
















IE
EE

Pr
oo

f

paths of the pipeline. We know that the vulnerability of
instructions is not uniform [12]. Sequences in ClassII need
higher guardbands in comparisonwithClassI,mainly because
in addition of ALU's critical paths, the critical paths of mem-
ory are also activated for the load/store instructions aswell as
the critical paths of integer code conditions for the control
instructions. As a result, in the same corner, sequences in
ClassI run faster, thanks to their all ALU instructions which
only exercise critical paths of the ALU component.3 Fig. 7
summarizes ILV and SLV classification.

This intra-corner SLV enables the adaptive guardbanding
to set the cycle time for each class of sequences accordingly,
and thus eliminate the conservative guardbands across se-
quences up to 6%. Therefore, for intolerant applications, the
adaptive guardbanding adjusts the cycle time depending
upon the classes of the sequence, and the current operating
conditions to make sure that the processor runs at the fastest
speed compatible with both current hardware and software
conditions.We classify anynon-characterized sequence out of
the analyzed high-frequent sequences as ClassII, thus it will
have appropriate timing guardband in case of activation of
the critical paths of non-ALU components. Relaxing the
guardband can also be applied to any sequence of ClassIwith
a length of two ALU instructions (ClassIL¼2) or more (N)
ALU instructions stream (ClassIL¼N ). These chains of ALU
instructions exercise the critical paths within only ALU com-
ponent, therefore, for a given operating condition as shown in
Equation (5), the SLV values ofClassIL for L 2 2; 3; . . . ;N are
equal. This classifies ALU sequences into the same class of the
sequences with consistency across a wide range of corners.

6 ADAPTIVE GUARDBANDING

We propose a guardbanding technique that dynamically
decides on the cycle time based on the Application's Type, the
Instruction Sequence, and the operating conditions (V ; T ), to
maximize performance. To ensure necessary observability,
our approach employs on-chip low-overhead operating con-
dition monitors using CPM [9]. POWER7 results show that
five CPMs per each core are sufficient to finely capture PVT
variation [10]. For controllability, a fast adaptive clocking
circuit consisting of three Phase-Locked Loops (PLLs) is
leveraged. Each PLL is running at independent frequencies,
and a multiplexer quickly switches between them in a single
cycle [11], [44]; therefore ultra-fast frequency changes are
possible and PLL lock time is not an issue. This is well suited
to mitigate the inter-corner dynamic variations where the

timing guardbanding across corners are far apart. Tomitigate
the intra-corner guardband between the two classes of se-
quences, a finer clock speed adaptation is required which can
be supported by an all-digital PLL. For instance, [44] proposes
an all-digital PLL that provides multiple equally spaced clock
phases with a small tuning step size of a few picoseconds;
these phases are switched in a glitch-free reverse switching
scheme. A phase switching frequency division architecture is
also used to generate sub-integer division ratios and thus a
larger variety of output frequencies [45]. These circuits tech-
niques support very fast adaptation of the clock speed of the
processor in immediate response to changes in the operating
corners, various sequences of instructions, and the type of
applications. The adaptive guardbanding adjusts the Cycle_
Time as defined in Equation (6)

Cycle Time ¼
IðApplication0s Type; Instruction Sequence; V ; T Þ: (6)

Where Application's Type is probabilistic or intolerant;
Instruction Sequence is the type of sequence which is either
ClassI or ClassII; V and T are discretized current operating
conditions reported by on-chipCPMsensors;F is represented
by a Programmable LookUp Table (PLUT) as shown in
Table 3. The PLUT is a fully combinational module in the
pipeline.4 It is programmable through the memory-mapped
I=O in arbitrary epochs of the post-silicon stages. The PLUT is
connected to CPM (for monitoring the current operating
condition ðV ; T Þ), the fetch stage (for monitoring the Instruction
Sequence), and the single-cycle adaptive clocking module (for
setting theCycle Time). TheApplication's Type is also set at the
start of running the application via memory-mapped I=O. The
adaptive guardbanding monitors these four parameters every
cycle, and then sends corresponding commands to the clock
speed adjustment circuit to make sure that processor always
runs at the fastest speed compatible with these conditions.

As shown in Table 3, there is no intra-corner cycle time
adaptation for the probabilistic application. The within-cor-
ner correct execution is guaranteed by static duplication of the
critical instructions which is the application-aware version of
the multiple-issue instruction replay [6]. Therefore, for the
probabilistic application we do not require an online hard-
ware recovery unit, and avoid the frequent changing of the
cycle time within an operating corner.

Fig. 7. ILV and SLV classification for integer SPARC V8 ISA.

TABLE 3
PLUT for Adaptive Guardbanding

3. ALU does not include the hardware multiply and divide units.

4. Note that PLU can be characterized and then optimized during
design time stage depending upon the range of operating conditions and
application's type.

RAHIMI ET AL.: APPLICATION-ADAPTIVE GUARDBANDING TO MITIGATE STATIC AND DYNAMIC VARIABILITY 9



IE
EE

Pr
oo

fIn our experiments, for characterization of the PLUT, we
have used six sign-off operating corners available on an
advanced real-life technology library [48]. PLUT conserva-
tively matches a surrounding operating condition if the dis-
cretized reported operating condition does not appear in the
PLUT. Note, this is conservative for few points in the PLUT,
but will converge to ideal, while still being safe, if semicon-
ductor fabrication process provides more characterized oper-
ating corners. Furthermore, for the intolerant applications, the
adaptive guardbanding considers the worst-case process
variation, and also considers a conservative guardband (as
safe as ClassII) on the non-characterized sequence of instruc-
tions (sequences out of seq1 � seq20), thus guarantees 100%
numerical correctness for the intolerant applications. As
shown in Table 3, the PLUT assigns different cycle times to
various types of applications at the same operating condition.
Inherent resiliency of the probabilistic applications indicates
that these can tolerate inaccuracies, while the intolerant ap-
plications do not accept such inaccuracies. Therefore, when
running an intolerant application the sufficient guardbanding
is guaranteed for IP as well.

7 EXPERIMENTAL RESULTS

The experimental methodology for STA, and the variation-
aware SSTA are described using Fig. 8 that shows both design
time and runtime flows. During the design time analysis, the
open-source synthesizable VHDL code of LEON3 [34] and
Verilog description of the PLUT module have been synthe-
sized with the TSMC 45 nm technology library, the general
purpose process. The synthesized core enables the variation
analysis of paths of the integer parallel pipeline unit, aswell as
theL1 instruction cache (I$) and theL1data cache (D$), unlike
the resilient core [6] that only considers the integer unit. The
front-end flow with normal VTH cells has been performed

using Synopsys Design Compiler with the topographical fea-
tures enabled, while Synopsys IC Compiler has been used for
the back-end. The design is optimized for performance with
the tight timing constraints, e.g., the clock period of 1.2 ns. For
SSTA, the sign-off stage has been made with variation-aware
timing analysis of Synopsys PrimeTime VX, leveraging char-
acterized parameters of TSMC 45 nm variation-aware librar-
ies discussed in Section 3.2. The dynamic variations are also
analyzed utilizing the six accessible TSMC characterized
sign-off corners [48]. Finally, for the post-layout simulations
Mentor Graphics ModelSim is employed.

At the runtime, in every cycle, the PLUTmodule sends the
desired cycle time to the adaptive clocking circuit utilizing the
characterized SLV of the current sequence and the operating
condition monitored by CPM. For detecting the current se-
quence, the PLUT looks at a window of three instructions
(available on IF , ID,RA stages), thus it detects the class of the
current instructions sequence before they reach the execution
stage (the stage that needs more guardbanding as shown in
Fig. 2). The previous stages (IF , ID, RA) are in a safe guard-
band, thus they will not have any failure if a sequence of
ClassI/ClassII is runningwhile the cycle time is set for aClassII/
ClassI. If the pipeline architecture does not have enough stages
before the execution, the prefetch buffer [51] can be monitored
instead. By detecting changes in the class of sequences, the
single-cycle adaptive clocking circuit sets the core frequency
accordingly. If an adaptive clocking circuit has long-latency
clock switching, the PLUT can look ahead of a prefetch buffer
coupledwith phase prediction techniques to be able to decide
about the desired core frequency in advance. Note that the
core consists of the integer pipeline, L1 I$, and L1D$ that are
clocked by a single clock domain. Communication with L2
caches and uncore part can be done via globally asynchro-
nous, locally synchronous interconnection supporting syn-
chronization across multiple clock domains [37].

7.1 Effectiveness of Adaptive Guardbanding
In this section,we investigate the effectiveness of our adaptive
guardbanding technique when executing real word
applications.5

7.1.1 Probabilistic Applications
As probabilistic applications, we have selected multimedia
benchmarks fromMiBench andMediaBench suites: H264 is a
video decoder while Libmad is a MP3 decoder; Susan is an
image recognition program; DCT, Huffman coding and
Ycc2rgb are important kernels in the JPEG decoder; GSM
implements a decoder for the GSM communications
standard, and LDPC is a linear error correcting code. The
appropriate fidelity metric analysis and application-level
correctness technique based on [17] are performed to identify
the critical control flow instructions of these applications.
Then, the critical instructions are statically duplicated during
compile time. Finally, the adaptive guardbanding determines
the cycle time based on the given error probability 0.01%
which can guarantee the acceptable fidelity metrics [17].

In the traditional worst-case design, the maximum
throughput of applications is limited by 400 MIPS (million

Fig. 8. Methodology for the adaptive guardbanding.

5. For those applications that have encoder and decoder parts, we
consider their back-to-back executions.

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. XX, 2014



IE
EE

Pr
oo

f

instructions per second), analyzed by the worst-case STA in
Section 3.1. Fig. 9 shows the normalized throughput of the
applications in various operating conditions, covering
�V ¼ 0:09 V dynamic voltage variation and �T ¼ 125�C
temperature variation. In comparison with the worst-case
design, the adaptive guardbanding changes the throughput
of these applications from 0:95� to 1:9� depends to the
current operating condition. Throughput of Rician is in-
creased up to 1:9� at (0.81 V, 125�C). On the other hand,
throughput of Huffman coding at the operating condition of
(0.72 V, 125�C) is degraded by 0:95� because 69% of its
instructions are the critical control flow instructions which
are duplicated, and cancel out the benefit of faster execution of
the total instructions. On average, the throughput of these
applications is enhanced by 1:52�. This shows that utilizing
SSTA and adapting to the operating conditions highly sur-
passes the traditional worst-case STA, and also hides the
overhead of the critical instructions duplication.

7.1.2 Intolerant Applications
For the intolerant applications, we have selected applications
from six categories of MiBench, each suite targeting a specific
area of the embedded market, including automotive, con-
sumer devices, office automation, networking, security, and
telecommunications. In addition, we have also considered
EEMBC AutoBench [57] suite of benchmarks, suitable for
embedded processor in automotive, industrial, and gener-
al-purpose applications. Without loss of generality, every
probabilistic application can be considered as an intolerant
application and benefits from SLV utilization if there is no
domain expert to define and analyze its fidelitymetric. Fig. 10
shows the percentage of sequences of ClassI with various
lengths of ALU instructions, L 2 2; 3; . . . ; 7, during execution
of the intolerant applications. For instance, ClassI L ¼ 2
shows the percentage of sequences that have exactly two
consecutive ALU instructions, ClassI L ¼ 3 represents se-
quences with just three consecutive ALU instructions, and so
on. The compiler6 optimizes the applications codes with -O3
optimization option; and then the applications are profiled
during execution using TSIM [58], a cycle-accurate instruc-
tion-level simulator. Fig. 10(a) shows on average 26% of the

total executed sequences belong toClassI, while the remaining
sequences belong to ClassII. Patricia has the maximum num-
ber of sequences of ClassI, 35%. The adaptive guardbanding
technique with the sequence detector of three instructions
benefits from the sequences ofClassIwith a length of 3 ormore
instructions.

Fig. 10(b) shows thepercentageof sequences ofClassIwhen
the compiler utilizes loopunrolling technique. Loopunrolling
is a loop transformation technique that attempts to increase
speed of a program by reducing instructions that control the
loop. It increases the number arithmetic instructions with
regard to the memory and control flow instructions, at the
expense of register pressure and program size. Therefore,
applying the loop unrolling produces a longer chain of ALU
instructions, and as a result the percentage of sequences of
ClassI is increased up to 41% and on average 31%. Hence, the
adaptive guardbanding benefits from this compiler transfor-
mation technique to further reduce the guardband for se-
quences of ClassI. Considering the sequence detection with a
length of three instructions, the adaptive guardbanding re-
duces the cycle time for 20% of the executed sequences on
average (up to 30% for Adpcm). Note that the adaptive
guardbanding technique also reduces the guardband for
the other sequences of ClassI with a longer length of three
instructions, since each sequence of ClassIwith L instructions
is composed of two consecutive sequences with a length of
L-1 instructions, considering the overlap between the two
sequences.

Table 4 lists the maximum and the average through-
put improvement of the adaptive guardbanding technique
utilizing the loop unrolling during compilation phase of the
intolerant applications. The throughput improvement is

Fig. 9. Normalized throughput improvement by utilizing SSTA compared
to the worst-case design for probabilistic applications.

Fig. 10. Percentage of sequences of ClassI during program execution:
a) without loop unrolling technique; b) using loop unrolling technique.

6. GNUCompiler Collection, version 3.4.4, with floating-point, mul/
div emulation.

RAHIMI ET AL.: APPLICATION-ADAPTIVE GUARDBANDING TO MITIGATE STATIC AND DYNAMIC VARIABILITY 11



IE
EE

Pr
oo

f

evaluated across various operating conditions. The second
and the third columns of Table 4 show the maximum and the
average throughput improvement of the applications utiliz-
ing SLV only within a fixed operating corner. Thus, the
applications benefit from the higher rate of execution of
the sequences of ClassI accomplished by the loop unrolling
method. The last two columns show the maximum and the
average normalized throughput (the worst-case design is the
baseline) improvements utilizing SLV and inter-corner adap-
tation. In comparisonwith theworst-casedesign, the adaptive
guardbanding enhances the throughput of these applications
by a factor of 1:35� to 1:88� depending upon the current
operating condition. This shows that utilizing the operating
corner monitors and the online SLV coupled with offline
compiler techniques can result in a significant throughput
improvement for general-purpose applicationswhere there is
strict requirement on computational accuracy.

We compare our SLV technique (without the loop unrol-
ling) with the code transformation technique proposed in [33]
which pads the instructions sequencewith aNOP instruction.
The NOP padding eliminates the critical path activation for
the forwarding paths of a processor for a Read-After-Write
(RAW) register dependency. In other words, the result is no
longer forwardeddirectly from the execution stage, it instead is
forwarded a cycle later from the pipeline register in the
memory stage. For comparison, we have identified the code
sequenceswith aRAWregister dependence andpadded them
with NOP instruction. Those NOP padded sequence are
clocked as fast as the ClassI. The authors in [33] assume that
they can clock that sequence 2:15� faster than the typical
frequency of a processor,while Intel shows that in the resilient
processor the clock can increase up to 0:16� in a fixed
operating corner [6]; our results in Section 5.2 also indicates
that intra-corner clock guardbanding for various sequences is
bounded by 0:06�. Fig. 11 shows the normalized (baseline is
[33]) throughput of our adaptive guardbanding utilizing SLV
by adapting the cycle for dynamic operating conditions and
different classes of the sequences. On average, our technique
achieves 1:65� higher throughput because [33] imposes one
extra cycle for executing the NOP instruction, and does not
adapt to the operating conditions. Fig. 12 shows the energy
overhead of the NOP padding across various operating cor-
ners. It imposes 74 nJ to 564 nJ energy overhead, depending
upon the number of NOP instructions and the current
operating condition.

Multi-instruction code substitution, as another code trans-
formation techniques in [33], is not applicable for an embed-
ded RISC machine where there are almost no alternatives
for representing an equivalent set of instructions, unless
paying the expenses of intrusive pipeline modification, ISA

extension, and leveraging co-processors. Nevertheless, there
is a considerable performance and energy penalty for repla-
cing a multi-instruction sequence with an equivalent set of
instructions [28].

The common strategy in circuit techniques [6], [7] is to allow
the timing errors to happen. Then, an extra cost is paid to
compensate errors through the error recovery technique: the
multiple-issue instruction replay imposes up to 28 extra recov-
ery cycles per error [7]. This cost of recovery has shown to be
high, thus leading to massive performance degradation if
processor blindly relies on the error recovery in face of frequent
timing errors, especially so in aggressive voltage over-scaling
and near-threshold computation [46]. However, our proposed
approach guarantees the correct execution at lower cost: (i) It
proactively prevent timing errors on V P by applying the
adaptive guardbanding across the operating corners and the
sequence of instructions. For the error intolerant applications,
even if some residual timing error probability remains mainly
because of usingMonte Carlomethod described in Section 5.2,
our approach relies on the processor with error recovery
capability that guarantees the correct execution with 100%
numerical correctness. In this way, our online adaptive
guardbanding implies that recovery actions will have to be
undertaken in an extremely small number of cases, hence the
recovery penalty is minimal. (ii) Our technique allows timing
errors to happen on IP while meeting the application-specific
requirements on computational accuracy for the error-tolerant
applications, hence no penalty of recovery.

TABLE 4
Throughput Improvement of the Intolerant Applications Utilizing

the Adaptive Guardbanding with Loop Unrolling.

Fig. 11. Normalized throughput improvement utilizing SLV compared to
[33] for the intolerant applications.

Fig. 12. Energy overhead of NOP padding [33] across corners.

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. XX, 2014



IE
EE

Pr
oo

f

7.2 Overhead of Adaptive Guardbanding
Table 5 lists the overhead of hardware implementation of the
adaptive guardbanding technique. The area overhead in
comparison to LEON3 core (including I$ and D$) is near-
zero (0.022%). Five CPMs, as PVT sensors, occupy 0.12% area
[10]. The adaptive guardbanding also imposes only 0.034%/
0.031% average total power overhead for the intolerant/
probabilistic applications, in the worst-case operating condi-
tion; the power leakage overhead is 0.012%. This coarse
grainedmonitoring and adaptation approach is less intrusive
and expensive and nicely complements the fine-grained
approaches such as Razor and EDS.

8 CONCLUSION

A variation-aware cross-layer approach is presented that
spans circuits, architectural pipeline to the applications. We
have proposed a design time analysis in conjunction with the
minimally intrusive runtime adaptive guardbanding tech-
nique to combat PVT variations while guaranteeing various
applications demands on computation accuracy. We
introduce the notion of Sequence-Level Vulnerability (SLV) to
capture variability characteristics that can be used by the
compiler, runtime systemor evenby the applicationprogram-
mer. The adaptive guardbanding technique enables an in-
order RISC processor to run at the fastest speed compatible
with the operating conditions, various sequences of instruc-
tions, and the type of applications. This increases the through-
put of probabilistic applications upto 1:9�over the traditional
worst-casedesign.UtilizingSLV achieves on anaverage 1:6 �
speedup for the intolerant applications, compared to [33], by
adapting the cycle for dynamic variations and different in-
struction sequences. The concrete full layout results in TSMC
45 nm technology confirm that our technique incurs only
0.022%, 0.012%, and 0.034% overheads for the total area,
leakage power, and total power respectively.

Our ongoing work is focused on the creation of instruction
groups that can be run at higher frequency/lower power in
parallel execution context which could schedule instruction
from multiple streams trying to obtain a favorable sequence
mix in each execution hardware unit.

ACKNOWLEDGMENT

This material is based upon work supported by the NSF
Variability Expeditions under award n. CCF-1029783, and
FP7 ERC-AdG MultiTherman GA n. 291125.

REFERENCES

[1] S. Ghosh and K. Roy, “Parameter variation tolerance and error
resiliency: New design paradigm for the nanoscale era,” in Proc.
IEEE, vol. 98, no. 10, pp.1718–1751, Oct. 2010.

[2] ITRS [Online]. Available: http://public.itrs.net

[3] K. Jeong, A. B. Kahng, and K. Samadi, “Impact of guardband
reduction on design outcomes: A quantitative approach,” IEEE
Trans. Semicond. Manuf., vol. 22, no. 4, pp. 552–565, Nov. 2009.

[4] D. Ernst, et al., “Razor: A low-power pipeline based on circuit-level
timing speculation,” in Proc. IEEE/ACM Int. Symp. Microarchit.
(MICRO), 2003, pp. 7–18.

[5] S. Das, et al., “RazorII: In situ error detection and correction for
PVT and SER tolerance,” IEEE J. Solid-State Circuits, vol. 44, no. 1,
pp. 32–48, Jan. 2009.

[6] K. A. Bowman, et al., “A 45 nm resilient microprocessor core for
dynamic variation tolerance,” IEEE J. Solid-State Circuits, vol. 46,
no. 1, pp. 194–208, Jan. 2011.

[7] K. A. Bowman, et al., “Energy-efficient and metastability-immune
resilient circuits for dynamic variation tolerance,” IEEE J. Solid-State
Circuits, vol. 44, no. 1, pp. 49–63, 2009.

[8] M. Fojtik, et al., “Bubble razor: An architecture independent ap-
proach to timing error detection and correction,” in Proc. IEEE Int.
Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC), 2012, pp. 488–490.

[9] A. Drake, et al., “A distributed critical-path timing monitor for
a 65 nm high-performance microprocessor,” in Proc. IEEE Int.
Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC), 2007, pp. 398–399.

[10] C. R. Lefurgy, A. J. Drake, M. S. Floyd, M. Allen-Ware, B. Brock,
J. A. Tierno, and J. B. Carter, “Active management of timing guard-
band to save energy in POWER7,” in Proc. IEEE/ACM Int. Symp.
Microarchit. (MICRO), 2011, pp. 1–11.

[11] J. Tschanz, et al., “Adaptive frequency and biasing techniques for
tolerance to dynamic temperature-voltage variations and aging,” in
Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC),
2007, pp. 292–604.

[12] A. Rahimi, L. Benini, and R. K. Gupta “Analysis of instruction-level
vulnerability to dynamic voltage and temperature variations,” in
Proc. IEEE/ACM Des. Autom. Test Eur. Conf. Exhib. (DATE), 2012,
pp. 1102–1105.

[13] M. Maniatakos, N. Karimi, C. Tirumurti, A. Jas, and Y. Makris,
“Instruction-level impact analysis of low-level faults in a modern
microprocessor controller,” IEEE Trans. Comput., vol. 60, no. 9, pp.
1260–1273, Sept. 2011.

[14] V. J. Reddi and D. Brooks, “Resilient architectures via collaborative
design: Maximizing commodity processor performance in the pres-
ence of variations,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 30, no. 10, pp. 1429–1445, Oct. 2011.

[15] A. Rahimi, L. Benini, and R. K. Gupta, “Procedure hopping: a low
overhead solution to mitigate variability in shared-L1 processor
clusters,” in Proc. ACM/IEEE Int. Symp. Low-Power Electron. Des.
(ISLPED), 2012, pp. 415–420.

[16] A. Rahimi, A. Marongiu, P. Burgio, R. K. Gupta, and L. Benini,
“Variation-tolerant OpenMP tasking on tightly-coupled processor
clusters,” in Proc. IEEE/ACM Des. Autom. Test Eur. Conf. Exhib.
(DATE), 2013, pp. 541–546.

[17] J. Cong and K. Gururaj, “Assuring Application-level correctness
against soft errors,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Des.
(ICCAD), 2011, pp. 150–157.

[18] N. Oh, P. Shirvani, and E. J. McCluskey, “Error detection by
duplicated instructions in super-scalar processors,” IEEETrans. Rel.,
vol. 51, no. 1, pp. 63–75, Mar. 2002.

[19] M. A. Breuer, “Multi-media Applications and Imprecise Com-
putation,” Proc. IEEE Euromicro Conf. Digital Syst. Des. (DSD),
2005, pp. 2–7.

[20] C.A.Martinez, J. C. Corbal SanAdrian, andM.V.Cortes, “Dynamic
tolerance region computing for multimedia,” IEEE Trans. Comput.,
vol. 61, no. 5, pp. 650–665, May 2012.

[21] L. Leem, H. Cho; J. Bau, Q. A. Jacobson, and S. Mitra, “ERSA: Error
resilient system architecture for probabilistic applications,” in
Proc. IEEE/ACM Des. Autom. Test Eur. Conf. Exhib. (DATE), 2010,
pp. 1560–1565.

[22] P. Dubey, “Recognition, mining and synthesis moves computers to
the era of tera,” Technol. Intel. Mag., 2005.

[23] A. Leung, M. Gupta, Y. Agarwal, R. Gupta, R. Jhala, and S. Lerner,
“Verifying GPU kernels by test amplification,” in Proc. ACM Pro-
gramm. Language Des. Implementation (PLDI), Jun. 2012, pp. 383–394.

[24] K. Chae, S. Madhyay, C. Lee, and J. Laskar, “A dynamic timing
control technique utilizing time borrowing and clock stretching,” in
Proc. IEEE Custom Integr. Circuits Conf. (CICC), 2010, pp. 1–4.

[25] S. Ghosh, S. Bhunia, and K. Roy, “CRISTA: A new paradigm for
low-power, variation-tolerant, and adaptive circuit synthesis using
critical path isolation,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., pp. 1947–1956, Nov. 2007.

TABLE 5
Area and Power Overheads of Adaptive Guardbanding

RAHIMI ET AL.: APPLICATION-ADAPTIVE GUARDBANDING TO MITIGATE STATIC AND DYNAMIC VARIABILITY 13



IE
EE

Pr
oo

f

[26] P.Ndai,N.Rafique,M.Thottethodi, S.Ghosh, S. Bhunia, andK.Roy,
“Trifecta: A nonspeculative scheme to exploit common, data-
dependent subcritical paths,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 18, no. 1, pp. 53–65, Jan. 2010.

[27] G. Yan, Y. Han, and X. Li, “ReviveNet: A self-adaptive architecture
for improving lifetime reliability via localized timing adaptation,”
IEEE Trans. Comput., vol. 60, no. 9, pp. 1219–1232, Sept. 2011.

[28] A. Rajendiran, S. Ananthanarayanan,H. D. Patel,M. V. Tripunitara,
and S. Garg, “Reliable computing with ultra-reduced instruction set
co-processors,” in Proc. IEEE/ACM Des. Autom. Conf. (DAC), 2012,
pp. 697–702.

[29] J. Sartori and R. Kumar, “Alleviating the voltage-scaling limitations
of razor-based designs,” in Proc. IEEEWorkshop Logic Synth. (IWLS),
2009.

[30] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“A systematic methodology to compute the architectural vulnera-
bility factors for a high-performancemicroprocessor,” in Proc. IEEE/
ACM Int. Symp. Microarchit. (MICRO), 2003, pp. 29–40.

[31] X. Liang and D. Brooks, “Microarchitecture Parameter Selection To
Optimize System Performance under Process Variation,” in Proc.
IEEE/ACMInt. Conf. Comput.-AidedDes. (ICCAD), 2006, pp. 429–436.

[32] K. Hazelwood andD. Brooks, “Eliminating voltage emergencies via
microarchitectural voltage control feedback and dynamic optimiza-
tion,” in Proc. ACM/IEEE Int. Symp. Low-Power Electron. Des.
(ISLPED), 2004, pp. 326–331.

[33] G. Hoang, R. B. Findler and R. Joseph, “Exploring circuit timing-
aware language and compilation,” in Proc. ACM Int. Conf. Architec-
tural Support Programm. Languages Operating Syst. (ASPLOS), 2011,
pp. 345–355.

[34] LEON3 [Online]. Available: http://www.gaisler.com/cms/
[35] NVIDIA's Next Generation CUDA Compute Architecture: Fermi,

Whitepaper, V1.1, 2009.
[36] S. Bell, et al., “TILE64—Processor: A 64-Core SoC with mesh inter-

connect,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers
(ISSCC), 2008, pp. 88–598.

[37] L. Benini, E. Flamand,D. Fuin, andD.Melpignano, “P2012: Building
an ecosystem for a scalable, modular and high-efficiency embedded
computing accelerator,” in Proc. IEEE/ACM Des. Autom. Test Eur.
Conf. Exhib. (DATE), 2012, pp. 983–987.

[38] P. N. Sanda, P. Kudva, R. Mata, V. Pokala, R. Haraden, and M.
Schallhorn, “Soft-error resilience of the IBM POWER6 processor,”
IBM J. Res. Develop., vol. 52, no. 3, pp. 275–284, May 2008.

[39] R. Kumar and V. Kursun, “Reversed temperature-dependent prop-
agation delay characteristics in nanometer CMOS circuits,” IEEE
Trans. Circuits Syst., vol. 53, no. 10, pp. 1078–1082, Oct. 2006.

[40] THEIA [Online]. Available: http://opencores.org/project,
theia_gpu

[41] A. Terechko, M. Garg, and H. Corporaal, “Evaluation of speed and
area of clustered VLIW processors,” in Proc. IEEE Int. Conf. VLSI
Des., 2005, pp. 557–563.

[42] M. Ozawa, M. Imai, Y. Ueno, H. Nakamura, and T. Nanya, “Perfor-
mance evaluation of Cascade ALU architecture for asynchronous
super-scalar processors,” in Proc. IEEE Int. Symp. Asynchronous
Circuits Syst. (ASYNC), 2001, pp. 162–172.

[43] E. Gunadi and M. Lipasti, “CRIB: Consolidated rename, issue, and
bypass,” in Proc. ACM/IEEE Int. Symp. Comput. Archit. (ISCA), 2011,
pp. 23–32.

[44] S. Hoppner, H. Eisenreich, S. Henker, D. Woalter, G. Ellguth,
and R. Schuffny, “A Compact Clock Generator for Heterogeneous
GALSMPSoCs in 65-nmCMOSTechnology,” IEEETrans.Very Large
Scale Integr. (VLSI) Syst., 2012.

[45] B. A. Floyd, “Sub-Integer Frequency Synthesis Using Phase-
Rotating Frequency Dividers,” IEEE Trans. Circuits Syst., vol. 55,
no. 7, pp. 1823–1833, Aug. 2008.

[46] R. Pawlowski, E. Krimer, J. Crop, J. Postman, N. Moezzi-Madani,
M. Erez, and P. Chiang, “A 530 mV 10-lane SIMD processor with
variation resiliency in 45 nm SOI, ” Proc. IEEE Int. Solid-State Circuits
Conf. Dig. Tech. Papers (ISSCC), 2012, pp. 492–494.

[47] PrimeTime® VX User Guide, Jun. 2011.
[48] TSMC 45 nm Standard Cell Library Release Note, TCBN45GSBWP,

version 120A, Nov. 2009.
[49] S. Herbert and D. Marculescu, “Characterizing chip-multiprocessor

variability-tolerance,” in Proc. IEEE/ACM Des. Autom. Conf. (DAC),
2008, pp. 313–318.

[50] Predictive Technology Model (PTM) [Online]. Available: http://ptm.
asu.edu/

[51] ARM Cortex-M3 Technical Reference Manual, rev. r1p1, 2006.

[52] MiBench [Online]. Available: http://www.eecs.umich.edu/
mibench/

[53] PARSEC Benchmark Suite [Online]. Available: http://parsec.cs.
princeton.edu/

[54] SciMark 2.0 Benchmark [Online]. Available: http://math.nist.gov/
scimark2/

[55] MediaBench [Online]. Available: http://euler.slu.edu/~fritts/
mediabench/

[56] CoreMark Benchmark [Online]. Available: http://www.coremark.
org/home.php

[57] EEMBC Benchmark Consortium [Online]. Available: http://www.
eembc.org

[58] TSIM ISS [Online]. Available: http://www.gaisler.com/index.
php/products/simulators/tsim

Abbas Rahimi received the BS degree in com-
puter engineering from the School of Electrical
and Computer Engineering at the University of
Tehran, Tehran, Iran, in March 2010. He is cur-
rently pursuing the PhD degree in the Department
of Computer Science and Engineering, the Uni-
versity of California, San Diego, La Jolla, CA,
USA. Since June 2010, he has also been with
the Microelectronic Group at the University of
Bologna, Bologna, Italy. His research interests
include the resilient system design, design for

robustness, and high-performance on-chip interconnections. He received
the Best Paper Candidate at 50th IEEE/ACM Design Automation
Conference.

LucaBenini received thePhDdegree in electrical
engineering from Stanford University, California,
in 1997. He is a Full Professor at the Department
of Electrical, Electronic and Information Engineer-
ing (DEI) of the University of Bologna. He also
holds a visiting faculty position at the Ecole Poly-
technique Federale de Lausanne (EPFL) and he
is currently serving as Chief Architect for the
Platform 2012 project in STmicroelectronics,
Grenoble. His research interests include energy-
efficientsystemdesignandMulti-CoreSoCdesign.

He is also active in the area of energy-efficient smart sensors and sensor
networks for biomedical and ambient intelligence applications. He has
published more than 600 papers in peer-reviewed international journals
and conferences, four books and several book chapters. He is amember of
the Academia Europaea.

Rajesh K. Gupta received the BTech degree in
electrical engineering from the Indian Institute of
Technology, Kanpur, Kalyanpur, India, in 1984,
the MS degree in electrical engineering and com-
puter science from the University of California,
Berkeley, in 1986, and the PhD degree in elec-
trical engineering from Stanford University,
California, in 1994. He is a Professor of computer
science and engineering at the University of
California, SanDiego (UCSD), La Jolla, and holds
the Qualcomm endowed chair. He directs the

smart buildings/smart grids task force at UCSD in his role as Associate
Director for the California Institute for Telecommunications and Informa-
tion Technology (CalIT2). His recent contributions include SystemC
modeling and SPARK parallelizing high-level synthesis, both of which
are publicly available and have been incorporated into industrial practice.
Earlier, he led or co-led DARPA-sponsored efforts under the Data Inten-
sive Systems (DIS) and Power Aware Computing and Communications
(PACC) programs that demonstrated architectural adaptation and com-
piler optimizations in building high-performance and energy-efficient
systemarchitectures. He currently leads theNational Science Foundation
Expedition on Variability.

▽ For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

14 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. XX, 2014


