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Abstract—Unlike the traditional multihop forwarding ap- II. DATA MULE SCHEDULING PROBLEM

proach, an alternative approach for data collection in sensor . . — .
networks is to exploit the mobility: a mobile node travels through A data mule is a mobile node that moves inside the field and

the sensor field and collects data from each sensor when it is at the collects data from each sensor. The problem is how to control
proximity. In this paper, we define data mule scheduling problem  the data mule so that it can collect data from the sensors in
and formulate it as a scheduling problem that has both location the minimum amount of time.

constraints and time constraints. We present some initial results As shown in Figure 1, we can decompose the problem into
on simple cases of data mule scheduling problem and suggest

similarities with speed scaling problems such as DVS (Dynamic the following three subproblems:
Voltage Scaling). 1) Path selection: which trajectory the data mule follows
l. INTRODUCTION 2) Speed control: how the data mule changes the speed

An alternative and relatively new approach for energy- during the travel

efficient data collection in sensor networks is to use a neobil 3) Job schedulmg: from .Wh'Ch sensor the data mule collects
node[2][4][5][7][8][11]. A mobile node, which we call a “da data at each time point
mule”, travels inside the field and collects data from each Path selection is to determine the trajectory of the datemul
sensor when the distance is short, and later deposits all théhe sensor field. To collect data from each particular sens
data to the base station. In this way, each sensor can censép@ data mule needs to go within the sensor’s communication
a significant amount of energy, since it only needs to sef@nge at least once. Depending on the capability of data,mule
the data over a shorter distance. In addition, as the data miiere may be some constraints on path selection, such as
returns to the base station after the travel, energy issnetis Minimum turning radius.
critical. Speed control is the second subproblem to determine how
In this paper, we are interested in the following problenthe data mule changes its speed along the chosen path. The
“how to control a data mule such that it collects data frorflata mule needs to change the speed so that it stays within
all the nodes in the minimal amount of time”. We call i€ach sensor's communication range long enough to collect al
the data mule schedulingroblem, as we formulate it as athe data from it.
scheduling problem, viewing communication from each node Final subproblem is job scheduling. Once the time-speed
as a job. We can control the movement of the data mupofile is determined, we get a mapping from each location
(path, speed) as well as its communication (i.e., which ribdelo a time point. Thus we get a real-time scheduling problem
collects data from at certain time duration). The most nletatPy regarding data collection from each sensor as a job. Each
difference from traditional scheduling problems is thatadajOb has one or more intervals in which it can be executed. Job
mule scheduling problem has location constraints as well $gheduling is to determine the allocation of time to jobs so
time constraints. Availability of each job is determinedthe that all jobs can be completed.
range of wireless communication, which primarily depends In this paper, we focus on the subproblems of speed control
on the distance from a node and thus serves as a locatésifl job scheduling, and leave path selection problem to our
constraint. On the other hand, by assuming the bandwidtiure work. The primary reason is that these two subprob-
of wireless communication is constant, we also have a tinfgms constitute 1-D data mule scheduling problem, which is
constraint for each node to transmit all the data to a ddfaportant in many cases including 2-D settings with a fixed
mule. The movement of data mule determines how the locatipath as in [5].
constraints are transformed into time constraints andymesl
different real-time scheduling problems.
Due to the space limitations, we focus on the problem 1) Terminology and definitionsBased on standard termi-
definition and some initial results in this paper. For moreology in real-time scheduling, we define the following term
details, please refer to our technical report [12]. in data mule scheduling problem:

A. Preliminaries
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Fig. 1. Subproblems

« A location job 7, has an execution time(rz) and a
set Z(r) of feasible location intervalscontaining one
or more feasible location intervals.

— A simple location jobis a location job with one
feasible location interval. A general location john
have multiple feasible location intervals.

« A feasible location intervall;, € Z(7rz) is a location

interval [r(I1),d(Iy)], wherer(Iy) is a release location

andd(I;,) is a deadline locatian

— A location job can be executed only within its

feasible location intervals.
We also define “job”, “feasible interval”, “simple job”, “ge

eral job”, “release time”, and “deadline” in the similar way

for real-time scheduling.
For a time or location interval = [r,d], we use the
following notations:

o Length:|I| = d—r. Itis often called “relative deadline”
for a simple job.

« Containment (point)x € I if and only if r <z < d.

« Containment (interval)] € I’ if and only if ' < r and
d < d wherel’ =[r',d'].

2) Assumptions:

« All constraints and parameters are deterministic.
« All jobs and location jobs are preemptible.

Job scheduling

of data mule scheduling

2) Objective: The objective is to find a time-speed profile
and a feasible scheddleso that the total travel time is
minimized.

3) Constraints: The constraints for each subproblem are
as follows. There will be more constraints imposed when we
discuss variations of the problem later.

« For speed control:

— Data mule moves from the start to the destination
— One-way movement: data mule is not allowed to
move backward
« For job allocation:

— Feasible interval: every job can be executed only
within its feasible interval

— Job completion: every job is allocated time equal to
its execution time

— Processor demand: data mule can collect data from
only one node (i.e., execute only one job) at a time

Ill. RELATED REAL-TIME SCHEDULING PROBLEM

Data mule scheduling problem can always be transformed
to a real-time scheduling problem once we specify the time-
speed profile of the data mule. If there is a feasible schedule
for the corresponding real-time scheduling problem, thisre
also a feasible schedule for the original data-mule scliveglul
problem. Here we present some related issues in real-time

« Communication bandwidth is constant within the comscheduling problem, specifically about feasibility tegtial-

munication range and zero out of the range.

gorithm.

. Each sensor has different amount of data to be collected,The real-time scheduling problem we obtain after we deter-

i.e., execution time of each location job differs.

B. Problem statement

mine time-speed profile is an ordinary preemptive job schedu

ing, except each job may have multiple feasible intervals in
our case. As far as we know there are only few studies on
this case: for unit-length, non-preemptible jobs [10] and f

We present the structure of the data mule scheduling pr%‘eemptible, non-continuable (i.e., jobs must be comglete

lem in its basic form.
1) Instance: Input of the problem is as follows:

« A setJ;, of location jobs
« Total travel interval[ X, X4]

within one feasible interval) jobs [9][3], both of which are
different from our problem of interest.

IFollowing the definition in [6], a feasible schedule is a dadichedule in
which every job completes by its deadline.



When each job has multiple feasible intervals (i.e. general for each location interval;, = [r(77.), d(7])]
job), EDF algorithm is not optimal anymore. In fact, we can strp, ) € I, r(ry) < d(7})
show it is impossible to have an optimal online scheduling do > Calculate processor demand fhr
algorithm (proof by an adversary argument. details omjtted3 d= Z e(rr)

To design an offline scheduling algorithm, we use processor- LT I(rL)ElL

demand-based feasibility testing by Baruah et al. [1]. Eseor | 17|
demandg in interval [¢1, ¢5] is the sum of the execution time ullr] d
of the tasks whose feasible interval is completely conthine 5 return miny, u[/z]

the interval, and is defined as follows:

> Max speed allowed fory,

Note we only consider simple location jobs, each of them
gt ts) = Z e(7) havmg3on|_y one feaS|b!e location interval. Thl_s algonthms
in O(n?) time wheren is the number of location jobs.

2) General location jobs:For general location jobs case,

Baruah’s testing is for periodic tasks with arbitrary riat we formulate the problem as a linear programming problem.
deadline (i.e., relative deadline of each task can be smalle We split the location intervalX;, X into (2m+1) location
than its period), but it is also applicable to our case. Undattervals(iy(= Xs), 1], [I1,12], -, [lom, lom+1(= Xa)] (i <
these assumptions, the following theorem holds: li4+1), wherem is the number of feasible location intervals of
Theorem 1 (Baruah et al. [1]) Let~ — {T1, ..., T, } be a task all Ioc_atlon ]obs, and each is either a release chat!on ora

. S : deadline location. Then we transform each location intdo/a

systems is not feasible iff there exist natural numbeis< t, a time interval usings; — 1, /vy, and obtain(2m + 1) time
SUCh thatg(tl,tg) > tz — tl gsl — b3/ V0,

T€J I(T)€Et1,t2]

intervals [so(= 0),s1], [s1,82], -, [S2m, S2m+1]. Note each
We can restrict the test points to the sets of release timasis a variable, sincey is a variable. In the same way, we
and deadlines as follows: convert each location jobs i, to a job by transforming each

feasible location interval of the job to a feasible time &,
and obtain a new set of joh$.
For eachr € J, we consider variablegy(7), ..., pam (7),
Proof: Omitted from this version. m in which p;(7) represents the time allocated to jebduring
Using Theorem 2, we can formulate the scheduling probleifie time intervals;, s;+1]. Equivalently,p;(7) represents the
as a linear programming problem (details omitted). Sineegth time allocated to jobr;, within the location intervall;, l;+1].
is a polynomial time algorithm to solve linear programming, We construct a linear programming problem as follows:
it is a polynomial time optimal offline scheduling algorithm  Variables:
e vo: speed of data mule
IV. DATA MULE SCHEDULING e pi(17) (0 <i<2m): time allocated to jobr in interval
[s:, si+1] (or equivalently, time allocated to location job
71, in location interval[l;, ;1 1])

Theorem 2. Taskset is feasible if and onlygft}, t5) < t,—t}
for anyt} € {r;},t, € {d;} satisfyingt] < .

We consider two simple cases of data mule scheduling. One
is constant speed, where the data mule moves at a constant =~ = o
speed from the start to the destination. The other is variabl Objective:Maximize vy
speed, where the data mule can freely change the speed. Weonstraints:
present optimal algorithms for each of the variations ared se « (Positivenessp;(7) > 0
some interesting similarities with speed scaling schemeb s + (Feasible intervals) For alt € 7, if [l;,1;11] € Z(71),
as dynamic voltage scaling (DVS).

pi(r) = 0 1)

whereT;, € J1, is converted tor € J
For constant speed case, the problem is to find the maximum (Job completion) For alt € 7,
speedv, such that all jobs can be finished. o
Since there is no optimal online algorithm that minimizes _ o o
the total travel time without knowledge about the jobs reseh Zpl(T) = e (=em)) )
in the future (proof omitted), we present two optimal offline
scheduling algorithms, each for simple location jobs ande (Processor demand) For @ll< i < 2m,
general location jobs, respectively. Z (7)
1) Simple location jobs:When each location job has one pi
feasible location interval, following simple algorithm dis Lt — 1.
the maximum possible, such that all location jobs can be = o 3)
completed. It applies processor-demand based feasibéldly vo
(Theorem 2) for all possible pairs of a release location and aThe processor demand constraint becomes a linear con-
deadline location: straint by introducing a new variable, = % instead ofvy.

A. Constant speed

=0

< Sip1 — S
TeJ



B. Variable speed C. Similarities with speed scaling problem

In variable speed case, the data mule can change its sped data mule scheduling, we map each location to a time
straints on speed for this case and the data mule can chogR&esponding real-time scheduling problems. Conversaly

its speed within the rang@mmin, Vmaz]. can think of mapping time points to locations: release and
1) Simple location jobs:When o — 0, the following deadline locations are unchanged and execution time change
EDF-based online algorithm is optimal for this case: according to the speed of the data mule. The resulting pmoble

) . _ . . is analogous to speed scaling problem.
« Move atuvy,., while executing a job with the earliest o constant speed case, there is an exact correspondence
deadline . ) ) . between data mule scheduling and static speed scaling (SSS)
. Whe_n _reached at a job’s deadline location {md that job Problem, in which a processor can choose its speed but cannot
not finished yet, the data mule stops and finish it.  cnange once it starts to run. The processor speed is mirdmize
When v,,,;,, > 0, there is no optimal online algorithm. Wein SSS problem to minimize the energy consumption, whereas
omit the proofs due to the space constraint. we maximize the speed of data mule to minimize the total
2) General location jobs:Similarly to the constant speedtravel time. We can see an inverse relation between the speed
case, no optimal online scheduling algorithm exists fos thdf data mule and the processor speed.
problem and we design an offline algorithm by linear pro- The inverse relation is same for variable speed case, but
gramming formulation. there are some differences. In this case the corresponding
Whenu,,;», > 0, we can construct a formulation as followsproblem is dynamic speed scaling (DSS) problem such as
Variables:For each location interval;, ;1] (0 < i < 2m), DVS. The main differences are due to allowed ranges of speed

: and the objective functions, and we are still analyzing them
o v;: speed of data mule

» p;(7): time allocated to jobr V. SUMMARY

Objective:Minimize the total travel time In this work-in-progress paper, we defined the data mule
scheduling problem for data collection in sensor networks.

lic1 — 1 After discussing how the problem relates to real-time saked
ZT (4) ing problems, we presented efficient algorithms and linear

7

2m

=0 programming formulations for some simple cases.
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2Wwithout speed constraints, the data mule can always minimigetdtal
travel time simply by moving at infinite speed and stopping tocete a job
(and repeat this for each job).



