

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS

a task stealing algorithm, which searches remote queues in a
round-robin fashion for work to steal.
We propose a reactive policy for variability-aware task sched-

uling (VATS) shown inAlgorithmV-1. This scheduler leverages
the characterized WUV metadata to allocate tasks to cores so
as to minimize both overall number of instruction replays and
unbalanced loads. The main goal of this scheduler is to prevent
allocation of tasks to unreliable cores, which is representative of
a policy adopted in a system where task failure has critical con-
sequences. At system startup, when there is no WUV available,
the scheduler operates in round-robin mode. Since the OpenMP
tasking model assumes completely independent tasks, it is al-
lowed to execute them in any order. We leverage this property
to insert tasks for which WUV is not available yet at the head
of the queue (out-of-order task characterization). This will give
higher priority to non-characterized task types, thus speeding up
the “system warm-up”.

Algorithm V.1:VATS()

for to

return

VATS scheduling policy strives to minimize the number of
replayed instructions utilizing characterized WUV metadata.
VATS also extends its awareness of the load on each queue, thus
avoids heavily unbalanced situations that could increase the
total execution time. Each queue descriptor is enhanced with a
status register that estimates the overall load (loadQueue), in
terms of dynamic instructions count, of all tasks present into
that queue. This is a better metric for workload-awareness than
just the total task count, because different task types present in
the queue may have various computational weight.
To account for imbalance effects due to nonhomogeneous

task durations and other system-level issues, VATS is further en-
hancedwith amost loaded queue-first stealing algorithm. An ad-
ditional array structure is used to keep the sorted workload over
the various queues. This array is then traversed to steal work
from the most loaded queues first. Note that after the execution
of a stolen task we always check if in the meantime some tasks
have been inserted in the local queue. It this case, we switch to
the execution of the tasks with better WUV values, otherwise
we continue executing the stealing algorithm until there is no
task left in the system.

B. Variation-Aware Section Scheduling (VASS)

The default OpenMP section scheduling policy is to allocate
a section to an available thread in a first-come, first-served
(FCFS) fashion. When sections are used in a traditional manner
to outline parallel tasks with no dependencies among each

other Algorithm V.1 cab be applied. However, when sections
are used to model software pipeline parallelism we have an
additional constraint: avoiding the variability-induced errors
(hence their instruction replays) that lengthen in an uncon-
trolled manner one or more sections. This effect dominates the
overall pipeline duration. Since in a variability-affected com-
puting cluster, there might be a set of cores that display poor
performance—depending upon their software and hardware
context—causing bottlenecks in the entire pipeline execution.
For these cases, we propose a variation-aware section sched-

uling (VASS) policy shown in Algorithm V.2. VASS has a
warm-up phase which assigns execution of different section
types to all cores for a constant6 number of iterations. After
execution of each section, the characterization process updates
the corresponding WUV matadata in LUT using the mecha-
nisms described in Section IV-B. When the warm-up phase is
completed, the WUV metadata in the LUT are ready and can
be inspected by the runtime environment to take decisions on
workload distribution. Accordingly, VASS assigns the execu-
tion of each section to a set of suitable cores.
In this way, VASS strives to maintain all cores in theexecuting

operating mode, while reducing the instruction replays and the
overall pipeline duration. VASS sorts each section types based
on their averageWUV decreasingly. The first section type in the
sorted list has either high instruction count or high replica
instruction count . Therefore it should be executed on
a set of suitable cores that display fewer error rate during its
execution. Basically, every core has a private tag vector that
lists the types of permissible sections for executing on this par-
ticular core. This constraint limits the participation of worse
cores for executing long or high vulnerable types of sections.
The worse cores instead may execute shorter sections or sec-
tions with lower vulnerability; therefore avoiding the latency
penalty for the synchronization between the unbalanced stages
and effectively utilizing all the resources in the variability-af-
fected cluster.
As shown in Algorithm V.2, VASS assigns the execution

of the longest section type to the best set of cores (those that
display lower WUV values), then the execution of the second
longest section type to the next best set of cores, and so on. In
other words, VASS performs a one-to-many dynamic pipeline
mapping between the section types (i.e., the stages) and the
cores such that the overall execution time is reduced. After the
section-to-core assignment, once a encounters a ,
VASS checks the condition to decide whether is
assigned for the execution on top of . If is
assigned for , it means that there is a match between the
characteristics of and , therefore the execution
will be performed. Otherwise VASS does not allocate the

to the . Thanks to the statement, for a
consists of sections, VASS repli-

cates the entire for
times to maintain all cores active while reducing overall
pipeline duration.

6In our applications, it is selected as 2 iterations.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RAHIMI et al.: IMPROVING RESILIENCE TO TIMING ERRORS BY EXPOSING VARIABILITY EFFECTS TO SOFTWARE 11

TABLE I
ARCHITECTURAL PARAMETERS OF THE CLUSTER

Algorithm V.2:VASS (:)

while

return

VI. EXPERIMENTAL RESULTS

A. Framework Setup

We demonstrate our approach on an OpenMP-enabled Sys-
temC-based virtual platform [50] modeling the tightly-coupled
cluster described in Section III. The virtual platform supports
tasking on top of a runtime [47] optimized for the target plat-
form. Table I summarizes the main architectural parameters, a
typical setup for the considered platform template (see [5]). To
emulate variations on the virtual platform, we have integrated
variations models at the level of individual instructions using
the ILV characterization methodology presented in [18]. Inte-
gration of ILV models for every core enables online assess-
ment of presence or absence of errant instructions at the cer-
tain amount of dynamic voltage and temperature variations. We
re-characterized ILV models of an in-order RISC LEON-3 [51]
core for 45-nm, for which an advanced open-source RISC core
with back-end details for variation analysis is available. First,
we synthesized the VHDL code of LEON-3 with the 45-nm
TSMC technology library, general-purpose process. The fron-
tend flow with normal cells has been performed using Syn-
opsys DesignCompiler, while Synopsys IC Compiler has been
used for the back-end where the core is optimized for perfor-
mance.
To observe the effects of a full range of dynamic voltage and

temperature variations, we analyze the delay variability on the
individual instructions, leveraging voltage-temperature scaling
features of Synopsys PrimeTime for the composite current
source approach of modeling cell behavior. Finally, delay vari-
ability is annotated to the gate-level simulations for creating
ILV models. To utilize ILV models on the virtual platform,
each core maps ARM v6 instructions to the corresponding ILV
models in an instruction-by-instruction fashion during exe-
cution. Therefore, every core will face the errant instructions
during work-units execution based on the available amount of
variations on the variability-affected cluster. From the same
flow we also extract energy models for our cluster architecture.
For the following experiments we consider the cluster with

16 cores. To observe the effect of static process variation on

the clock frequency of individual cores within the cluster,
we analyze how critical paths of each core are affected due
to die-to-die and within-die process parameters variation,
following the methodology presented in [20]. Each core
maximum frequency varies significantly due to the process
variation. As a result, six cores for 16-core cluster cannot
meet the design time target clock frequency. To compensate
this core-to-core frequency variation, the -hopping tech-
nique [42] uses the measured delay variation of each core and
then selects one of available three discrete voltage modes:

-high, -medium, -low. This technique mitigates
the core-to-core frequency variations within the variability-af-
fected cluster: six cores are powered up with -high, four
cores with -medium, and six cores with -low. This
ensures all cores work with the design time target frequency,
but they face different error rate based on the instruction type
and the operating condition.

B. VOMP Results for Tasking

We use nine widely adopted computational kernels mainly
from the image processing domain, that we parallelize using

directives. These kernels include RGB-to-HSV and
XYZ-to-RGB for colormap conversions, Integral image and
Sobel for filter operations, FAST for corner detection, Color
Tracking , Strassen matrix multiplication, and Blowfish for
encryption/decryption. Each kernel has one task type, therefore
there is no task dependency during execution. We compare the
total execution time and energy consumption of VATS, our
variability-aware task scheduler, to the baseline RRS policy.
Fig. 12 shows the execution time for all the kernels for three
operating corners with temperature of C, C, and C.
VATS aims at reducing the instruction replays by allocating
tasks on reliable cores while taking into account the load of
every queue. As a result, at an operating temperature of C,
VATS achieves up to 30% better performance than RRS, and
13% on average. This clearly indicates that the entire overhead
of the variation-tolerant technique is paid off, including the
online task characterization, reading and updating WUV meta-
data, and cost of execution of Algorithm V.1. As shown, VATS
displays a robust behavior across a wide range of temperature
variations thanks to the reflection by the always-on character-
izations. At higher temperature, VATS achieves better average
performance gain of 17% (at C) and 21% (C), since
WUV is increased at higher temperature.
Fig. 13 shows the energy consumption of the kernels for

VATS normalized to RRS. VATS achieves on average 21% and
up to 38% better energy efficiency than RRS at the temperature
of C. VATS further reaches to an average energy saving of
31% at the operating temperature of C.
We also compare the TLV technique with the centralized

queue proposed in [21]. TLV, which has variation-agnostic task
insertion operations displays on average 75% slower execution
than RRS. TLV is on average 100% less energy efficient than
RRS. This lack of efficient utilization of resources under vari-
ability is mainly because of TLV characterization that does not
consider the overall system workload. Its single tasking queue
also limits the potentials of task scheduling policies: a core can
utilize TLV to only decide whether to proceed to the execution

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS

Fig. 12. Execution time for VATS normalized to RRS under temperature vari-
ation.

Fig. 13. Energy consumption for VATS normalized to RRS under temperature
variation.

of a task or leave it in the single queue for other cores that leads
to an imbalanced system.

C. VOMP Results for Sections

For evaluating VOMP in the , we used
seven computational intensive kernels amenable to software
pipelining. Pitch extractor algorithm (PEA), and FFT with
covariance matrix factorization (DFT-COV) are embedded
signal processing kernels extracted from [52], [53].Sobel and
Prewitt are filter operations useful in the edge detection algo-
rithms. N-body is a simulation of a large number of particles
under the influence of physical forces. Mersenne twister is a
pseudorandom number generator. Synthetic is a microkernel
implementing a four-stage parallel pipeline (see Fig. 5), rep-
resentative of streaming applications [54]. We evaluate the
effectiveness and robustness of our approach across a wide
temperature range of C.
Fig. 14 shows the normalized performance (execution time)

of VASS to FCFS for three operating corners with temperature
of C, C, and C. At an operating temperature of C,
the total execution time is reduced on average by 31% (and up to
40%) thanks to proper assignment of sections to those cores that
avoid unbalanced pipelines. This is accomplished by preventing
the worst cores from executing a section type that leads to the
highest WUV. At the temperature of C, VASS reaches on
average 39% performance improvement, thanks to the online

Fig. 14. Execution time for VASS normalized to FCFS under temperature vari-
ation.

Fig. 15. Energy consumption for VASS normalized to FCFS under temperature
variation.

WUV metadata characterization which reflects the latest tem-
perature variations, thus enabling the scheduler to react accord-
ingly.
Moreover, as shown in Fig. 15, VASS simultaneously reduces

the total dynamic instruction count that yields an average of
28% (up to 35%) reduction in energy consumption at an op-
erating temperature of C. A similar pattern for energy saving
is observed under temperature fluctuations, confirming the ro-
bustness of our approach. VASS reduces energy consumption
on average by 37% for high operating temperatures of C.

VII. CONCLUSION

Circuit failures due to timing errors are considered an impor-
tant concern in the design of reliable circuits. In this paper, we
show that processing cores can be made robust against an im-
portant class of such errors, caused by manufacturing and envi-
ronmental variabilities, by raising the visibility of such failures
across the hardware/software boundary. This is achieved by at-
taching metadata that captures work-unit vulnerability (WUV)
from hardware sensing circuits to the runtime system via the
software stack. We specifically address its implementation in
a parallel execution environment that associates WUV meta-
data to OpenMP parallel constructs: , , and .
WUV metadata is characterized during work-unit execution on
individual cores, and is used to efficiently schedule new in-
stances of the same work-unit type. We have implemented our

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RAHIMI et al.: IMPROVING RESILIENCE TO TIMING ERRORS BY EXPOSING VARIABILITY EFFECTS TO SOFTWARE 13

approach in VOMP, a variability-aware OpenMP execution en-
vironment. With VOMP, we propose scheduling algorithms for

and that use WUV metadata for countermea-
sures against variability-induced timing errors. This matches the
characteristics of different variability-affected cores to the error-
vulnerability of different work-unit types in the program, min-
imizing the need for timing error recovery and the associated
costs. Across a wide operating temperature of C, VOMP
effectively eliminates the timing error recovery in the 16-core
cluster resulting in average 17% and 36% faster execution for

and , respectively. VOMP achieves an average
energy saving of 27% for and 33% for .

REFERENCES

[1] S. Borkar, “Thousand core chips: A technology perspective,” in Proc.
44th Annu. Design Automat. Conf., New York, 2007, pp. 746–749.

[2] S. Borkar et al., “Parameter variations and impact on circuits and
microarchitecture,” in Proc. Design Automat. Conf.., Jun. 2003, pp.
338–342.

[3] S. Ghosh and K. Roy, “Parameter variation tolerance and error re-
siliency: New design paradigm for the nanoscale era,” Proc. IEEE, vol.
98, no. 10, pp. 1718–1751, Oct. 2010.

[4] The ITRS website [Online]. Available: http://public.itrs.net
[5] D. Melpignano et al., “Platform 2012, a many-core computing accel-

erator for embedded SOCs: Performance evaluation of visual analytics
applications,” in Proc. 49th ACM/EDAC/IEEE Design Automat. Conf.,
Jun. 2012, pp. 1137–1142.

[6] S. Mitra et al., “Robust system design to overcome CMOS reliability
challenges,” IEEE J. Emerg. Select. Topics Circuits Syst., vol. 1, no. 1,
pp. 30–41, Mar. 2011.

[7] A. Bartolini, M. Cacciari, A. Tilli, and L. Benini, “Thermal and energy
management of high-performance multicores: Distributed and self-cal-
ibrating model-predictive controller,” IEEE Trans. Parallel Distrib.
Syst.,, vol. 24, no. 1, pp. 170–183, Jan. 2013.

[8] S. Das et al., “A self-tuning DVS processor using delay-error detec-
tion and correction,” IEEE J. Solid-State Circuits, vol. 41, no. 4, pp.
792–804, Apr. 2006.

[9] K. Bowman et al., “Energy-efficient and metastability-immune re-
silient circuits for dynamic variation tolerance,” IEEE J. Solid-State
Circuits, vol. 44, no. 1, pp. 49–63, Jan. 2009.

[10] J. Tschanz et al., “Tunable replica circuits and adaptive voltage-fre-
quency techniques for dynamic voltage, temperature, and aging varia-
tion tolerance,” in VLSI Circuits Symp., Jun. 2009, pp. 112–113.

[11] A. Drake et al., “A distributed critical-path timing monitor for a 65 nm
high-performance microprocessor,” in IEEE Int. Solid-State Circuits
Conf. Dig. Tech. Papers, Feb. 2007, pp. 398–399.

[12] L. d. L. Silva et al., “Power efficient variability compensation through
clustered tunable power-gating,” IEEE J. Emerg. Sel. Topics Circuits
Syst., vol. 1, no. 3, pp. 242–253, Sep. 2011.

[13] K. Bowman et al., “A 45 nm resilient microprocessor core for dynamic
variation tolerance,” IEEE J. Solid-State Circuits, vol. 46, no. 1, pp.
194–208, Jan. 2011.

[14] H. Zakaria and L. Fesquet, “Designing a process variability robust en-
ergy-efficient control for complex SOCs,” IEEE J. Emerg. Sel. Topics
Circuits Syst., vol. 1, no. 2, pp. 160–172, Jun. 2011.

[15] P. Gupta et al., “Underdesigned and opportunistic computing in pres-
ence of hardware variability,” IEEE Trans. Computer-Aided Design In-
tegr. Circuits Syst., vol. 32, no. 1, pp. 8–23, Jan. 2013.

[16] G. Karakonstantis, A. Chatterjee, and K. Roy, “Containing the
nanometer pandora-box: Cross-layer design techniques for variation
aware low power systems,” IEEE J. Emerg. Sel. Topics Circuits Syst.,
vol. 1, no. 1, pp. 19–29, Mar. 2011.

[17] L. Leem et al., “Cross-layer error resilience for robust systems,” in
Proc. IEEE/ACM Int. Conf. Computer-Aided Design, Nov. 2010, pp.
177–180.

[18] A. Rahimi, L. Benini, and R. Gupta, “Analysis of instruction-level vul-
nerability to dynamic voltage and temperature variations,” in Design,
Automat. Test Eur. Conf. Exhibit., Mar. 2012, pp. 1102–1105.

[19] A. Rahimi, L. Benini, and R. Gupta, “Application-adaptive guard-
banding to mitigate static and dynamic variability,” IEEE Trans.
Comput., 2013.

[20] A. Rahimi, L. Benini, and R. Gupta, “Procedure hopping: A low over-
head solution to mitigate variability in shared-l1 processor clusters,” in
Proc. 2012 ACM/IEEE Int. Symp. Low Power Electron Design, New
York, 2012, pp. 415–420.

[21] A. Rahimi et al., “Variation-tolerant openmp tasking on tightly-coupled
processor clusters,” in Design, Automat. Test Eur. Conf. Exhibit., Mar.
2013, pp. 541–546.

[22] A. Rahimi, I. Loi, M. Kakoee, and L. Benini, “A fully-synthesizable
single-cycle interconnection network for shared-l1 processor clusters,”
in Design, Automat. Test Eur. Conf. Exhibit., Mar. 2011, pp. 1–6.

[23] Y. Li et al., “Overcoming early-life failure and aging for robust sys-
tems,” IEEEDesign Test Comput., vol. 26, no. 6, pp. 28–39, Nov. 2009.

[24] A. Rahimi, L. Benini, and R. K. Gupta, “Hierarchically focused
guardbanding: An adaptive approach to mitigate PVT variations and
aging,” in Design, Automat. Test Eur. Conf. Exhibit., Mar. 2013, pp.
1695–1700.

[25] M. Floyd et al., “Adaptive energy-management features of the IBM
Power7 chip,” IBM J. Res. Develop., vol. 55, no. 3, pp. 8:1–8:18, May
2011.

[26] M. Floyd et al., “Introducing the adaptive energy management features
of the power7 chip,” IEEE Micro, vol. 31, no. 2, pp. 60–75, Mar. 2011.

[27] C. Lefurgy et al., “Active guardband management in power7+ to save
energy and maintain reliability,” IEEEMicro, vol. 33, no. 4, pp. 35–45,
Jul. 2013.

[28] D. Jeon et al., “Design methodology for voltage-overscaled ultralow-
power systems,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 59, no.
12, pp. 952–956, Dec. 2012.

[29] M. Kakoee, I. Loi, and L. Benini, “Variation-tolerant architecture for
ultra low power shared-11 processor clusters,” IEEE Trans. Circuits
Syst. II, Exp., Briefs, vol. 59, no. 12, pp. 927–931, Dec. 2012.

[30] G. Hoang, R. B. Findler, and R. Joseph, “Exploring circuit timingaware
language and compilation,” in Proc. 16th Int. Conf. Archit. Support
Program. Lang. Operat. Syst., NY, 2011, pp. 345–356.

[31] S. Dighe et al., “Within-die variation-aware dynamic-voltage-fre-
quency-scaling with optimal core allocation and thread hopping for
the 80-core teraflops processor,” IEEE J. Solid-State Circuits, vol. 46,
no. 1, pp. 184–193, Jan. 2011.

[32] F. Chaix, G. Bizot, M. Nicolaidis, and N.-E. Zergainoh, “Variabil-
ityaware task mapping strategies for many-cores processor chips,”
in Proc. 2011 IEEE 17th Int. On- Line Testing Symp., Jul. 2011, pp.
55–60.

[33] H. Cho, L. Leem, and S. Mitra, “ERSA: Error resilient system archi-
tecture for probabilistic applications,” IEEE Trans. Computer-Aided
Design Integrat. Circuits Syst., vol. 31, no. 4, pp. 546–558, Apr. 2012.

[34] F. Paterna et al., “Variability-aware task allocation for energy-efficient
quality of service provisioning in embedded streaming multimedia ap-
plications,” IEEE Trans. Comput., vol. 61, no. 7, pp. 939–953, Jul.
2012.

[35] O. Tahan and M. Shawky, “Using dynamic task level redundancy for
openmp fault tolerance,” in Proc. 25th Int. Conf. Archit. Comput. Syst.,
2012, pp. 25–36.

[36] C. Bolchini, A. Miele, and D. Sciuto, “An adaptive approach for online
fault management in many-core architectures,” in Design, Automat.
Test Eur. Conf. Exhibit., Mar. 2012, pp. 1429–1432.

[37] A. Rahimi, A.Marongiu, R. Gupta, and L. Benini, “A variability-aware
openMP environment for efficient execution of accuracy-configurable
computation on shared-FPU processor clusters,” in Proc. Int. Conf.
Hardware/Software Codesign Syst. Synthesis, Sep. 2013, pp. 1–10.

[38] L. Benini, E. Flamand, D. Fuin, and D. Melpignano, “P2012: Building
an ecosystem for a scalable, modular and high-efficiency embedded
computing accelerator,” in Design, Automat. Test Eur. Conf. Exhibit.,
Mar. 2012, pp. 983–987.

[39] NVIDIA’s next generation CUDA compute architecture Fermi
whitepaper.

[40] Plurality, the HyperCore processor [Online]. Available: http://www.
plurality.com/hypercore.html

[41] KALRAY, MPPA [Online]. Available: http://www.kalray.eu/products/
mppa-manycore-a-multicore-processors-family-13/

[42] S. Miermont, P. Vivet, and M. Renaudin, “A power supply selector for
energy- and area-efficient local dynamic voltage scaling,” inProc. 17th
Int. Workshop Integrated Circuit Syst. Design. Power Timing Model.,
Optimizat. Simulat., , 2007, pp. 556–565 [Online]. Available: http://dx.
doi.org/10.1007/978-3-540-74442-9-54

[43] TheGNU project, GOMP—An openMP implementation for GCC [On-
line]. Available: http://gcc.gnu.org/projects/gomp

[44] E. Ayguade et al., “The design of openMP tasks,” IEEE Trans. Parallel
Distrib. Syst., vol. 20, no. 3, pp. 404–418, Mar. 2009.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS

[45] P. Sanda et al., “Soft-error resilience of the IBM Power6 processor,”
IBM J. Res. Develop., vol. 52, no. 3, pp. 275–284, May 2008.

[46] E. K. Ardestani, E. Ebrahimi, G. Southern, and J. Renau, “Thermal-
aware sampling in architectural simulation,” in Proc. 2012 ACM/IEEE
Int. Symp. Low Power Electron. Design, 2012, pp. 33–38.

[47] A. Marongiu, P. Burgio, and L. Benini, “Fast and lightweight support
for nested parallelism on cluster-based embedded many-cores,” in De-
sign, Automat. Test Eur. Conf. Exhibit., Mar. 2012, pp. 105–110.

[48] P. Burgio, G. Tagliavini, A. Marongiu, and L. Benini, “Enabling
fine-grained openMP tasking on tightly-coupled shared memory
clusters,” in Design, Automat. Test Eur. Conf. Exhibit., Mar. 2013, pp.
1504–1509.

[49] S. Agathos, V. Dimakopoulos, A. Mourelis, and A. Papadogiannakis,
“Deploying openMP on an embedded multicore accelerator,” in Proc.
Int. Conf. Embed. Comput. Syst.: Architect., Model., Simulat., Jul.
2013, pp. 180–187.

[50] D. Bortolotti et al., “VirtualSoC: A full-system simulation environment
for massively parallel heterogeneous system-on-chip,” in IPDPSWork-
shops, 2013, pp. 2182–2187.

[51] Leon3 [Online]. Available: http://www.gaisler.com/cms/
[52] P. Hoang and J. Rabaey, “Scheduling of DSP programs onto multipro-

cessors for maximum throughput,” IEEE Trans. Signal Process., vol.
41, no. 6, pp. 2225–2235, Jun. 1993.

[53] V. K. P. M. Lee and W. Liu, “A mapping methodology for designing
software task pipelines for embedded signal processing,” Parallel Dis-
tribut. Process., pp. 937–944, 1998.

[54] A. Moreno et al., “Load balancing in homogeneous pipeline based
applications,” Parallel Comput., vol. 38, no. 3, pp. 125–139, 2012
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0167819111001566

Abbas Rahimi (S’10) received the B.S. degree in
computer engineering from the School of Electrical
and Computer Engineering at the University of
Tehran, Tehran, Iran, in March 2010. He is currently
a fourth year Ph.D. candidate in the Department of
Computer Science and Engineering at the University
of California, San Diego, La Jolla, CA, USA.
Since June 2010, he has also been with the

Microelectronic Group at the University of Bologna,
Bologna, Italy and the Integrated Systems Labora-
tory at the Swiss Federal Institute of Technology

Zurich, Zurich, Switzerland. His research interests are in the resilient system
design, design for robustness, and high-performance on-chip interconnections.
In this area, he has published more than 20 papers in peer-reviewed interna-
tional journals and conferences.
Mr. Rahimi received the Best Paper Candidate at 50th IEEE/ACM Design

Automation Conference.

Daniele Cesarini received the B.S. degree in com-
puter engineering from the University of Bologna,
Bologna, Italy, in 2010, where he is currently an M.S.
degree student in the Department of Electrical, Elec-
tronic and Information Engineering.
He joined to the Micrel Lab in 2013 and works

in variability-aware environment for multiprocessors
system on chip. His research interests include pro-
gramming models, compilers, and languages support
for parallel computing.

Andrea Marongiu (M’04) received the M.S. degree
in electronic engineering from the University of
Cagliari, Cagliari, Italy, in 2006, and the Ph.D.
degree in electronic engineering from the University
of Bologna, Bologna, Italy, in 2010.
He currently is a postdoc researcher at the De-

partment of Electrical, Electronic and Information
Engineering, University of Bologna, Bologna, Italy.
He also holds a postdoc position at ETHZ, Zurich,
Switzerland. His research interests concern parallel
programming model and architecture design in the

single-chip multiprocessors domain, with special emphasis on compilation for
heterogeneous architectures, efficient usage of on-chip memory hierarchies,
and SoC virtualization.

Rajesh K. Gupta (F’04) received the B.Tech. degree
in electrical engineering from the Indian Institute of
Technology, Kanpur, Kalyanpur, India, in 1984, the
M.S. degree in electrical engineering and computer
science from the University of California, Berkeley,
CA, USA, in 1986, and the Ph.D. degree in electrical
engineering from Stanford University, Stanford, CA,
USA, in 1994.
He is a Professor of computer science and engi-

neering at the University of California, San Diego
(UCSD), La Jolla, CA, USA, and holds the Qual-

comm endowed Chair. He directs the smart buildings/smart grids task force at
UCSD in his role as Associate Director for the California Institute for Telecom-
munications and Information Technology (CalIT2). His recent contributions in-
clude SystemC modeling and SPARK parallelizing high-level synthesis, both
of which are publicly available and have been incorporated into industrial prac-
tice. Earlier, he led or co-led DARPA-sponsored efforts under the Data Intensive
Systems (DIS) and Power Aware Computing and Communications (PACC) pro-
grams that demonstrated architectural adaptation and compiler optimizations in
building high-performance and energy-efficient system architectures. He cur-
rently leads the National Science Foundation Expedition on Variability.

Luca Benini (F’07) is Full Professor at the Univer-
sity of Bologna, Bologna, Italy, and is the Chair of
Digital Integrated Circuits and Systems at ETHZ.
He has served as Chief Architect for the Plat-
form2012/STHORM project in STmicroelectronics,
Grenoble in the period 2009–2013. He has held
visiting and consulting researcher positions at EPFL,
IMEC, Hewlett-Packard Laboratories, and Stanford
University. His research interests are in energy-effi-
cient system design and multi-core SoC design. He
is also active in the area of energy-efficient smart

sensors and sensor networks for biomedical and ambient intelligence applica-
tions. He has published more than 700 papers in peer-reviewed international
journals and conferences, four books and several book chapters.
Dr. Benini is a member of the Academia Europaea.

