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Abstract. Coarse-grain reconfigurable architectures consist of a large number of
processing elements (PEs) connected together in a network. For mapping appli-
cations to such coarse-grain architectures, we present an algorithm that takes into
account the number and delay of interconnects. This algorithm maps operations
to PEs and data transfers to interconnects in the fabric. We explore three different
cost functions that largely affect the performance of the scheduler: (a) priority of
the operations, (b) affinity of operations to PEs based on past mapping decisions,
and (c) connectivity between the PEs. Our results show that a priority-based op-
eration cost function coupled with a connectivity-based PE cost function gives
results that are close to the lower bounds for a range of designs.

1 Introduction

Coarse-grain reconfigurable architectures have been proposed as co-processors for ac-
celerating compute intensive portions (generally loops) of applications in embedded
system platforms. These architectures are attractive to system designers because they
provide the high performance of ASICs with the ease of reconfiguration of fine-grain
FPGAs. As a result, we have seen the emergence of a wide range of coarse-grain re-
configurable architectures over the last few years [1,2,4,5,6]. (to name a few). Mapping
applications to coarse-grain architectures is a combination of assigning time cycles for
operations to execute in (scheduling), mapping these operation executions to specific
PEs (mapping), and routing the operands or input data by mapping and scheduling data
communications to specific interconnects in the fabric (routing).

In this paper, we present an algorithm that performs these tasks by taking into account
the spatial locality or connections between the PEs and the temporal locality between
the data used by the operations. We examine different metrics that affect this algorithm
– specifically (a) the priority of operations based on the length of the dependency chain
or critical path through the code, (b) the affinity of operations to PEs, i.e., operations are
more likely to be mapped to a PE if their predecessor operations are also mapped to that
PE or one of its connected neighbors, and (c) the connectivity of the PEs, i.e., we first
map operations to PEs that are connected to the maximum number of other PEs, thereby,
exploiting their spatial locality. The main contribution of this paper is in examining the
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Fig. 1. Algorithm to schedule a basic block

Fig. 2. Algorithm for verifying routability of data

Fig. 3. (a) PE indexing in base algorithm and (b)
PE indexing in connectivity based algorithm

different metrics that influence the mapping results and demonstrating which ones do
better than others.

The rest of the paper is organized as follows. Section 2 outlines the related work. We
present the base mapping algorithm in Section 3 and then explore three different cost
functions which affect the performance of the algorithm. In Section 4 we present our
experimental setup and results. Section 5 concludes the paper.

2 Related Work

Several efforts have focused on algorithms for mapping applications to coarse-grain
architectures. Huang et al. [12] proposed a methodology to map loops on the architecture
and then merge all the data paths corresponding to different loops. Venkataramani et
al. [15] presented an algorithm for mapping loops written in SA-C language to the
MorphoSys architecture [5] which uses a similar notion of affinity, but no detailed results
are available.

RaPid [2] uses a C-like language to program loops which requires a consider-
able knowledge about the underlying architecture. Mei et al. [17] proposed a mod-
ulo loop scheduling approach to map loops on a generic reconfigurable architecture.
A list scheduling based approach enriched with a priority based heuristic was used for
PipeRench architecture [4] in which priority was defined on the basis of distance from
the nearest non-routing node. Our algorithm bears some resemblance with this work,
however, we differ in terms of the heuristics used and the target architecture which
consists of a mesh based array of PEs in our case.

In this paper, we examine different cost functions that have an impact on the mapping
of applications to a generic mesh-based coarse-grain architecture using a list scheduling
based mapping approach. Based on our experimental results, we provide new insights
into the metrics that affect this mapping.
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3 Base Mapping Algorithm

Our base algorithm traverses the control-data flow graph of the application and schedules
and maps one basic block at a time. ScheduleMapBB, the heuristic for scheduling the
operations in a basic block and mapping them to PEs, is listed in Figure 1. The heuristic
takes as input basic block to be considered (currBB), a global clock cycle (currCycle),
and the list of all the PEs (PEList) in the architecture.

The ScheduleMapBB heuristic starts by collecting a list of available or ready
operations, Aavail, in the current cycle. Available operations are operations whose data
dependencies are satisfied and can be scheduled in the current cycle. Aavail and PEList
are then ordered by the cost functions Cop and CPE to store back in Aordered and
PEList respectively. We examine the effect of varying the Cop and CPE cost functions
in the following sections. The heuristic then maps operations to PEs starting with the PE
candPE having the minimum cost CPE . We first make a copy of the available operation
list as AcandPE for candPE (lines 6 and 7 in Figure 1) since operations that cannot
be mapped to candPE will be removed from the candPE’s available list. Next, the
heuristic chooses the operation (candOp) with the lowest cost, Cop, from AcandPE .

Once an operation and a PE is selected, ScheduleMapBB calls the IsRoutable
function to verify if there is a route available for the data required by candOp to reach
candPE in currCycle. This function is presented in detail in the next section. If
IsRoutable does not find any route, then ScheduleMapBB considers the next op-
eration in AcandPE till it maps an operation to candPE or no more operations are left.
If IsRoutable returns a true result, candOp is mapped on candPE and scheduled to
execute in currCycle. We also store the usage information of different connections for
each cycle. This information is used by IsRoutable function to check the availability
of different routes. Once we map an operation on a PE, usage information of all the
connections used for this operation is updated. (lines 11 to 16 in Figure 1).

In this way, the ScheduleMapBB heuristic schedules and maps operations on each
PE in PEList and then increments currCycle when PEList is exhausted. Note that, in
each cycle we restart the mapping of PEs in the same fashion. This process is continued
until all the available operations in the current basic block have been scheduled.

3.1 Routing Algorithm

The IsRoutable function, outlined in Figure 2, verifies the ability to route data from
the predecessors of candOp, to candPE in currCycle. Thus, the IsRoutable function
checks all the routes from each predPE (on which a predecessor operation is mapped) to
candPE by calling the function GetRoutes (lines 2 and 3 in Figure 2). These routes and
delays on them are determined statically before scheduling so that there is no additional
run-time overhead of finding routes in terms of complexity of the algorithm. A route
from predPE to candPE cannot be used if: either the cycle in which the predecessor
operation finishes execution (EndTime(predOp)) summed with the delay of the route
(Delay(route)) is larger than the current cycle (currCycle), or if the route is not
available, i.e., some connection on the route is used by another data communication in
the same cycle (lines 4 to 6 in Figure 2).
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The routability verification algorithm is a constant time algorithm as routes are
determined statically at the start of the scheduling. The worst case complexity of the
scheduling and mapping algorithm is O(m∗n2) where m is the number of PEs in the
architecture and n is the number of operations in the basic block. The actual run-times
of our algorithm for an architecture having 16 PEs is in the range of 10 user seconds for
the designs considered (see Section 4).

Apart from verifying the routability of the operands, two other aspects that affect the
performance of the scheduler are the cost functions Cop and CPE . Over the next few
sections, we present analysis of different cost functions.

3.2 Base PE and Operation Cost Functions

PEs are selected from the PEList based on the cost function CPE . CPE for the base
algorithm is defined as equal to the index of that PE; we assign indices to the PEs
from PE0 to PE15 (as shown in Figure 3(a)). Operations are selected from the list
of available operations based on the cost function Cop. For the base algorithm, cost is
randomly assigned to all the operations, i.e., operations are randomly selected. Next, we
analyze other CPE and Cop functions.

3.3 Priority-Based Cop

Since we are trying to optimize performance of the applications mapped to the coarse-
grain architecture, it is intuitive to give preference to the operations that lie on the
critical path through the code. Hence, we assign a priority to each operation in the input
description based on the length of the chain of operations that depend on it. The priority
of an operation is calculated as one more than the maximum of the priorities of all the
operations that use its result. Operations whose results are not read (primary outputs)
have a priority of one. The operation cost function (Cop) is taken as the negative of its
priority. In other words, higher the priority, lower the cost.

3.4 Affinity Based Cop and CPE

If operation Opi is mapped on PE PEm, then communication delay can be minimized
by mapping operation Opj that reads the result of Opi on a PE PEn that is either directly
connected or connected through the fewest intermediate links to PEm. This leads us to
the notion of affinity between operations and PEs. We define affinity, Aff(Opi,PEm),
of an operation Opi to a processing element PEm as the sum of the number of parents
of Opi that were mapped on any PE adjacent to PEm. Processing element PEm is
considered adjacent to PE PEn if they have point-to-point connection between them.
Note that, a PE is adjacent to itself. Note also that affinity of operations have to be
calculated at the beginning of each cycle during the scheduling and mapping process.

Thus, affinity captures the data dependency information along with past operation
to PE mapping decisions. We can, thus, use affinity to map operations to PEs with
which they have the highest affinity and in the process minimize communication
delays. That is, we calculate the operation cost function Cop as the negative of its
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Fig. 4. (a) Example DFG, (b) Mapping of parent ops., (c) Mapping with a delay, (d) Mapping
without delay

affinity. If two operations have same cost then we select the operations on the basis
of their priorities. Note that, a similar notion of affinity has been discussed earlier
by Venkataramani et al. [15]. We also associate an affinity with each PE. Affinity
of a processing element PEm is the sum of affinities of all the operations to PEm, that is:

AffPE(PEm) =
∑

Aff(Opi,PEm) ∀ Opi ∈ Aavail

We then take the cost of a PE, CPE , as equal to its affinity. We schedule operations on
PEs starting with the PE having lowest affinity. The reason for this can be understood
by the example DFG shown in Figure 4(a). The target architecture we consider is shown
in Figure 4(b). If we map Op1 on PE2, Op2 on PE5, and Op3 on PE6 as shown in
Figure 4(b) then both Op4 and Op5 have affinity of two for PE6. However, only Op4
has affinity of one for PE2 and only Op5 has affinity of two for PE5. By definition,
the affinities of different PEs are: PE2 has 2, PE5 has 3, and PE6 has 4. Now if we
choose to schedule PE6 first (i.e. PE with the highest affinity), then we may choose to
map operation Op5 on it, instead of Op4 since they both have an affinity of 2 to PE6.
The resultant mapping is shown in Figure 4(c). However, this means that Op4 will have
to be mapped to PE5 (or any other PE). This in turn means that the result of Op1 will
suffer a communication delay of one cycle to reach Op4. However, according to the
proposed algorithm, we first choose PE2 only to find that no operation is routable on
this PE. Then we choose PE5 and find that Op5 is routable on it, so we map it on PE5.
Now there is only one choice – that of mapping Op4 on PE6. The resultant mapping is
shown in Figure 4(d) which has no communication delay.

Thus, we first map PEs (having non-zero affinity) in increasing order of affinity and
then the rest of the PEs based on the PE indices, (starting from top left corner to bottom
right corner).

3.5 Connectivity Based CPE

We noticed that in mesh architectures like the one shown in Figure 3(a), the PEs at the
corner of the grid (PE0, PE3, PE12, PE15) have only 3 directly connected neighbors.
In contrast, PEs at the center of the grid have 5 neighbors. Mapping operations to PEs in
increasing order of their indices means that the operations with highest priority and/or
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affinity are first mapped on the sparsely connected PEs on the edge (first row) of the
grid. Thus, the data produced by these operations can be routed to a smaller number
of PEs than if the operations were mapped to the PEs at the center of the grid. This
observation led us to develop a PE ordering in which operations are first mapped to PEs
that are better connected. Thus, in our connectivity-based cost function, we give higher
preference to the PEs with more number of connections, i.e., the PEs at the center of
the grid. We assign the indices to the PEs starting from the PE at the center, as shown in
Figure 3(b). The PE cost function CPE is equal to the index of the PE, but the indexing
of PEs is changed which, in turn, changes the cost function.

4 Experimental Setup and Results

In order to evaluate the applicability of the algorithms proposed in this paper, we imple-
mented them in a prototype compiler framework. This framework accepts an application
code in C and applies basic compiler transformations such as copy propagation and dead
code elimination. We used a set of seven designs drawn from the DSP domain for our
experiments. All these designs consist of straight-line code with a loop (or nested loops).

For all the experiments in this paper, we consider an architecture with 16 PEs con-
nected in a 4x4 array. We found little change in the relative numbers with larger arrays
[11]. Each PE has one functional unit, which is capable of executing any operation in
one cycle. The interconnect delay on direct connections is taken as 0 cycle, unless oth-
erwise specified. The typical run time of our algorithm is 10 user seconds on a 400 MHz
UltraSparc-II machine.

In all the experiments presented in this paper, we make some assumptions: (a) there
is enough memory bandwidth to fetch data without any delay, (b) there are enough
registers to store all the intermediate and final results, and (c) the architecture supports
cycle-by-cycle reconfiguration. We plan to address these assumptions in future work.

4.1 Comparison Algorithm

In an attempt to demonstrate the efficacy of the proposed algorithm, we created an
Integer Linear Programming (ILP) formulation of the mapping problem. To solve these
ILP formulations, we used publicly available solvers; LP SOLV E and CAP (Contig
Assembly Program). Despite their reported efficiency, neither of these solvers were able
to solve ILP formulations (within a few days), corresponding to a realistic application.
Still, to provide some comparison baseline, we devised a heuristic that uses a zero-
delay routing model. Specifically, all the PEs are assumed to be connected to each other
with a full crossbar interconnect. We use a priority based list scheduling heuristic to
map operations on this architectural model. This heuristic gives a lower bound on the
mapping results as there is no delay induced by routing. We manually looked at the
results of this heuristic and found little or no opportunity to improve them. We compare
all our results with the lower bounds generated by this heuristic.
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Fig. 5. (a) Mapping results for 7 DSP designs using base algorithm, (b) Comparison of mapping
results using different cost functions for 0-delay interconnect model

4.2 Results for Base Algorithm

In order to expose the parallelism of the application, we unroll the loops that increases
the number of operations to map. In case of nested loops, we unroll the innermost loop.
For all the experiments in this paper we present the results with an unrolling factor of
10 since we have shown earlier that unrolling factor of 10 is sufficient to explore the
inherent parallelism of the designs [10]. Table 5(a) shows the mapping results for the
designs using base algorithm. Third column in this table represents the number of cycles
needed to execute the design using base algorithm.

4.3 Comparison of Priority, Affinity, and Connectivity-Based Cost Functions

The results shown in Figure 5(b) demonstrate that a simple cost function based on
the priority of the operations gives significant improvement (up to 27%) over base algo-
rithm. But surprisingly a more sophisticated cost function based on affinity does not give
any improvement over priority based algorithm. The reason is that the routing function
IsRoutable (explained in Section 3.1) implicitly considers the data dependency infor-
mation when it finds the shortest routes in terms of communication time; this obviates
the need for complex affinity-based cost functions.

In contrast, connectivity based algorithm gives a further improvement of up to 16%
(in case of ATR) over the priority based algorithm. This is because of our earlier claim of
exploiting the better connectivity of PEs at the center of the grid. In fact, in most cases,
the connectivity based algorithm gives results that are close to the lower bounds.

4.4 Results for Varying Interconnect Delays

In order to support our claim about the applicability of the algorithm for different in-
terconnect delays, we performed experiments with a delay of 1 cycle (instead of 0) on
point-to-point connections. Figure 6(a) shows the performance results corresponding to
different cost functions with this interconnect model. The results in this figure are similar
to the results corresponding to the zero delay interconnect model. This demonstrates the
effectiveness of our mapping algorithm and usefulness of the priority and connectivity
based mapping strategies.



898 N. Bansal et al.

0

20

40

60

80

100

120

140

160

Lowpass Sor Hydro ATR FFT Predictor PDE

C
yc

le
s

Base Priority Affinity Connectivity Lower Bound

7%

8%
8%

8%
15%

9%

16%

3%

11% 19%
28%

0

20

40

60

80

100

120

Lowpass SOR Hydro ATR FFT Predictor PDE

C
yc

le
s

Base Priority Affinity Connectivity Lower Bound

21% 27% 18%

38%
26% 26%

11%

Fig. 6. (a) Comparison of mapping results using different cost functions for 1-cycle delay intercon-
nect model, (b) Comparison of performance for different cost functions for the torus architecture.

4.5 Results for Torus Architectures

We introduced the notion of the connectivity-based PE cost function to use the informa-
tion about the differing number of connections between PEs during mapping. However,
there are some aggressive architectures in which all the PEs have same number of con-
nections. For example, in the architectures having torus shaped interconnects [1], PEs
in the first row (column) are also connected to the PEs in the last row (column) using
wrap-around connections.

Figure 6(b) shows the performance results corresponding to this architecture model
(delay on direct connection is zero cycle). These results show that with the torus archi-
tecture, as expected, the connectivity-based cost function does not give any improvement
over the priority-based function. In fact the priority-based algorithm now gives results
that are close to the lower bounds.

5 Conclusion

We explored three different cost functions which affect the performance of mapping
applications on to coarse-grain reconfigurable architectures: (a) a priority-based function
in which operations on the longest dependency chain are given preference, (b) an affinity-
based function in which an operation gets preference for a PE, if any of its predecessors
was mapped to that PE or its adjacent PEs, and (c) a connectivity-based function in
which preference is given to PEs that have more connections to other PEs. Although the
affinity-based strategy seems intuitive and useful, our experimental results show that the
priority-based operation cost function coupled with connectivity-based PE cost function
is sufficient enough to give results that are close to the lower bounds for most of the
designs considered.
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