specified with no
data type, and the system will infer a type according to the
data types of the components to which the queue will be
connected. Consider the following example in the compo-
sition domain:

Producer p1

Queue q

Consumer c1

p1.queue out link to q
c1.queue out link to 1

The queueq data type is inferred by the type system through
introspection of the date type of thequeue out . This is
subdivided in two tasks: verify if types are compatible when
relationships are set; delay a component instantiation when
the component is untyped. When an entity is untyped in a
script, the system delays its instantiation inside the SLI until
the type is solved. For example, when instantiating a port,
the data type of the port is unknown. The type system will
select which data type to use, and look in a type hash table
to find a compiled allocator to instantiate a port for this data
type. The allocators are generated by the BIDL compiler.
In the current implementation, a type is not guaranteed to
be solved if two type incompatible.

4. Experimental Results

In this section, we describe an implementation of a mod-
erately complex system model in the BALBOA environ-
ment. The AMRM is an adaptive cache memory system

[1] that can have its properties dynamically changed by
software. For example, associativity and line size can be
changed by the compiler. The hardware part of the design
is a regular cache subsystem, with a modified controller that
can execute the extra instructions for cache adaptation.

Component
Integration

Refinement
Communication

Signal

Queue

Method

Association
Abstract

Figure 5. AMRM models in different levels of
abstraction

Figure 5 shows the outline of the procedure we followed
for the component integration and communication refine-
ment. The first step is to integrate and link them with ab-
stract associations in a conceptual model. We implement
the concrete message passing semantics and do commu-
nication refinement. Figure 6 shows the UML class dia-
grams and the block diagrams for the component integration
and the communication refinements. The following script
shows the CIL file used at all refinement levels:

1 # Load the AMRM component library
2 load ./libamrm.so
3
4 # Component instantiations
5 Cache L1
6 Cache L2
7 Memory Mem
8
9 # Testbench instantiation
10 Testbench CPU
11
12 # Procedure calls to connect components
13 connect_cpu2cache CPU L1
14 connect_cache2cache L1 L2
15 connect_cache2memory L2 Mem

Lines 5 to 7 instantiate two cache controller components
namedL1 and L2 , and a memory controller component
namedMem. Line 10 instantiates a test bench that aggre-
gates a configurable stimuli list. Line 13 to 15 are proce-
dure calls that set the associations between the components
for communication. The process is to re-implement these
procedures, as the abstract associations are refined.

0,1

Memory_Base
<<abstract>>

write()
read()

1
Cache Memory

lower_memory

MEM

L2

L1

Cache Memory

read()
write()

Queue

Memory_Base
<<active>>

<<abstract>>

proc()

u_answers
u_requests

l_answers
l_requests

2

2
2

2

MEM

Queue
link objects

L1

L2

req: Signal

din: Signal
addr: Signal
mode: Signal

dout: Signal
ack: Signal

Mem_Bus

Memory
l_req: Outport

l_addr: Outport
l_mode: Outport

l_din: Inport

l_ack: Inport
l_dout: Outport

Cache

proc()

u_req: Inport
u_mode: Inport
u_address: Inport
u_din: Inport

u_ack: Outport
u_dout: Outport

clock: Inport

Memory_Base
<<active>>

<<abstract>>

1

1

1

1

L2

L1

MEM

Bus
link objects

(b)(a) (c)

(d) (e) (f)

Figure 6. AMRM component integration models with communication refinement: the upper row is for
the class diagrams, and the lower row is for the corresponding block diagrams: (a) and (d) refinement
1, (b) and (e) refinement 2, (c) and (f) refinement 3

4.1. First Refinement

The first implementation is to use method invocations
to implement the message passing in a sequential model.
In the class diagram of Figure 6(a),Memory Base is
the base class for theCache and Memory classes. The
Memory Base hasread andwrite virtual methods that
are implemented in theCache andMemory classes to im-
plement the behavior. TheCache class has an associa-
tion namedlower memory that is used to navigate to the
lower level of memory. For example, on an L1 cache read
miss, the L1 cache will use this association to call read
method of L2 cache. The block diagram on Figure 6(d),
shows how theselower memory associations implement
the control flow between the two levels of cache and the
main memory. The following procedure sets the association

pointers between two caches in structure that was exported
to the SLI:

1 proc connect_cache2cache { u_c l_c } {
2 $u_c set_association lower_memory $l_c
3 }

4.2. Second Refinement

Let us refine the association implemented through
method calls into two associations with queues as shared
link objects: one queue for the requests and one queue
for the answers. The class diagram on Figure 6(b) illus-
trates this change. This refinement introduces concurrency
with the addition of a reactive process namedproc to the
Memory Base class. This process is triggered by an event
on clock input port and it transitively calls theread and

write methods. The following script lists the procedure to
connect two caches together with queues as link objects:

1 proc connect_cache2cache { U_Cache
2 L_Cache } {
3 # instantiate queues
4 Queue ${U_Cache}to${L_Cache}_requests_q
5 Queue ${U_Cache}to${L_Cache}_answers_q
6
7 # connect queues to upper cache
8 ${U_Cache} set_association l_requests \
9 ${U_Cache}to${L_Cache}_requests_q
10 ${U_Cache} set_association l_answers \
11 ${U_Cache}to${L_Cache}_answers_q
12
13 # connect queues to the lower cache
14 ${L_Cache} set_association u_requests \
15 ${U_Cache}to${L_Cache}_requests_q
16 ${L_Cache} set_association u_answers \
17 ${U_Cache}to${L_Cache}_answers_q
18 }

Lines 3 and 4 instantiate the queue components (from
a class library). The data types of the queues will be set
according to the types of the associations to which they are
connected. Lines 7, 9, 13 and 15 establish the associations
between the caches and the queues. Figure 6(e) shows the
architectural view, where each cache level is separated by
two queues.

4.3. Third Refinement

The lowest level of abstraction in our AMRM models
uses signal handshakes as association link classes. Figure
6(c) shows the class diagram for this model. The queue be-
havior is still in the design, but implemented through ports
beginning by “l” for the lower memory, and by “u” for the
upper memory. These ports are bound to theMemBus link
class, which encapsulates the signal objects. Figure 6(f)
shows the block diagram with the memory hierarchy and
the busses. The following script lists the procedure to con-
nect two caches through a bus:

1 proc connect_cache2cache {U_Cache
2 L_Cache} {
3 # instantiate a cache bus
4 Cache_Bus cb
5 # connect bus signals to upper cache
6 ${U_Cache}.l_req bind_to ${cb}.req
7 ${U_Cache}.l_mode bind_to ${cb}.mode
8 ${U_Cache}.l_addr bind_to ${cb}.addr
9 ${U_Cache}.l_dout bind_to ${cb}.din
10 ${U_Cache}.l_ack bind_to ${cb}.ack
11 ${U_Cache}.l_din bind_to ${cb}.dout
12
13 # connect bus signals to lower cache
14 ${L_Cache}.u_req bind_to ${cb}.req

15 ${L_Cache}.u_mode bind_to ${cb}.mode
16 ${L_Cache}.u_addr bind_to ${cb}.addr
17 ${L_Cache}.u_din bind_to ${cb}.din
18 ${L_Cache}.u_ack bind_to ${cb}.ack
19 ${L_Cache}.u_dout bind_to ${cb}.dout
20 }

Please note that we use thebind to method of the port
object instead of theset association command of the
object model. Line 3 instantiates a cache bus namedcb .
Lines 6 to 11 connect the ports of the uppercache to the bus
signals, and lines 14 to 19 connect the lower cache to the
bus signals.

4.4. Interpretation of Results

Refinement # Classes # Script # BIDL Ratio of IP
lines lines vs. Generated

C++ lines

1st 7, C++ only < 30 60 812/809
(1.01)

2nd 8, C++ < 40 84 1512/1002
w/ SystemC (1.51)

3rd 7, C++ < 150 87 1437/880
w/ SystemC (1.63)

Table 1. Design statistics of AMRM models:
code generation ratio higher at higher ab-
stractions

Table 1 shows the design statistics of the various file
sizes and code generation ratio for the AMRM implementa-
tions. As we refine the models, the script sizes grow larger
but not the number of C++ classes (except for the queue data
type class in the second refinement). This is because the
granularity of the communications gets smaller, and there
are more connections to be established.

The programming efforts to write BIDL files in this ex-
perimentation were non-intrusiveand of low effort: we used
the parts of the header of the classes we wanted visible to the
interpreter, and we added characterizations as behavioral or
structural components. The ratio of the IP vs generated code
sizes shown in the rightmost column is increasing as the ab-
straction is lowered. However, the size of BIDL file and the
generated code does not grow linearly with the size of the
IP code. The environment does not take design decisions
for the designer in the communication refinement (which is
supported by the AMRM library we wrote), except for the
type propagation. Work is in progress to investigate what
ratios of code generation are obtained in different design
context.

5. Summary and Future Work

In this paper, we presented the Balboa composition en-
vironment model. It is composed of three layers: an in-
terpreter where a component integration language (CIL) is
used to assemble and configure designs; automatically gen-
erated split-level interface (SLI) wrappers aroundeach C++
component; and C++ component libraries. The internal ar-
chitecture of a component implements a type system, an ob-
ject model, a reflective layer and a split-level interface for
a split-programming usage model. The CIL implements in-
trospection and loose typing. This effort is to facilitate the
composition activity for the system architect building mod-
els with C++ based languages by using code generation and
scripting. The usage of the CIL has the advantage of mak-
ing the code working set much smaller to implement the
changes by taking advantage of guided code generation.

The environment features an intermediate language
named BIDL to describe exported interfaces of the compo-
nents and generate the SLIs. Our initial experiments suggest
that the usage of the BIDL significantly reduce the program-
ming effort by the component designer. While the total size
of the design description is not smaller, the designer works
with a much smaller description to make the changes in the
full model. As future work, we would like to work fur-
ther on making the intermediate language independent of
the underlying simulation class library by formalizing the
simulation semantics in the BIDL.

6 Acknowledgments

We gratefully acknowledge the support for this research
from the National Science Foundation (grant CCR-98-
06898), the Semiconductor Research Corporation (SRC
Graduate Fellowship), the Fond pour la Formation de Cher-
cheurs et l’Aideà la Recherche (FCAR PhD Scholarship)
and from DARPA/ITO (contract DABT63-98-C-004).

References

[1] AMRM. Adaptive Memory Platform. Home Page:
http://www.cecs.uci.edu/�amrm.

[2] Balboa Project. Component Composition Environment.
Home Page: http://www.ics.uci.edu/�balboa.

[3] M. Baleani, A. Ferrari, A. Sangiovanni-Vincentelli, and
C. Turchetti. HW/SW Codesign of an Engine Management
System. InProc. Design Automation and Test in Europe
Conf., 2000.

[4] D. Berner, D. Jansen, and D. Gajski. Development of a Vi-
sual Refinement and Exploration Tool for SpecC. Technical
Report TR-01-12, UCI, 2001.

[5] A. Borgida and P. Devanbu. Adding more DL to IDL: to-
wards more knowledgeable component inter-operability. In
Proc. Int. Conf on Software Engineering, 1999.

[6] L. Breslau, D. Estrin, K. Fall, J. Heidemann, A. Helmy,
P. Huang, S. McCanne, K. Varadhan, Y. Xu, and H. Yu. Ad-
vances in Network Simulation.IEEE Computer, May 2000.

[7] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern Oriented Software Architecture: A System
of Patterns. John Wiley and Sons, 1996.

[8] Cadence Design Systems. VCC. home page:
http://www.cadence.com/products/vcc.html.

[9] W. Cesario, G. Nicolescu, L. Gauthier, D. Lyonnard, and
A. Jerraya. Colif: a Multilevel Design Representation for
Application-Specific Multiprocessor System-on-Chip De-
sign. InProc. Int. Workshop on Rapid System Prototyping,
2001. systemc.

[10] P. Chen, D. A. Kirkpatrick, and K. Keutzer. Fast Integra-
tion of EDA Tools and Scripting Language. InIEEE/DATC
Electronic Design Processes Workshop, 2001.

[11] CORBA website http://www.corba.org.
[12] F. Doucet, R. Gupta, M. Otsuka, P. Schaumont, and

S. Shukla. Interoperability as a Design Issue in C++ Based
Modeling Environments. InProc. Int. Symposium on System
Synthesis, 2001.

[13] D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and S. Zhao.
SpecC: Specification Language and Methodology. Kluwer
Academic Publishers, 2000.

[14] J. Hopkins. Component Primer.Commun. ACM, Oct. 2000.
[15] E. A. Lee and Y. Xiong. System-Level Types for

Component-Based Design. Technical Report ERL M00/8,
UCB, Febuary 2000.

[16] S. Liao, S. Tjiang, and R. Gupta. An Efficient Implementa-
tion of Reactivity in Modeling Hardware in the Scenic Syn-
thesis and Simulation Environment. InProc. IEEE/ACM De-
sign Automation Conf., 1997.

[17] G. Martin, L. Lavagno, and J.-L. Guerin. Embedded UML:
A Merger of Real-Time UML and Co-Design. InProc. Int.
Workshop on Hardware/Software Codesign, 2001.

[18] N. Medvidovic and R. N. Taylor. A Classification and Com-
parison Framework for Software Architecture Description
Languages.IEEE Trans. on Software Engineering, January
2000.

[19] G. D. Michelli. Hardware Synthesis from C/C++ Models.
In Proc. Design Automation and Test in Europe Conf., 1999.

[20] J. K. Ousterhout. Scripting: Higher-Level Programming for
the 21st Century.IEEE Computer, March 1998.

[21] L. Semeria and A. Ghosh. Methodology for Hard-
ware/Software Co-verification in C/C++. InProc. High
Level Design Validation and Test Workshop, 1999.

[22] Simplified wrapper and interface generator (SWIG) home
page: http://www.swig.org.

[23] SystemC. OSCI. Home page: http://www.systemc.org.
[24] C. Szyperski. Component Software: Beyond Object Ori-

ented Programming. Addison-Wesley, 1998.
[25] H. Tomiyama, A. Halambi, P. Grun, N. Dutt, and A. Nico-

lau. Architecture Description Languages for System-on-
Chip Design. InAsia Pacific Conference on Chip Design
Language, 1999.

[26] C. Weiler, U. Kebschull, and W. Rosenstiel. C++ Base
Classes for Specification, Simulation and Partitioning of a
Hardware/Software System. InCS Workshop on VLSI, 1995.

