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Nodes in a sensor network are typically severely constrained by the amount of power available to
them. Furthermore, power consumption by the wireless radio in a sensor node is an order of magnitude
higher than the power consumption of computation on the node. We present two techniques that exploit
this characteristic of sensor nodes to reduce the power requirements by reducing the amount of com-
munication in a client-server sensor network. These techniques are: (1) a compression technique that
produces an approximate representation of the actual data at the sources withinbounded quality guar-
antees, and (2) adelta encodingtechnique that sends only the difference between the previous value
and the current value of the data. Whereas the first technique sends data intermittently based on the
rate of data value change, the difference technique sends data at regular intervals. We present results for
experiments conducted on a testbed consisting of mobile units that collect data and communicate it to a
server for processing. These results demonstrate a reduction of 86% and 80% in data sent when using
the compression and delta encoding techniques respectively, and energy savings of 43% and 22%.
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1 Introduction

Advances in microelectronic systems have made it possible to provide truly mobile, networked ‘nodes’
that enable distributed data gathering and computation. These nodes have enabled a range of applica-
tions, many of which fall under the broad category ofsensor networks[15, 6, 2, 7, 13]. In many sensor
network applications, nodes in the network have to frequently communicate data with each other or with
a central server. Also, sensor nodes have limited power sources and communication over wireless radios
is a key cause of battery drain in these devices [12].

The focus of this work, therefore, is to reduce the amount of data communication and thereby, the
power consumed by the radio. The application domain targeted by our approach is a network of sensors
that send collect data from the field and sent it to a server for further processing. Applications include
monitoring air quality at a chemical plant, vital statistics of patients at home and location and condition
(temperature, vital statistics) of assets (soldiers and equipment) in a battlefield.

We adopt an approach that exploits two characteristics of this application domain: (a) the small change
in data values during nominal operation (for example, vital statistics like heart beat and body temperature
exhibit low rate of change), and (b) the lower power cost of performing computations on a sensor node
compared to communication over the wireless radio.

In this paper, we present two techniques to reduce the amount of data that a sensor node has to send
a server. The first technique sends an approximate representation of the data instead of the actual data
itself. This technique sends data only if the data value changes beyond a pre-defined threshold. This
threshold is a bounded measure ofqualityand can be defined by the user based on criticality of the data
value. In effect, we compress the actual data collected by the sensor and send a quantized representation
of the data. Hence, we term this technique as thecompressiontechnique.

The second technique, calleddelta encoding, exploits data locality and sends only the difference in the
current and last data value. Whereas, the compression technique is lossy, the delta encoding technique
provides accurate data. Also, delta encoding sends data at regular intervals versus the compression
technique that sends data only when data changes beyond the threshold. Regular communication is a
requirement in some systems; for example, while monitoring the vital statistics of patients.

Our sensor network comprises of 50 devices able to communicate with each other and the fixed wire-
line network over the wireless 802.11b interface. The nodes in our network send data such as battery
power, GPS coordinates and network bandwidth utilization to a central server. Note that, data such as
these, varies significantly over time when compared to vital statistics, temperature, or air quality. Hence,
the techniques that we present to reduce communication are even more effective for data that remains
close to its nominal value.

The rest of this paper is organized as follows. In Section 2 we present the related work. Section 3
shows the quality aware compression algorithm, followed by Section 4, which presents the reliability
aware delta encoding technique. Section 5 briefly describes the system architecture from which the
experimental data was collected and Section 6 shows the results on the data. Finally Section 7 presents
the conclusions and future work.

2 Related Work

The compression technique trades quality for reduced communication. The issue of quality and com-
munication trade-off has been studied by Olstonet al. [4] to reduce communication between the server
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and a single source. Interval-based approximations are stored at the receiver end, supplied as guaran-
tees by the producer. Our work differs in employing a general model of approximate replication which
considers temporal latency and combines data compression and prediction. The adaptation problem was
also studied by Deolaseeet al. [5] for web data.

Chenet al. [3] propose to perform on-line regression analysis over time series data streams. We also
propose to fit models to time series, but once again our motivation is to improve system performance,
rather than regression analysis. A useful extension to our work would be to use some of the ideas in [3]
to address correlations between multiple time series that a single sensor may be monitoring.

The idea behind the difference technique is not new. A similar technique is used to compress video
frames in the MPEG-1 video protocol. In this protocol, full image frames are encoded only when the
image on the frame changes significantly over the last frame. At other times, intermediate frames are
encoded that contain only the difference between the current and last frame. Mogulet al. [11] presented a
trace analysis for delta encoding and compression on HTTP traffic. The idea is to reduce communication
by only sending the “deltas” or differences between dynamic web page contents. Korn and Vo [9]
present an algorithm and platform independent data format for implementing both data differencing
(delta encoding) and data compression. The paper also presents empirical results on the effectiveness of
the data format proposed.

3 Quality Aware Data Management

The compression techniques have been built as part of a data management system called QUASAR,
for Quality Aware Sensor Architecture. Since the data we monitor varies over time, it can be thought of
as a time series data. We begin with some definitions and then present an algorithm for data compression.

3.1 Compressing Data with Quality Guarantees

A time series data can be defined as a sequenceS= fs[1];s[2]:::g wheres[k] is the value at time
instantk. We assume that time is discrete and denote the time domain asT = f1;2:::g. The time
quantum corresponding to one step is the sampling period of the device. The observed series at timen
is denoted bySn = fs[1];s[2]; ::::s[n]g. To reduce communication related energy drain, our objective is
to capture an approximate versionŜn in our archive at the server. We may use several metrics such as
the EuclideanDistanceto compare the two time series. However we use a stronger notion of quality
which says that the estimation of any individual sampleˆs[k] should not be more different froms[k] than
an upper boundεcapt. The parameterεcapt is user defined and describes the quality of the approximate
time series data of each device stored at the archive.

3.2 The Piecewise Constant Approximation

An attractive type of lossy compression is thepiecewise constant approximation1 (PCA) [8], whereby
the time seriesS is represented as a sequence ofK segments:

PCA(Sn) = h (c1; e1); (c2; e2); : : : ; (cK; eK) i

1This was calledAdaptive Piecewise Constant Approximation(APCA) in [8] to distinguish it from a similar approximation

(PAA) with equal segment lengths.
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whereek is the end-point of a segment andck is a constant value for times in[ek�1+1; ek], or for times
in [1; e1] for the first segment. In such an approximate representation, we estimates[k] as:

bs[k] =�
c1 if k� e1

cm if em�1+1� k� em

Based on these definitions, we now reproduce our compression algorithms that were developed earlier
in the context of database systems [10].

3.3 Poor Man’s Compression

Poor Man’s Compression (PMC) is a bare-bones form of compression that can be used to reduce
the size of a time-series representation. It is an on-line algorithm, producing segments of a piecewise
constant approximation (PCA) representation as new samples arrive. It requires onlyO(1) space and
performsO(1) computation per sample. Hence, its overall time complexity for a series of sizen is O(n).
This computation is interspersed with the arrival of samples; the compressed series is “ready to go” as
soon as the last sample is processed. Hence the communication latency is minimized.

Let s[i : j] be some time series. Lemma 1 supplies the necessary and sufficient condition for com-
pressings[i : j] in a single segment in a manner that preserves theεcapt guarantee.

Lemma 1 The time series s[i : j] can be compressed in a single segment(c; j) with an error tolerance

εcapt iff:
range[i : j] = max

i�k� j
s[k]� min

i�k� j
s[k]� 2εcapt

The proof of this lemma is presented in [10].

3.3.1 Poor Man’s Compression - Midrange

Figure 1 lists our compression algorithm: the Poor Man’s Compression - Midrange (PMC-MR). This
algorithm uses the converse of Lemma 1. PMC-MR takes a time series as input and produces a com-
pressed time series as output. The algorithm monitors the range of its input. While this is less or equal
to 2εcapt, it updates the range if needed (lines 11-12). When the range exceeds 2εcapt at timen, then
the algorithm outputs the segment ending atn�1 and a constant that is equal to the midrange of the
preceding points (line 7). The algorithm then tries to compress the next set of samples, starting at timen
(lines 8-9).

PMC-MR not only achieves the goal of compression, but satisfies an even stronger property: that
no other PCA representation satisfying theεcapt constraint, overany input time series can be a valid
compression for that time series if it has fewer segments. PMC-MR is thusinstance optimalnot only for
the class of on-line algorithms, but overanyalgorithm that solves this problem correctly. We state our
claim formally as:
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Theorem 1 Let Sn = s[1 : n] be an aribitrary time series that must be approximated with a piecewise

constant approximation that satisfies for all k= 1;2; : : :;n thatjbs[k]�s[k]j � εcapt. If the PMC-MR algo-

rithm (Figure 1) produces a PCA(Sn) representation with K segments, then no valid PCA representation

with K0 < K segments exists.

The proof to this theorem is also in [10].

4 Reliability Aware Data Management

Sensors are often part of a network that requires a high reliability. If a node fails, the network has
to reconfigure to adapt for the failed node. Thus, these nodes have to continuously send updates to the
server. If a node does not send data for a certain time threshold, the server may assume the node is dead.
For example, this may be the case for an asset in a battlefield; not sending updates may indicate loss
of the asset. To minimize the amount of data transmitted in such high-reliability sensor networks, we
propose adelta encodingtechnique, as discussed in the next section.

4.1 Delta Encoding

In the delta encoding technique, we transmit data at a pre-defined regular interval; however, only the
difference between the last data value and current data value is sent. Although straightforward, this
technique provides the quality requirement of sending the “I’m alive” signal periodically, while still
being efficient in terms using the energy for data transmission.

The algorithm for the delta encoding technique is listed in Figure 2. The input to this algorithm
consists of a series ofN packets of different types of data. This data may be GPS coordinates, vital signs
such as heart beat, body temperature and so on. Consider thatP[i]; i = 1;2; :::;N andQ[i]; i = 1;2; :::;N
represent the current and last values of the data packets. The delta encoding algorithm goes over all the
N data packets, computes the difference between the data in the previous packet and the data in the new
packet (Q[i]�P[i], line 2), encodes it according to the data type (lines 3–8) and inserts it into the delta
encoded packet seriesδenc(line 9).

Data type plays an important part in delta encoding, since it determines the precision with which we
have to encode the data. This is explained for GPS data in the next section. Note that also in the case of
the PMC-MR algorithm the compression of different time-series can be applied and the type determine
different error tolerance for each type of data.

4.2 Tracking GPS Data

We use the example of GPS (Global Positioning System) data to exemplify the use of the technique.
Consider that we want to monitor the movement of people in real-time; a personal GPS device that they
carry transmits their coordinates – latitude and longitude – at regular intervals. These coordinates range
from 0.0000 to 179.9999 degrees with three digits for the decimal part and four for the fractional part
(e.g, 128.4523 degrees). We use twelve bits for encoding three decimal digits (128 is encoded as 0001
0010 1000 for instance), sixteen bits for the fractional digits and four more bits for denoting the decimal
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Decimal point Meaning

1010 negative

1011 positive

Table 1.Decimal point nibble and its meaning. The fact that the nibble is bigger than 9 identifies it

as the decimal point digit.

Difference Value Encoding

0.0001 1010 0001

-0.0102 1011 0010 0000 0001

0.2000 1010 0000 0000 0010

Table 2.Difference value and their respective encoding. The fractional digits are sent from the most

least significant to the least significant. The decimal digits are not even sent corresponding to the

GPS pattern as will be shown in the result section.

point and the sign of the difference. This forms a four byte packet (12+16+4=32 bits) and the baseline
case for our experiments.

However, movement on the earth’s surface translates to small changes in terms of latitude and longi-
tude. We find that usually these changes are in the range of 0.001 degrees. Hence, in our delta encoding
approach, we send only the fraction digits after the decimal point, instead of sending the full four byte
packet. We also use four bits for encoding each decimal digit (as in the baseline case), four bits for
encoding the decimal point and the sign and four bits for each fractional digits as well. As we will
see in the results section, the difference between two GPS coordinates is always very small yielding a
good compression ratio. This encoding is implemented by the functiongpsencodeon theδ computed
previously.

Table 1 shows the encoding for the decimal point nibble. Besides delimiting the boundaries between
the decimal and fractional parts of the value, it also carries the sign of the difference between the pairs
of GPS data. The simple fact that the nibble is bigger than 9 differentiates it from the other digits. Table
2 exemplifies the encoding of typical values for the GPS data.

The difference technique is a simple technique inspired by the motion estimation algorithm in the
MPEG-1 video compression protocol. Our results, however, demonstrate the effectiveness of this tech-
nique in reducing the power usage in a sensor network.

5 System Architecture

To model a sensor network, we use a network of 50 personal hand-held devices able to communicate
with each other and the fixed wire-line network over the wireless 802.11b interface. A node in this
network is a Compaq iPAQ device (206 Mhz StrongARM 32-bit processor, 32 MB RAM, 16 MB ROM).
Each node is equipped with an expansion pack consisting of two PCMCIA slots which were fitted with
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a Cisco AiroNet wireless LAN adapter and a TeleType GPS receiver to localize the position of the node.
These devices are used to send a steady stream of information such as the GPS location of the user

to a centralized server. We apply our techniques to reduce the communication bandwidth of each iPAQ
device and thereby conserve its battery power.

Figure 3 shows a schematic representation of the system architecture. The QUASAR core comprises
of a Java based server which runs as a daemon on one or more machines in the infrastructure network
on a pre-determined port. The server listens for client connections on this port and creates a new socket
connection every time an iPAQ node connects to the server. An iPAQ node connects to the server via a
handshake message which establishes the identity of the device and registers it. The server responds to
control messages from the client and provides data in response to queries.

Each iPAQ node sends information such as remaining battery power, network bandwidth utilization,
memory utilization, GPS data and web cache data to the server at regular intervals. If a client were
to deliver every single data item produced it would result in a huge drain of battery power thereby
reducing the operation time of the client. In order to reduce communication bandwidth, we use online
compression algorithms to send an approximate representation of the time series data to the server.
In short, we approximate the data between two time instants by a constant value, ensuring that the
approximate representation is of some pre-defined bounded quality. As soon as the client needs to send
data to the server, it tries to open a socket connection with the server and sends a fresh value. This makes
the case for a quality driven communication. We also apply delta encoding whenever the periodicity is
a crucial factor and we refer to this case as a reliability driven communication.

One may have two types of updates in this scenario, e.g a value initiated update which is initiated
by the client or a query initiated update which may be initiated by a consumer which wants to query
the statistics of a particular iPAQ machine with a stringent quality requirement. This mode of quality
cognizant data management may be particularly useful in case the producer data fluctuates very rarely
since it radically minimizes the communication bandwidth of the device. An example of such a scenario
would be GPS data of an individual who is stationary or moves about within a small perimeter most of
the time, or the remaining battery power of a device which is connected to a power outlet for the majority
of the time.

5.1 Application of Poor Man’s Compression

The iPAQ device monitors the range ( minimum and maximum ) of its input. While this range is less
than or equal to 2εcapt, it updates the endpoints of this range if needed. When the range exceeds 2εcapt at
timen, then the segment ending atn�1 with a constant value equal to the average of the maximum and
minimum values within this time segment i.e ((min+max)=2;n�1) is sent to the server. The algorithm
then tries to compress the next set of samples starting at timen. This ensures that the archived values
stay withinεcapt of the actual values at the producer.

Since the mean error produced by PMC-MR, which has been described above, may sometimes be
large if the distribution of the values is skewed, a slight modification may be made to use the mean of
the points in each time segment as the constant of the segment. Thus, values are sampled until the mean
of the points seen so far is more thanεcapt away from the minimum or the maximum of the observed
points. We observe that the PMC algorithms produce a sequence of compressed segments. These can
be forwarded immediately or aggregated into packets for network transmission depending on the buffer
size allocated in the iPAQ device.
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6 Experimental Results

We briefly describe the experimental results of our compression algorithm on GPS data collected
from an iPAQ device. For the purpose of this paper, we present results for the GPS data of only one
user carrying an iPAQ device in our mobile testbed. We found that this data is representative of the data
collected from all the other users. The track followed in the experiment has been showed in Figure 4.
Each GPS receiver sends a steady stream of data comprising of the longitude, latitude indicating the
current position of the user and the corresponding timestamp. Instead of sending each reading of the
GPS receiver( the exact number of samples over the period of time was 1800), we compressed the time
series using our PMC-MR algorithm as described in Section 3, on the longitude and the latitude data
generated by the iPAQ GPS. The compression ratio achieved using varying level of tolerance or precision
at the server have been shown in Figures 4. In the figures,K is the number of time series segments sent
by the iPAQ device, whilen is the number of actual samples(uncompressed data). Thus the lower the
value ofK=n, the higher is our compression ratio. As is evident from figure 4, we obtain a high degree
of compression at reasonable spatial tolerance levels. This may result in significant energy savings at
the iPAQ device since it drastically reduces the number of messages sent to the server.

Figure 5 shows the results of sending data throught the IPAQ using neither compressing nor delta
encoding on the data (Baseline case), only compression (withεcapt= 0:025 yielding a compression rate
of 0:14), and only delta encoding. The graphics show the size of the GPS info sent over time. For the
Baseline case, the messages are sent in a periodic basis. 32 bits are used for the longitude and 32 bits
for the latitude for a total of 1800 messages. In the compression case, since the assumption that the
periodicity of the messages is not relevant, only 412 messages are transmitted and each message can
have either 32 or 64 bits, depending on whether either latitude or longitude are sent or both are sent.
This will depend on when the compression algorithm “decides” to send the data. If the time coincides
for both latitude and longitude both are sent (64 bits). Otherwise each one of them will be sent separately
(32 bits). And finally in the delta encoding technique also 1800 messages are sent but the size of each
message varies from 8 bits to 24 bits yielding a good compression ratio and still meeting the requirement
of periodicity of the messages. For the sake of comparison, Figure 6 shows the curves for the number of
bits accumulated over time for the three schemes.

We use the same energy model as the one used by Bhardwajet al. [1]. In this model the energy
consumption is a function of the number of messages sent, the size of each message and the distance
of the wireless node relative to the base station when the transmission takes place. The model is given
by the formulaEtx = Ntx(α11+α2d(n1;n2)

n)L whereEtx is the transmission energy for the sensor.Ntx

is the number of transmitted messages,d(n1;n2) is the distance between the transmitting node and the
receiving node,n is the path loss index,L is the packet size and theαs are positive constants. For the
sake of simplicity, we ignore the distance parameter setting it fixed to 100. The other parameters are for
typical values as described in [14, 1]. These areα11 = 20nJ=bit;α2 = 10pJ=bit=m2 for n= 2. Table 3
shows a summary of the number of packet transmitted, the average size of each packet in bits and the
energy normalized to the baseline case. We can see that for Delta encoding scheme provides a good
tradeoff between saving energy and keeping the periodicity of the messages. For an application that
needs the periodicity as a “I’m alive” signal the Delta encoding scheme fits perfectly even though it
gives a energy saving 22% worse than the compression algorithm. However, compared to the baseline
case, the Delta Encoding scheme still gives 28% energy savings.
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Algorithm Messages Size (bits) Normal. Energy

Baseline 1800 64 1

Delta Encoding 1800 11.8 0.7284

Compression 412 40.9 0.5740

Table 3.Summary of results applying the three algorithms. The number of messages sent, the

average size of each message in bits and the energy normalize to baseline are shown.

7 Conclusion and Future Work

We have addressed the need for reducing communication power in a sensor network by reducing the

amount of data communication. We presented two techniques – a compression technique and a delta

encoding technique – one of which sends data less frequently by approximating data over a period of

time and the other sends fewer data packets during each communication. The compression technique

is guided by a user-defined quality measure and is useful for monitoring sensor data in applications

where data changes within a pre-defined range need not be reported to the server. The delta encoding

technique is useful when regular updates are required to inform the server that the node is alive. Results

from experiments performed using a mobile PDA-based sensor network demonstrate that we can reduce

the data traffic by 86% (forεcapt= 0:025) and 80% for the compression and delta encoding techniques

respectively and the energy consumed in communication by 43% and 22% compared to the baseline

case. In ongoing work, we are developing decision mechanisms that can switch between different data

encoding schemes depending on energy availability.
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ProcedurePMC-MR

INPUT:

Time seriesS= hs[1]; s[2]; : : : i, toleranceεcapt> 0.

OUTPUT:

Compressed time series PCA(S) within-εcapt of S.

(1) PCA(S) h i;

(2) n 1;

(3) m s[n];

(4) M s[n];

(5) while S.hasMoreSamples()

(6) if maxfM; s[n]g�minfm; s[n]g> 2εcapt

(7) append(M+m
2 ; n�1) to PCA(S);

(8) m s[n];

(9) M s[n];

(10) else

(11) m minfm; s[n]g;

(12) M maxfM; s[n]g;

(13) end;

(11) n n+1;

(12) end;

(13) append(M+m
2 ; n�1) to PCA(S);

Figure 1.Poor Man’s Compression-MidRange (PMC-MR) Algorithm

11



ProcedureDELTA-ENCODING

INPUT: Current and Previous Data Values:P andQ

OUTPUT: Delta encoded packetδenc

(1) for i 1 toN f

(2) δ P[i]�Q[i]

(3) switch Type(P[i]) f

(4) caseGPS: δ0 gpsencode(delta)

(5) caseVITALS: δ0 vitals encode(delta)

(7) : : :

(8) g

(9) δenc δ0

(10)g

Figure 2.Delta Encoding Algorithm
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Figure 3.System Architecture of our iPAQ-based Sensor Network
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Figure 4.Compression experiments on GPS data. For the compression ratio graphicsεcapt= 0:025
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Figure 5.Baseline, Compression and Delta Encoding results for GPS data
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Figure 6.Comparison on the accumulated number of bits sent over time
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