
Scheduling under Location and Time Constraints
for Data Collection in Sensor Networks

(Work in Progress paper)

Ryo Sugihara Rajesh K. Gupta
Computer Science and Engineering
University of California, San Diego

La Jolla, California 92093

Abstract—Unlike the traditional multihop forwarding ap-
proach, an alternative approach for data collection in sensor
networks is to exploit the mobility: a mobile node travels through
the sensor field and collects data from each sensor when it is at the
proximity. In this paper, we define data mule scheduling problem
and formulate it as a scheduling problem that has both location
constraints and time constraints. We present some initial results
on simple cases of data mule scheduling problem and suggest
similarities with speed scaling problems such as DVS (Dynamic
Voltage Scaling).

I. I NTRODUCTION

An alternative and relatively new approach for energy-
efficient data collection in sensor networks is to use a mobile
node[2][4][5][7][8][11]. A mobile node, which we call a “data
mule”, travels inside the field and collects data from each
sensor when the distance is short, and later deposits all the
data to the base station. In this way, each sensor can conserve
a significant amount of energy, since it only needs to send
the data over a shorter distance. In addition, as the data mule
returns to the base station after the travel, energy issue isnot
critical.

In this paper, we are interested in the following problem:
“how to control a data mule such that it collects data from
all the nodes in the minimal amount of time”. We call it
the data mule schedulingproblem, as we formulate it as a
scheduling problem, viewing communication from each node
as a job. We can control the movement of the data mule
(path, speed) as well as its communication (i.e., which nodeit
collects data from at certain time duration). The most notable
difference from traditional scheduling problems is that data
mule scheduling problem has location constraints as well as
time constraints. Availability of each job is determined bythe
range of wireless communication, which primarily depends
on the distance from a node and thus serves as a location
constraint. On the other hand, by assuming the bandwidth
of wireless communication is constant, we also have a time
constraint for each node to transmit all the data to a data
mule. The movement of data mule determines how the location
constraints are transformed into time constraints and produces
different real-time scheduling problems.

Due to the space limitations, we focus on the problem
definition and some initial results in this paper. For more
details, please refer to our technical report [12].

II. DATA MULE SCHEDULING PROBLEM

A data mule is a mobile node that moves inside the field and
collects data from each sensor. The problem is how to control
the data mule so that it can collect data from the sensors in
the minimum amount of time.

As shown in Figure 1, we can decompose the problem into
the following three subproblems:

1) Path selection: which trajectory the data mule follows
2) Speed control: how the data mule changes the speed

during the travel
3) Job scheduling: from which sensor the data mule collects

data at each time point

Path selection is to determine the trajectory of the data mule
in the sensor field. To collect data from each particular sensor,
the data mule needs to go within the sensor’s communication
range at least once. Depending on the capability of data mule,
there may be some constraints on path selection, such as
minimum turning radius.

Speed control is the second subproblem to determine how
the data mule changes its speed along the chosen path. The
data mule needs to change the speed so that it stays within
each sensor’s communication range long enough to collect all
the data from it.

Final subproblem is job scheduling. Once the time-speed
profile is determined, we get a mapping from each location
to a time point. Thus we get a real-time scheduling problem
by regarding data collection from each sensor as a job. Each
job has one or more intervals in which it can be executed. Job
scheduling is to determine the allocation of time to jobs so
that all jobs can be completed.

In this paper, we focus on the subproblems of speed control
and job scheduling, and leave path selection problem to our
future work. The primary reason is that these two subprob-
lems constitute 1-D data mule scheduling problem, which is
important in many cases including 2-D settings with a fixed
path as in [5].

A. Preliminaries

1) Terminology and definitions:Based on standard termi-
nology in real-time scheduling, we define the following terms
in data mule scheduling problem:

2

Path selection Speed control

Speed

Time

Job scheduling

Communication range

node A

node B node C
Location

A

B

C

A

B

C

)(Ae
)(Be
)(Ce

Execution timeLocation job

Time

)(Ae
)(Be
)(Ce

)(Ae
)(Be
)(Ce

Execution time

A’

B’

C’

A’

B’

C’

Job

Time

A’

B’

C’
TimeTime

A’

B’

C’

A’

B’

C’

Fig. 1. Subproblems of data mule scheduling

• A location job τL has an execution timee(τL) and a
set I(τL) of feasible location intervals, containing one
or more feasible location intervals.

– A simple location job is a location job with one
feasible location interval. A general location jobcan
have multiple feasible location intervals.

• A feasible location intervalIL ∈ I(τL) is a location
interval [r(IL), d(IL)], wherer(IL) is a release location
andd(IL) is a deadline location.

– A location job can be executed only within its
feasible location intervals.

We also define “job”, “feasible interval”, “simple job”, “gen-
eral job”, “release time”, and “deadline” in the similar way
for real-time scheduling.

For a time or location intervalI = [r, d], we use the
following notations:

• Length: |I| ≡ d− r. It is often called “relative deadline”
for a simple job.

• Containment (point):x ∈ I if and only if r ≤ x ≤ d.
• Containment (interval):I ∈ I ′ if and only if r′ ≤ r and

d ≤ d′ whereI ′ = [r′, d′].

2) Assumptions:

• All constraints and parameters are deterministic.
• All jobs and location jobs are preemptible.
• Communication bandwidth is constant within the com-

munication range and zero out of the range.
• Each sensor has different amount of data to be collected,

i.e., execution time of each location job differs.

B. Problem statement

We present the structure of the data mule scheduling prob-
lem in its basic form.

1) Instance: Input of the problem is as follows:

• A setJL of location jobs
• Total travel interval[Xs,Xd]

2) Objective: The objective is to find a time-speed profile
and a feasible schedule1 so that the total travel time is
minimized.

3) Constraints: The constraints for each subproblem are
as follows. There will be more constraints imposed when we
discuss variations of the problem later.

• For speed control:

– Data mule moves from the start to the destination
– One-way movement: data mule is not allowed to

move backward

• For job allocation:

– Feasible interval: every job can be executed only
within its feasible interval

– Job completion: every job is allocated time equal to
its execution time

– Processor demand: data mule can collect data from
only one node (i.e., execute only one job) at a time

III. R ELATED REAL-TIME SCHEDULING PROBLEM

Data mule scheduling problem can always be transformed
to a real-time scheduling problem once we specify the time-
speed profile of the data mule. If there is a feasible schedule
for the corresponding real-time scheduling problem, thereis
also a feasible schedule for the original data-mule scheduling
problem. Here we present some related issues in real-time
scheduling problem, specifically about feasibility testing al-
gorithm.

The real-time scheduling problem we obtain after we deter-
mine time-speed profile is an ordinary preemptive job schedul-
ing, except each job may have multiple feasible intervals in
our case. As far as we know there are only few studies on
this case: for unit-length, non-preemptible jobs [10] and for
preemptible, non-continuable (i.e., jobs must be completed
within one feasible interval) jobs [9][3], both of which are
different from our problem of interest.

1Following the definition in [6], a feasible schedule is a valid schedule in
which every job completes by its deadline.

3

When each job has multiple feasible intervals (i.e. general
job), EDF algorithm is not optimal anymore. In fact, we can
show it is impossible to have an optimal online scheduling
algorithm (proof by an adversary argument. details omitted).

To design an offline scheduling algorithm, we use processor-
demand-based feasibility testing by Baruah et al. [1]. Processor
demandg in interval [t1, t2] is the sum of the execution time
of the tasks whose feasible interval is completely contained in
the interval, and is defined as follows:

g(t1, t2) =
∑

τ∈J ,I(τ)∈[t1,t2]

e(τ)

Baruah’s testing is for periodic tasks with arbitrary relative
deadline (i.e., relative deadline of each task can be smaller
than its period), but it is also applicable to our case. Under
these assumptions, the following theorem holds:

Theorem 1 (Baruah et al. [1]). Let τ = {T1, ..., Tn} be a task
system.τ is not feasible iff there exist natural numberst1 < t2
such thatg(t1, t2) > t2 − t1

We can restrict the test points to the sets of release times
and deadlines as follows:

Theorem 2. Taskset is feasible if and only ifg(t′1, t
′
2) ≤ t′2−t′1

for any t′1 ∈ {ri}, t
′
2 ∈ {di} satisfyingt′1 < t′2.

Proof: Omitted from this version.
Using Theorem 2, we can formulate the scheduling problem

as a linear programming problem (details omitted). Since there
is a polynomial time algorithm to solve linear programming,
it is a polynomial time optimal offline scheduling algorithm.

IV. DATA MULE SCHEDULING

We consider two simple cases of data mule scheduling. One
is constant speed, where the data mule moves at a constant
speed from the start to the destination. The other is variable
speed, where the data mule can freely change the speed. We
present optimal algorithms for each of the variations and see
some interesting similarities with speed scaling schemes such
as dynamic voltage scaling (DVS).

A. Constant speed

For constant speed case, the problem is to find the maximum
speedv0 such that all jobs can be finished.

Since there is no optimal online algorithm that minimizes
the total travel time without knowledge about the jobs released
in the future (proof omitted), we present two optimal offline
scheduling algorithms, each for simple location jobs and
general location jobs, respectively.

1) Simple location jobs:When each location job has one
feasible location interval, following simple algorithm finds
the maximum possiblev0 such that all location jobs can be
completed. It applies processor-demand based feasibilitytest
(Theorem 2) for all possible pairs of a release location and a
deadline location:

1 for each location intervalIL = [r(τ ′
L), d(τ ′′

L)]
s.t. τ ′

L, τ ′′
L ∈ JL, r(τ ′

L) ≤ d(τ ′′
L)

2 do � Calculate processor demand forIL

3 d =
∑

τL∈JL,I(τL)∈IL

e(τL)

4 u[IL]←
|IL|

d
� Max speed allowed forIL

5 return minIL
u[IL]

Note we only consider simple location jobs, each of them
having only one feasible location interval. This algorithmruns
in O(n3) time wheren is the number of location jobs.

2) General location jobs:For general location jobs case,
we formulate the problem as a linear programming problem.

We split the location interval[Xs,Xd] into (2m+1) location
intervals[l0(= Xs), l1], [l1, l2], ..., [l2m, l2m+1(= Xd)] (li ≤
li+1), wherem is the number of feasible location intervals of
all location jobs, and eachli is either a release location or a
deadline location. Then we transform each location interval to
a time interval usingsi = li/v0, and obtain(2m + 1) time
intervals [s0(= 0), s1], [s1, s2], ..., [s2m, s2m+1]. Note each
si is a variable, sincev0 is a variable. In the same way, we
convert each location jobs inJL to a job by transforming each
feasible location interval of the job to a feasible time interval,
and obtain a new set of jobsJ .

For eachτ ∈ J , we consider variablesp0(τ), ..., p2m(τ),
in which pi(τ) represents the time allocated to jobτ during
the time interval[si, si+1]. Equivalently,pi(τ) represents the
time allocated to jobτL within the location interval[li, li+1].

We construct a linear programming problem as follows:
Variables:

• v0: speed of data mule
• pi(τ) (0 ≤ i ≤ 2m): time allocated to jobτ in interval

[si, si+1] (or equivalently, time allocated to location job
τL in location interval[li, li+1])

Objective:Maximize v0

Constraints:

• (Positiveness)pi(τ) ≥ 0
• (Feasible intervals) For allτ ∈ J , if [li, li+1] 6∈ I(τL),

pi(τ) = 0 (1)

whereτL ∈ JL is converted toτ ∈ J
• (Job completion) For allτ ∈ J ,

2m∑

i=0

pi(τ) = e(τ) (= e(τL)) (2)

• (Processor demand) For all0 ≤ i ≤ 2m,
∑

τ∈J

pi(τ) ≤ si+1 − si

=
li+1 − li

v0
(3)

The processor demand constraint becomes a linear con-
straint by introducing a new variableu0 = 1

v0
instead ofv0.

4

B. Variable speed

In variable speed case, the data mule can change its speed
anytime. To make the problem realistic2, we enforce con-
straints on speed for this case and the data mule can choose
its speed within the range[vmin, vmax].

1) Simple location jobs:When vmin = 0, the following
EDF-based online algorithm is optimal for this case:

• Move at vmax while executing a job with the earliest
deadline

• When reached at a job’s deadline location and that job is
not finished yet, the data mule stops and finish it.

When vmin > 0, there is no optimal online algorithm. We
omit the proofs due to the space constraint.

2) General location jobs:Similarly to the constant speed
case, no optimal online scheduling algorithm exists for this
problem and we design an offline algorithm by linear pro-
gramming formulation.

Whenvmin > 0, we can construct a formulation as follows:
Variables:For each location interval[li, li+1] (0 ≤ i ≤ 2m),

• vi: speed of data mule
• pi(τ): time allocated to jobτ

Objective:Minimize the total travel time

2m∑

i=0

li+1 − li
vi

(4)

Constraints:

• (Speed)

vmin ≤ vi ≤ vmax (5)

• (Processor demand) For all0 ≤ i ≤ 2m,

∑

τ∈J

pi(τ) ≤
li+1 − li

vi

(6)

• (Positiveness), (Feasible intervals), and (Job completion)
are same as the formulation for constant speed case.

We can eliminate1
vi

terms by introducing new variablesui =
1
vi

instead ofvi. From (5), the range ofui is 1
vmax

≤ ui ≤
1

vmin

. Now the objective and all the constraints are linear to
the variables.

Whenvmin = 0, we can use a slightly different formulation
by substituting new variablesdi for li+1−li

vi

, in the same way
we replaced variables above. Notice that, whenvmin = 0, even
a job only with zero-length feasible location intervals (i.e.,
r(I) = d(I) for all I ∈ I(τL)) can be scheduled by making
the data mule stop at the location to execute the job. We can
handle this situation as well by changing the formulation as
above.

2Without speed constraints, the data mule can always minimize the total
travel time simply by moving at infinite speed and stopping to execute a job
(and repeat this for each job).

C. Similarities with speed scaling problem

In data mule scheduling, we map each location to a time
point by determining the speed of the data mule and obtain
corresponding real-time scheduling problems. Conversely, we
can think of mapping time points to locations: release and
deadline locations are unchanged and execution time changes
according to the speed of the data mule. The resulting problem
is analogous to speed scaling problem.

For constant speed case, there is an exact correspondence
between data mule scheduling and static speed scaling (SSS)
problem, in which a processor can choose its speed but cannot
change once it starts to run. The processor speed is minimized
in SSS problem to minimize the energy consumption, whereas
we maximize the speed of data mule to minimize the total
travel time. We can see an inverse relation between the speed
of data mule and the processor speed.

The inverse relation is same for variable speed case, but
there are some differences. In this case the corresponding
problem is dynamic speed scaling (DSS) problem such as
DVS. The main differences are due to allowed ranges of speed
and the objective functions, and we are still analyzing them.

V. SUMMARY

In this work-in-progress paper, we defined the data mule
scheduling problem for data collection in sensor networks.
After discussing how the problem relates to real-time schedul-
ing problems, we presented efficient algorithms and linear
programming formulations for some simple cases.

REFERENCES

[1] S. K. Baruah, R. R. Howell, and L. E. Rosier. Feasibility problems
for recurring tasks on one processor.Theoretical Computer Science,
118(1):3–20, 1993.

[2] A. Chakrabarti, A. Sabharwal, and B. Aazhang. Using predictable
observer mobility for power efficient design of sensor networks. In
IPSN ’03, pages 129–145, 2003.

[3] J.-J. Chen, J. Wu, C. Shih, and T.-W. Kuo. Approximation algorithms
for scheduling multiple feasible interval jobs. InRTCSA ’05, pages
11–16, 2005.

[4] D. Jea, A. A. Somasundara, and M. B. Srivastava. Multiple controlled
mobile elements (data mules) for data collection in sensor networks. In
DCOSS ’05, pages 244–257, 2005.

[5] A. Kansal, A. A. Somasundara, D. D. Jea, M. B. Srivastava, and
D. Estrin. Intelligent fluid infrastructure for embedded networks. In
MobiSys ’04, pages 111–124, 2004.

[6] J. W. Liu. Real-time systems. Prentice Hall, 2000.
[7] M. Ma and Y. Yang. Sencar: An energy efficient data gathering

mechanism for large scale multihop sensor networks. InDCOSS ’06,
pages 498–513, 2006.

[8] R. C. Shah, S. Roy, S. Jain, and W. Brunette. Data MULEs: modeling a
three-tier architecture for sparse sensor networks. InProceedings of the
First IEEE International Workshop on Sensor Network Protocols and
Applications, pages 30–41, 2003.

[9] C. Shih, J. W. Liu, and I. K. Cheong. Scheduling jobs with multiple
feasible intervals. InReal-Time and Embedded Computing Systems and
Applications (LNCS 2968), pages 53–71, 2003.

[10] B. Simons and M. Sipser. On scheduling unit-length jobs with multiple
release time/deadline intervals.Operations Research, 32(1):80–88, 1984.

[11] A. A. Somasundara, A. Ramamoorthy, and M. B. Srivastava. Mobile
element scheduling for efficient data collection in wirelesssensor
networks with dynamic deadlines. InRTSS ’04, pages 296–305, 2004.

[12] R. Sugihara and R. K. Gupta. Data mule scheduling in sensor networks:
Scheduling under location and time constraints.UCSD Technical Report,
CS2007-0911, 2007.

