
Programming Support for Distributed Optimization and Control in Cyber-Physical
Systems

Rahul Balani, Lucas F. Wanner†, Jonathan Friedman, Mani B. Srivastava
Electrical Engineering, †Computer Science

University of California
Los Angeles, USA

{rahulb, wanner, jf, mbs}@ucla.edu

Kaisen Lin, Rajesh K. Gupta
Computer Science

University of California
San Diego, USA

{kaisenl, gupta}@cs.ucsd.edu

Abstract—Large-scale actuator control problems in Cyber-
Physical Systems (CPSs) are often expressed within the net-
worked optimization model. While significant advances have
taken place in optimization techniques, their widespread adop-
tion in practical implementations is impeded by the complexity
of inter-node coordination and lack of programming support
that is necessary for sharing information coherently between
distributed and concurrent controller processes. In this paper,
we propose a distributed shared memory (DSM) architecture
that abstracts away the details of inter-node coordination from
the programmer resulting in simplified application design.
It maintains data coherency through explicit use of mutual
exclusion lock primitives that serialize access to coarse subsets
of shared variables using fine-grained read/write permissions.
The underlying lock protocol is deadlock-free, fair and safe,
and reduces response time and message cost by 81.6% and
72.8% respectively over a conventional DSM implementation
with coarse access permissions. Moreover, in a representative
application example, the proposed framework reduces appli-
cation code size by 76% and total latency by 22% over a
hand-crafted implementation.

Keywords-Subgradient method; Distributed Shared Memory;
Coherence; Mutual Exclusion; Sensor/Actuator Networks

I. INTRODUCTION

Actuator control problems in several important CPS ap-
plications - such as water-efficient irrigation [1], energy-
efficient HVACs, self-reconfiguring visual surveillance [2]
and personalized light control [3] - are often expressed as
optimization of a cost function involving current state of
the environment, as inferred from sensor measurements, and
control inputs of actuators. Distributed controllers implement
optimization algorithms to continuously drive the physical
state of the world towards application specific goals by
iteratively estimating optimal control inputs of each actuator.
Henceforth, we interchangeably refer to these control inputs
as actuator variables (or just variables for simplicity).

Parallel controller processes often require coherent access
to common actuator variables such that the result of any
distributed execution is equivalent to some sequence of es-
timations (and actuations) in each iteration of the algorithm
(serializability) [2][4][5]. This is necessary for (timely)
convergence of the algorithm when each controller produces

new estimates based on sensor measurements as well as
current estimates of adjacent and shared actuator variables.
This requirement is unique to CPSs, as traditional sensor
network applications require read-only access to shared
information. Moreover, convergence to sub-optimal values
in CPSs can cause persistent and often expensive side-effects
in the environment such as over-watering in agriculture [1],
missed events in security surveillance of airports [2], energy
wastage in HVAC systems, and damage to the marine eco-
system through waste water overflow in sewers [6].

Currently, application developers must build their own
elaborate inter-node coordination mechanisms required for
data coherency. Moreover, little of this intricate machinery
carries over directly from one application to the next as it
encapsulates application-specific design choices in terms of
identification and management of shared variables for each
controller. These choices are deeply influenced by (i) the
relationship between actuators as defined by their physical
properties and relative poses in the deployment; and (ii)
network characteristics like topology and communication
modality that determine the performance of the distributed
algorithm.

In this paper, we introduce the Hotline programming
framework that allows application developers to implement
concise yet efficient distributed programs for individual ac-
tuator controllers (nodes) using shared memory abstractions
and lock primitives that guarantee serializability. Similar to
the Release Consistency (RC) model in DSMs, any read
or write access to shared actuator variables is guarded by
explicit lock acquire and release operations at respective
nodes. However, instead of arbitrating locks at the fine
granularity of individual variables, Hotline administers locks
at a coarser granularity of subsets of variables. This avoids
the run-time overhead of deadlock detection and resolution
that is typical of DSMs managing concurrent fine-granularity
access in presence of communication delays and losses [7].

This design is natural for the class of algorithms that
Hotline aims to support and does not sacrifice any inherent
parallelism in data access due to coarse granularity locks.
In fact, a key feature of Hotline is that it can exploit

localized data dependencies between distributed processes,
inferred from fine-grained access permissions specified by
the programmer, to speed up each iteration of a distributed
optimization algorithm through opportunistic data parallel
operation. It is based on the critical observation that an
estimation process at a controller accesses the control inputs
of only a local subset of actuators. This is true in many
CPS applications where actuators are deployed with planned
but localized overlap in their regions of influence (zones)
to achieve complete geographic coverage. As a result, each
controller needs to coordinate the effect of multiple actuators
that overlap at a point, or an area, in space such that the
desired result is produced in that region.

Hotline caches shared actuator variables locally at the
respective controllers and synchronizes them at lock release
operation to optimize data access latency. This process is
transparent to the programmer who addresses each variable
simply through a (key, actuator id) tuple and is guaranteed
consistent access to it by the Hotline run-time library.
In addition, multiple network topologies are supported for
efficient data synchronization depending on the set of par-
ticipating nodes.

We demonstrate the utility of this framework in program-
ming CPS applications through simulation and experiments
run on a mote testbed, configured to accurately emulate
a network of PTZ cameras in a distributed surveillance
application, and a network of light sensors and dimmable
light sources in an office space. The framework has been
implemented in TinyOS-2.x. Our experimental results on
mote testbeds show that code size is reduced by up to 76%
over hand-crafted code and latency in calculating optimal
control inputs is lowered due to data parallel operations.
Our extensive simulations using TOSSIM demonstrate that
the synchronization algorithm is scalable to a large number
of nodes in presence of intermittent communication failures.

II. SYSTEM DESIGN

A. Coarse Physical Resources

Hotline associates each controller at node i with a set
σ(i) of all variables that the node will need to access in
an iteration of a distributed optimization algorithm. Each
unique set σ(·) is therefore represented collectively as a
single physical resource that can be locked by a node before
the beginning of every iteration. It is formally defined as

σ(i) = {uk | k ∈ UA} , (1)

where uk is the control input of an actuator k, and UA is the
set of actuators which can influence the state of environment
in a local region A that is of interest to node i. Figures
1 and 2 show this set of actuators for each controller in
personalized light control and automated visual surveillance
respectively.

Resources can be identified statically through compile-
time specification of UA for each controller, or discovered

u1 u2 u3
Light Sources

Light Sensors
& Controllers

Access
Resources [u1,u2] [u2] [u2,u3] [u3]

[W,W] [W] [W,W] [W][W]
[u1]

L1 L2 L3 L4 L5

Figure 1. Network of sources (u*) and sensors+controllers (L*) for
personalized light control. Edges between controllers show direct resource
conflicts.

Controller: 3 7
Resource: [u3, u2, u8] [u7, u2, u8, u1]

Access: [W, R, R] [W, R, R, R]
Figure 2. A network of Pan-Tilt-Zoom (PTZ) cameras used for distributed
visual surveillance. Gray sectors show camera zones. Edges show direct
resource conflicts. Controllers 3 and 7 can operate concurrently in Hotline
due to to compatible access permissions, but not in a DSM with coarse
permissions.

dynamically through continuous rule-based application at
each node to support run-time modifications in the de-
ployment due to mobility or faults. In dynamic rule-based
operation, a set UA can be expressed and discovered in terms
of influence zones γ of actuators as

UA = {k | A ∩ γ(k) 6= φ} . (2)

A zone represents the physical space that can be affected
by an actuator like a sprinkler, light etc., within a specified
period of time and range of configuration parameters. It is
affected significantly by the physical context of the device
such as location and orientation. This definition can also
be extended to represent a region that can be sensed by
an actuator-assisted sensor like a PTZ camera as shown in
Figure 2. An application programmer is only responsible
for defining actuator zones and regions of interest A while
the run-time transparently discovers and manages resources
resulting in a concise implementation.

B. Fine-grained Access Permissions

While a resource σ(i) is locked as a single unit, Hotline
allows each member variable uk to be accessed via distinct
READ or WRITE permissions specified apriori by the pro-
grammer as τ(i, uk). Hotline arbitrates between concurrent
lock requests such that, at any time, at most one node can
access a variable with WRITE permission. This is referred
as the safety property in this text and is necessary for Hotline
to ensure coherency by serializing writes to individual vari-
ables. However, multiple nodes can simultaneously access a
shared variable with read-only permissions when no other
node has locked it with WRITE permissions.

Hotline incorporates this rule by prohibiting concurrent
locks on directly conflicting resources. A pair of resources
σ(i) and σ(j), conflict (directly) if they have a non-empty
intersection, and a node needs to access at least one common
variable with a WRITE permission. To formalize the concept
of conflicts, we first define a commutative operator � as

i� j = {uk | uk ∈ σ(i)∩σ(j), Ω(i, j, uk) holds} , (3)

where, boolean property Ω(i, j, uk) holds true when at least
one of nodes i and j need to access the common variable
uk with a WRITE permission. As a result, the � operator
returns the set of common variables uk in resources σ(i) and
σ(j) that have conflicting access permissions desired by the
operands. Thus, resources σ(i) and σ(j), or concurrent lock
requests for these resources, are conflicting iff i� j 6= φ.

This creates lock/data dependencies in a network of
controllers that can be analyzed by associating a graph G =
(V, E) with the network, where V = {1, .., N} is the set of
N controller nodes or graph vertices, and E = {(i, j)|i�j 6=
φ, ∀i, j ∈ V} is the set of edges that represent direct resource
conflicts between corresponding end points (Figures 1 and
2). However, in many CPS applications, we observe that
the resource conflicts are spatially localized in nature due
to localized actuator overlaps. Consequently, nodes with
non-conflicting resources can operate in parallel resulting
in reduced application latencies. Moreover, Hotline’s unique
arbitration of coarse locks based on fine granularity access
permissions promotes parallelism by reducing the potential
number of conflicts as compared to a conventional scheme
with coarse permissions.

Nevertheless, the problem of finding the optimal order of
lock grants that maximizes concurrency in access to shared
varaiables is shown to be equivalent to the graph coloring
problem for G [2] which is provably NP-complete. Since
efficient distributed heuristics for graph coloring, proposed
in the literature, are hard to implement on resource con-
strained sensor-actuator nodes, researchers have instead used
randomized best-effort solutions. Hotline follows the same
approach and uses a simple randomized solution to optimize
concurrency at run-time.

C. Local Caches

Hotline caches shared actuator variables locally at the
respective controllers to optimize data access latency. Fol-
lowing an eager RC model, any updates to a local cache
are synchronized across all relevant copies during the lock
release operation. This model is favored over lazy RC
schemes that synchronize updates at the next lock acquire
operation as each node undergoes multiple iterations, and
subsequently another node is already waiting to complete
its lock acquire operation on a conflicting resource. As a
result, it minimizes the expected time a node has to wait for
consistent data access.

An interesting property of the associated graph G is that it
also defines the extent to which updates originating at a node
must propagate to achieve cache coherency. These are the set
of nodes that are adjacent to the source of update, and due
to local data dependencies, they are also spatially localized
resulting in a low message cost for update synchronization.
Although the distributed lock protocol has been designed
such that its messages can trivially incorporate data syn-
chronization to further decrease the above message cost, they
are consciously kept separate in our current implementation
to minimize lock synchronization latency in networks with
small link MTUs such as 802.15.4.

III. DISTRIBUTED LOCK ARBITRATION

Hotline uses PhyLock, a distributed permission-based pro-
tocol where each node requesting lock on a resource must
communicate with every member of an associated coordi-
nation clique to convey the request, obtain permissions, and
release the lock when it is done. PhyLock associates a unique
priority β(i) with each new request for σ(i) to avoid dead-
locks (Liveness) when multiple nodes request simultaneous
access to resources. The priority is a (sequence, identifier)
tuple, where a lower sequence number has a higher priority,
but in case they are equal, unique node identifiers are used
to break the tie by selecting the node with a lower identifier.
Sequence numbers can be set using global timestamps with
a time sync protocol like FTSP (default), Lamport’s logical
clocks [8] or Maekawa’s sequence numbers [9].

In this section, we describe PhyLock’s selection of
cliques, explain the distributed protocol and analyze its per-
formance in terms of latency and message cost. Section III-C
proves that the algorithm satisfies the following properties
in presence of recoverable communication failures: (P1)
Safety, (P2) Liveness, and (P3) Fairness.

A. Coordination Cliques

In PhyLock, the clique ξ(i) for a node i is defined as the
set of all nodes associated with conflicting resources, and is
equivalent to the set of adjacent nodes in graph G. Formally,
it can be expressed as

ξ(i) = {j | i� j 6= φ, i 6= j} ∪ {i}. (4)

The cliques defined above satisfy the following properties:
• C1: ξ(i) ∩ ξ(j) 6= φ. In order to arbitrate any pair of
two concurrent and conflicting requests from arbitrary nodes
i and j, they must reach at least one common node for
correct resolution. This is a necessary condition to prove P1
as shown by [9].
• C2: {i, j} ⊆ ξ(i) ∩ ξ(j). This encapsulates C1 and
is sufficient to prove P1 as shown in Section III-C. This
is a stronger property, and theoretically, one can argue
that it incurs a run-time overhead in terms of message
exchange due to bigger clique (quorum) sizes as compared
to other quorum-based mutex protocols like [9]. However,
in practice, constructing a quorum in a distributed fashion
is non-trivial and costly [10]. Therefore, PhyLock sacrifices
reduction in message exchanges, if any, for a simple clique
formation and management at run-time.

An alternate but naive selection of cliques for each node,
that satisfies C2, can be the set of all nodes N in the network.
It reduces the PhyLock protocol to Ricart and Agrawala’s
mutex algorithm [11] that requires O(N) messages for
resource arbitration. However, this is very inefficient for
many CPS applications where |ξ|�N .

Another selection of clique for a node i, that satisfies C1,
can be the set of actuators whose control inputs comprise the
resource σ(i). But, in the presence of communication delays
or losses, it can result in deadlocks unless the actuators coor-
dinate amongst themselves to avoid or break the deadlocks.
This actuator coordination can be trivially supported in our
system by reversing the roles and defining resources for each
actuator as the set of controller nodes requesting access to it.
However, this is sub-optimal as actuators will have to keep
extra state for concurrent requests from controllers besides
the state required for coordinating with other actuators.

B. Algorithm

Each node executes an identical PhyLock algorithm. It
is based on the fact that, if node i receives permission to
access its resource σ(i) from all the nodes in its clique ξ(i),
no other node can lock any conflicting resource. PhyLock
uses timeouts and retransmissions to ensure reliability in
face of communication losses. The subsequent text describes
default behavior of the protocol for supporting priority based
execution as shown in Figure 3. A node is always in an idle
state when not requesting any locks.
• S1: When a node i attempts to acquire a lock, a
REQUEST message with a new priority is sent to every
member of ξ(i). A timer is started for period Treq.
• S2: Upon receiving a REQUEST, a member node of ξ(i)
responds with a REPLY message if it is idle, or its request
priority is lower than the newly received request (yield).
However, if its priority is higher than the received request,
or if it already holds a lock, then it marks the request as
pending and defers the REPLY until it finishes accessing
the locked resource.

IDLE

Rand.
WAIT

[R1] acquire()

[S2] Rx REQ
Tx REPLY

REQUEST

ACQUIRE

RELINQUISH

[S1] acquire()
Tx REQ

[S2:yield] Rx REQ
Tx REPLY

[S4] timeout
Re-Tx REQ

[S3] Rx REPLY or
Rx INQUIRE

[S3] release()
Tx REPLY

[R2] Trans. conflicts
Tx INQUIRE

[R5] timeout
Re-Tx INQUIRE

[R4] Rx REPLY
Tx REQ[R3] Rx INQUIRE

Tx REPLY

Figure 3. Simplified state machine of PhyLock algorithm. The dotted states
and transitions represent optional relaxed configuration of the protocol.

• S3: When the node i receives REPLY from all the nodes
in ξ(i), it proceeds to acquire the lock and stop Treq timer.
It sends a REPLY to all nodes in ξ(i) with pending requests
when the lock is released by the application.
• S4: If time Treq expires before the node i receives
REPLY from all the nodes, it retransmits its REQUEST to
all nodes that have not replied and restarts the timer.

The above priority-based execution of the protocol, in
conjunction with property C2, can introduce strict ordering
in the network. This is due to transitive request conflicts
that may be created by lock dependencies in graph G and
particular order of concurrent request priorities. As a result,
application performance can degrade.

Relaxed Access: Therefore, Hotline enables application
programmers to configure PhyLock, through enableRe-
laxedAccess() call in its API, to automatically prioritize
concurrent resource usage. Internally, PhyLock tries to break
transitive conflicts through a randomized mechanism as de-
scribed below. We refer to the this configuration as following
a relaxed order of access (shown in Figure 3).
• R1: When a node i attemps to acquire a lock, it waits for
a random amount of time before transmitting its REQUESTs.
During this time, if it receives at least one REQUEST
from both a higher priority and a lower priority node in
ξ(i), it relinquishes its request temporarily, hidden from the
application, and moves to step R2. It does this in attempt to
pre-empt any transitive chains of requests that may form in
the network. It is important to note that it replies to all the
higher priority requests and defers response to lower priority
requests unless it has determined its next step. Otherwise,
if the above condition is not true when the random wait
expires, it transmits its REQUESTs and operates similarly to
step S1.

• R2: The node i transmits INQUIRE messages to locally
update state of nodes that were detected with outstanding
REQUESTs irrespective of their priorities. Next, it simply
waits for status updates by starting the Twait timer.
• R3: Upon receiving an INQUIRE message, a node treats
it as a REPLY from sender i, irrespective of its relative
priority. If it has received all expected REPLYs, it moves
to step S3 or R4 depending on its current state. Otherwise,
if it is still awaiting replies, or if it is moving to R4, it
responds back with a REPLY to update its status with the
sender.
• R4: When the node i receives REPLY from all the
nodes with outstanding REQUESTs, it transmits a REQUEST
message to all the nodes in ξ(i) after a random timeout.
It then proceeds similar to S2, S3 and S4 above. While
expensive, this step is necessary to ensure that two or
more nodes do not acquire concurrent locks on conflicting
resources (P1) when they both reach R4 in parallel.
• R5: If time Twait expires before node i receives replies
from the inquired nodes, it resends INQUIRE messages
to the nodes with outstanding REQUESTs and restarts the
timer. It also responds back with REPLY when it receives a
REQUEST during Twait.

C. Proofs

Lemma 1: Any priority β(i) associated with a request
for σ(i) is unique. Moreover, priority comparison between
two concurrent requests is performed consistently at the
respective nodes.

Lemma 2: All nodes release their locks in a finite amount
of time after acquiring them.

Lemma 3: Based on the assumption that any failed
communication link shall always recover before some finite
amount of time Terr, the effect of communication failures
can be eliminated.

Argument: Without loss of generality (WLOG), assume
that communication link between any two nodes i and j
fails and some message is lost. If neither of the two nodes
are waiting for REPLY from each other, the failure does not
matter. So, assume that node i is waiting for a reply from j.
If i does not receive a REPLY from j within Treq or Twait

depending on its state, it will resend REQUEST or INQUIRE
respectively to node j. Since, we assume that the link will
eventually recover, j will receive the message from i and
respond back with REPLY at an appropriate time according
to the algorithm.

Theorem 1: (Safety) If a variable is locked for write
access at any time by a node, then it can not be concurrently
locked by any other node.

Proof: We prove the theorem by contradiction. WLOG,
assume that a variable uk is locked by two nodes i and j at
the same time, as a common member of their respective
resources, such that τ(i, uk) = WRITE. The following
arguments show that this is not possible:

• uk ∈ i� j, from Eq. (3) and, {i, j} ⊆ ξ(i)∩ξ(j), from
definition of cliques in Eq. (4).
• According to step S3 in algorithm, both nodes i and j
must have received REPLYs from each other for their re-
spective REQUESTs. This is only possible when the priority
comparison at node j returns β(i) < β(j) and that at node i
returns β(j) < β(i). This violates our assumption in Lemma
1.

Therefore, the theorem is true irrespective of strict or
relaxed ordering constraints as step S3 is required in both
configurations.

Theorem 2: (Liveness) The algorithm is deadlock-free.
Proof: Assume that deadlock is possible. Then, there must

exist a circular wait among the nodes with no REPLY in
transit. This means that each node in the cycle is waiting
for a REPLY from its successor node in the cycle. Consider
the following cases:
• There is at least one node i in the cycle that is waiting
for a REPLY message in response to its INQUIRE. Node i
must respond with a REPLY to its predecessor node in the
cycle, irrespective of its relative priority (step R3 and R5).
• Each node in the cycle is waiting for a REPLY message
in response to its REQUEST. Since each request has a
distinct priority and can be uniquely ordered according to
Lemma 1, there must exist a node i in this circular wait
whose request priority β(i) is the highest amongst all other
nodes in this cycle. Assume that its successor in the cycle is
node j. We claim that node i will eventually receive a reply
from j. This is because node j will eventually receive the
REQUEST from i due to Lemma 3, and respond back with
a REPLY immediately (step S2) as it has an outstanding
request and β(i)>β(j).

In all the cases, the cycle is eventually broken (due to
Lemma 3). The theorem holds for both strict and relaxed
ordering constraints.

Theorem 3: (Fairness) The algorithm is starvation-free.
Proof: Assume that starvation is possible. Starvation of

node i occurs when it has transmitted its REQUEST and
other nodes in ξ(i) have deferred their REPLY messages
to i because they are continuously requesting locks on
their respective resources with higher priority than β(i) and
succeeding in acquiring them. We claim that this is not
possible. Consider an arbitrary node j ∈ ξ(i), j 6= i. The
following cases are possible:
• Node j has an outstanding REQUEST for a lock on its
resource with β(j)<β(i). It will eventually acquire the lock
as node i will send it a REPLY (step S2) and the algorithm
is deadlock-free (Theorem 2). It will thus move to the next
case.
• Node j is holding a lock on its resource. By Lemma 2,
it will eventually release the lock in finite time. However,
it requests a new lock on its resource immediately after
releasing the prior lock. According to the default priority
assignment scheme implemented in Hotline, the new request

will get a global timestamp greater than the value in node i’s
request. As a result, the priority of new request will be lower
than β(i). Similar arguments can be made for Lamport’s
logical clocks and Maekawa’s sequence numbers [9]. This
means that node j will not get a REPLY from i, and it will
eventually have to send a REPLY to node i (step S2 and
Lemma 3).

Since, this is true for any node j, node i will eventually
get a REPLY from all j∈ξ(i) after at most |ξ(i)|−1 requests
are served.

D. Performance Analysis

In this section, we analyze the performance of PhyLock
protocol. It is affected significantly by errors in communica-
tions, however it is hard to quantitatively study the perfor-
mance under failures [10]. Therefore, we consider normal
execution only, without any communication failures, for the
analysis in this section. Performance under communication
errors is shown through simulation in Section VI-C.

We consider two special load conditions i.e. low-load
and high-load for the given analysis, as is typical for
many mutual exclusion algorithms [11], [10]. In low-load
conditions, there is seldom more than one request for a
resource simultaneously in the network; while in high-load
conditions, there is always an outstanding request at each
node for its respectve resource.

The performance is analyzed in terms of two common
metrics explained below. For simplicity, we define and use
K as the average size of coordination cliques in the network.

Messages Exchanged Per Iteration (MEPI): It is defined
as the number of messages exchanged (transmitted and
received) by a node to acquire a lock on its resource in each
iteration of the control algorithm. Under any load condition,
the node requesting a lock has to transmit K−1 REQUESTs
and receive K − 1 REPLYs to get permission to access its
resource. Therefore, on average

MEPI = 2(K − 1), where K =
1

N

N∑
i=1

|ξ(i)|,

and, N is the number of controller nodes in the network.
However, this assumes that the network stack and com-

munication modality only support message unicast. This is
not true for wireless radios, like the ones based on IEEE
802.15.4. Hotline provides a simple compile time flag to
enable support for broadcast, thereby reducing the cost
to only K messages by allowing the REQUESTs to be
broadcasted. Moreover, with the ability to tolerate communi-
cation failures, it can also support other unreliable multi-cast
protocols for efficient communication when the edges in G
do not represent 1-hop communication links. For this reason,
we often refer to G as the synchronization graph that can be
distinct from the underlying 1-hop communication graph.

Response time (RT): It is defined as the amount of time a
node waits to lock its resource after the call to acquireLock().
Under low load conditions, it is equivalent to the time it takes

to transfer 2(K−1) messages to their respective destinations
as contention for resources is rare.

However, under high load conditions several transitive
resource conflicts may activate and significantly impact RT
experienced by any node i. This is because the K − 1
nodes in ξ(i) may have to recursively wait for other nodes
in their respective cliques, before their outstanding requests
are served and before they each send a REPLY to node i.
Formally, worst-case RT for a node i can be expressed as

RTi = O (K − 1 + hi(K − 1)) ,

where, hi is the length of longest path in a directed acyclic
graph DAG(i) rooted at node i. The formation of DAG(i)
can be explained as follows:

During execution of the application, at any time t, a DAG
GD = (V, ED) can be associated with the network due to
outstanding lock requests for resources. Its edge-set satisfies
the property ED ⊆ E (Section II). An edge (i, j)∈ ED is a
directed edge i→ j if node i has an outstanding REQUEST
and is waiting for a REPLY from node j that has a relatively
higher priority. We define a pair of nodes i and j to have
active resource conflicts if there exists a directed path from
i to j in GD. DAG(i) is a sub-graph of GD that forms when
node i transmits its REQUEST. DAG(i) has only one root at
node i and represents the set of nodes with higher priority
requests than i that must release their locks before node i
can get permission to acquire its own lock.

When DAG(i) is a balanced tree of degree K− 1 over N
nodes, RTi can be written as O

(
(K − 1)(logK−1N + 1)

)
.

Our evaluation shows that this RT can be reduced by
following relaxed order of access.

IV. RESOURCE MANAGEMENT

Hotline internally represents the resource at each node as
a list of actuators UA instead of their control inputs (Eq.
(1)). This results in a clean separation of the lock protocol
from data access mechanisms exposed through a SharedVari-
able interface similar to [12][13]. Consequently, application
programmers can transparently access the control inputs as
well as other information stored at the actuators through
this interface by using pre-configured keys. In addition, they
can bind the desired access type τ(·) for each variable by
iterating through the list of actuators.

Hotline proactively advertises these resource definitions
throughout the network using DIP dissemination protocol
[14] to identify and maintain the coordination clique at each
node (Equations (4) and (3)). Typically, for the class of
applications supported by Hotline, the desired resources at
each node do not change over time of the deployment, unless
the influence zones of actuators or regions of interest are
transformed due to failure, mobility or simply aging. Any
modifications to the resource definitions are subsequently
notified to the respective clique managers through added()
and removed() events in the Resource interface.

Table I
THEORETICAL MODELS OF ZONES

Model Supported Sensor-Actuator Subsystems
1-D range: [a, b] Part of sewer pipeline, Traffic lights

Circle Simple models of sprinklers, lights, radio
Sector of a circle 2-D representation for PTZ cameras,

mobile robots or vehicles
N-sided polygon More accurate models of sprinklers

and radios, HVAC vents

Dynamic Identification: Hotline automatically manages
the list of overlapping actuators UA at each node by advertis-
ing zone definitions of all actuators throughout the network
of controllers. An application developer is therefore only
responsible for defining actuator zones and spatial regions
of interest at each controller. Table I shows the list of
geometric representations currently supported in Hotline, but
other models can be added trivially. Each representation has
a corresponding overlap operator that can perform the
intersection operation in Eq. (2). It is important to note that
these models must be simple, and need not be precise, as
long as the discovered set UA is accurate.

Zones or regions, as defined by various models, ultimately
depend on the physical context (i.e. location and orientation)
of respective devices. Programmers can support complex
hardware configurations in Hotline where multiple actuators
affect physical context of the device such as a mobile base
hosting a PTZ camera or a boat carrying a rotating arm
with an oil sensor at its tip [15]. This is enabled through a
comprehensive library of re-usable components for various
sensor-actuator sub-systems that can be trivially composed
together to enable run-time update of their global context
and zones.

Static Specification: However, as long as the list UA is
static, the access types for actuator variables at a node do
not change over time as well. This is specially observed
in applications where actuator overlaps are experimentally
established from the deployment, for instance by manipu-
lating light sensors and sources in a controlled experiment,
or comparing pictures from PTZ cameras in a surveillance
application. In such scenarios, the list is typically encoded
at compile-time for each controller and thus avoids any
inaccuracies that may be introduced by theoretical models.
It is also necessary in applications where there is no well
defined notion of actuator zones, or they are computationally
hard to support on resource-constrained devices. However,
the modular nature of Hotline makes it trivial to replace this
module for each deployment, while retaining reusability of
other components.

Discussion: An alternate design of zone abstraction could
have reused the definitions of neighborhoods from [12][13]
based on communication hops or distance, but that would
have again led to either deployment-specific code with
the actuator overlaps mapped onto network topology, or
would have only supported simple actuator models (circles)
based on geographic distance. Moreover, implementations

init():
my_pose = PTZ.get()
my_zone = PTZ.getZone(my_pose, RAD, THETA)
Resource.enableDiscovery(my_zone)
SharedVar.put(POSE, MY_ID, my_pose)

SharedVar.changed(key, id):
phylock.acquireLock()

phylock.lockGranted():
my_pose = calculateNew(my_pose, ...

SharedVar.getList(POSE, Resource.get()))
PTZ.set(my_pose)
SharedVar.put(POSE, MY_ID, my_pose)
phylock.releaseLock()

Figure 4. Pseudocode snippet for distributed camera controllers in Hotline-
Ptz. The controller logic resides on the respective actuators, and interface
PTZ is used for controlling the actuator.

of these frameworks only support one-hop communication
for discovery and data sharing. Hotline overcomes these
deficiencies by providing rich support for actuator models,
multi-hop dissemination for discovery of actuator overlaps,
and multi-hop routing for message exchange.

V. MACRO-BENCHMARKS

A. Distributed Visual Surveillance

Kansal et al. describe a distributed visual surveillance
application using a network of PTZ cameras in [2]. They
propose a distributed optimization algorithm that trades-off
spatial coverage of an area against actuation delay of the
PTZ actuators to capture a high resolution image of an
interesting event. It involves a randomized search of the
exponential solution space similar to simulated annealing. In
each iteration, all camera controllers select their respective
pose (PTZ), based on poses of overlapping cameras, that
maximizes local utility expressed over all points in their
local field-of-view. The algorithm, however, requires a mech-
anism to synchronize access to the shared poses of cameras
such that the local utility at each controller, and hence global
utility of the network, is always non-decreasing. The authors
in [2] use a distributed protocol based on implicit replies and
negative permissions to provide this service.

Implementation: The original implementation of the op-
timization algorithm was not available, so we encoded it
ourselves exactly as described in [2] (Original-Ptz). We
also implemented the same application using the Hotline
programming framework (Hotline-Ptz) as shown in Figure
4. Nodes enable dynamic discovery of resources based on
zones of their respective PTZ actuators, retrieve the default
pose, and share it with their cliques at initialization. They
request locks on their current resource, implicit in the call
to acquireLock(), whenever the pose of an overlapping
actuator changes. A new pose is selected and executed after
acquisition of the lock is signalled through lockGranted()
event.

Table II
COMPARISON OF VISUAL SURVEILLANCE IMPLEMENTATIONS ON A

MOTE TESTBED.

Implementation Net Latency Total Messages
[s] Mean Std Dev

Original-Ptz 43.11 16.75 10.93
Hotline-Ptz 33.44 33.43 24.19

The custom design and implementation of the protocol
in Original-Ptz enables combination of the data sharing
and synchronization mechanisms into one message-efficient
protocol. However, we believe that other advantages of
Hotline outweigh these benefits as the development effort
involved in Hotline-Ptz is significantly reduced compared to
the Original-Ptz implementation. We make three arguments
to support this claim:

First, Hotline-Ptz has 76% fewer lines of code than
Original-Ptz. Second, the Hotline implementation is in-
herently robust to communication losses. In contrast, the
original protocol design relies on a network layer to provide
reliable delivery of messages. Third, we had to explicitly
specify actuator overlaps in the Original-Ptz code during
our experiments on mote testbeds. It was a time consuming
manual process that resulted in deployment specific code.
As expected, we did not face these problems in Hotline and
had a much better experience when we had to change node
locations in-between experiments for various reasons.

Experiments: We deployed and executed both implemen-
tations of the application on a network of 8 motes that were
placed randomly in a 50x50m area. Since we did not have
access to 8 actual cameras, we simulated the application
logic on the motes to calculate camera poses. We used the
event distribution and other application parameters from a
real-world experiment in [2] to optimize local selection of
poses at each mote such that coverage is maximized.

Table II compares the total number of messages ex-
changed and net application latency for both implementa-
tions. Net application latency measures the total time it took
for the application to complete when nodes stopped selecting
new pose values. This demonstrates that Hotline imposes
almost a 100% overhead in terms of total message count
per node. However, it reduces net application latency by
22% over the original implementation. This tradeoff is an
artifact of the comparatively larger timeout values chosen
for the backoff timers and retry mechanisms in Original-Ptz.
Moreover, Hotline inherently has a higher message exchange
due to the basic differences in two coordination protocols.

B. Personalized Light Control

Consider a light control application with M light sources
and N light sensors in a room. Each light sensor i corre-
sponds to an occupant of the room and has an associated
incident light intensity L∗i desired by the user. The output
intensities Î = (I1, .., IM)T of the light sources can be
controlled by the system to achieve required light inten-
sities at the sensors. This can be expressed as a convex

 0.1

 1

 0 200 400 600 800 1000

N
o

rm
.

D
is

t.

Iteration

Original-Light
Hotline-Light

(a) Rate of convergence in terms of iteration count

 0.1

 1

 0 200 400 600 800 1000 1200 1400

N
o

rm
.

D
is

t.

Time[s]

Original-Light
Hotline-Light

(b) Rate of convergence in terms of latency

Figure 5. Incremental subgradient descent (constant step size = 0.1) in
Personalized Light Control. Convergence rate for subgradient method is
characteristically slow towards end. Y-axis plots normalied distance from
the optimizer. N=100 (10x10 grid), M=180 sources (on avg 1-2 per user)

optimization problem where the cost function is the sum of
squared error in desired and actual intensity at each sensor. It
can be solved by subgradient algorithm [4] that successively
estimates optimal control inputs Îk+1 to the light sources in
each iteration k as

Îk+1 = PX

[
Îk − αk

N∑
i=1

gi(Îk)

]
(5)

where, αk is the step size at kth iteration, PX is projection
on dom(Î) = X ⊂ RM , and gi is the subgradient of an
individual component of the cost function corresponding to
squared error at sensor i.

This algorithm can be distributed across N sen-
sors/controllers by incremental subgradient method as shown
in [5]. We implemented it in Hotline (Hotline-Light), and
compared against a hand-coded version (Original-Light)
using the TOSSIM simulator. Our simulations (Figure 5)
show that although convergence rate in terms of number
of subgradient iterations k is almost similar in both, the
iterations in Hotline-Light complete significantly faster in
terms of latency as compared to Original-Light, but at
the cost of increased message exchanges. This is because
multiple nodes can iterate concurrently in Hotline-Light as
they do not need to access or estimate the control inputs of
non-overlapping lights.

In contrast, the Original-Light implementation requires
each controller to access and estimate the control inputs of
all the light sources, thereby resulting in a synchronized
sequential execution. Recognizing the latter requirement,
we implemented Original-Light using a light-weight token-
passing protocol that assumes existence of a static ring
overlaid on the mesh network of distributed controllers.
Although it kept the message exchange in Original-Light to
a minimum, it is important to note that in realistic scenarios

additional messages will be required to form and maintain
the communication ring. This is non-trivial, especially when
the algorithm may select random successors in the ring
during run time to improve the rate of convergence [4].

The Hotline-Light implementation has an added advan-
tage over its hand-coded counterpart as the amount of
memory required at each controller is a function of localized
actuator overlaps, as opposed to all actuators in Original-
Light. The same applies to the size of data that needs to
be exchanged between different controllers – the Original-
Light implementation in our simulations required 720 bytes
of application data in the communication packets as opposed
to 45 bytes in Hotline-Light. This was partly responsible for
the increased latency in Original-Light as multiple packets
were required to transmit the data completely.

VI. MICRO-BENCHMARKS

Metrics: In this section, we measure performance of the
distributed PhyLock protocol in terms of RT and MEPI
per node (Section III-D) under different simulated loads
and communication errors. Our simulations demonstrate that
PhyLock scales with the density of coordination cliques
and tolerates high packet loss with graceful degradation
of performance. The evaluation also confirms that it can
outperform a conventional DSM implementation that only
supports coarse-grained permissions with coarse locks.

Simulation setup: We simulated a network of motes in
TOSSIM that implemented an actuator controller on top of
Hotline. They were arranged in nxn grids where n was
varied as 3, 5, 7, 10. For each grid size, we simulated circular
actuator zones (to emulate zones of light sources) with four
different radii that resulted in cliques of different densities.

In each of these 16 simulation setups, all nodes start
requesting locks on their resources at around the same time,
but consecutive iterations at each node are separated by a
random amount of time in [Tnlower, Tnupper]. This interval
is referred to as load. It represents the (inverse of) frequency
with which nodes need to estimate control inputs of ac-
tuators. Four different loads L1([1, 3sec]), L2([15, 25sec]),
L3([1, 3min]) and L4([5, 10min]) were selected; they rep-
resent the rate of change in event distribution that triggers
the PTZ cameras to select new poses [2], human movement
in offices that triggers adaptation in light intensities [3], and
the rate of change in sewer inflow during normal and rain-
storm conditions that was observed in CSOnet [6]. Overall,
a total of 64 simulations were performed for varying grid
sizes, clique densities, and loads.

A. Scalability

In one set of simulations, we configured the system to fol-
low the default priority-based order using FCFS semantics.
Moreover, all communication links were configured to be
consistently good and only minor packet loss was observed

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12 14 16

T
im

e
[s

]

Avg Size of Cliques

grid:5x5
grid:7x7

grid:10x10

(a) Average Response Time per node

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2 4 6 8 10 12 14 16

N
u
m

b
er

 o
f

M
es

sa
g
es

Avg Size of Cliques

grid:5x5
grid:7x7

grid:10x10

(b) Average Messages Exchanged per Iteration

Figure 6. Simulations with default FCFS order to show scalability. The
two curve families (from top) represent loads L1 and L4 (bottom-most).

due to collisions (TOSSIM implements the CSMA MAC for
802.15.4 radios).

The results are shown in Figure 6 where each point in
the graphs is obtained from an average over 20 iterations.
They confirm our analysis from Section III-D that Hotline
can easily scale to a network of hundred nodes as its
performance, in terms of RT and MEPI, is a function of
clique size only. Figure 6 can also be analyzed to observe
81.6% and 72.8% reduction in RT and MEPI respectively
due to Hotline over a Coarse-DSM implementation that only
supports coarse read and write locks. It is based on the fact
that average clique sizes in Coarse-DSM are typically higher
than in Hotline as each controller conflicts with a higher
number of nodes. This is because a controller has to obtain a
write lock on the complete resource even if it requires write
access on one shared variable and read access on others
(Figure 2).

B. Concurrency

In this section, we repeated the simulations but with
exactly equal arrival times for all requests. As a result, all

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
[s

]

Node Identifier

Opt. Concurrency
Default

(a) Average Response Time per node

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 10 20 30 40 50 60 70 80 90 100

N
u

m
b

er
 o

f
M

es
sa

g
es

Node Identifier

Opt. Concurrency
Default

(b) Average Messages Exchanged per Iteration

Figure 7. Simulations for 10x10 grid and average clique size of 4 with
static priorities to show the effect of transitive resource conflicts. The
oscillatory nature of plots is due to increasing order of node identifiers
and resource conflicts with immediate neighbors in the grid.

requests were resolved according to unique node identifiers.
We ran 20 simulations each, but with all nodes requesting
locks only once per simulation. This resulted in long transi-
tive dependencies that skewed RT for nodes at the end of the
wait chains as shown in Figure 7. MEPI was also affected by
this transitivity as the nodes could not distinguish between
deferred replies and packet loss, and thus, were resending
their requests on timeouts.

We again repeated the above simulations with Hotline
configured to optimize concurrency with relaxed ordering
constraints. Our simulations verified that a higher number
of nodes were able to access their resources simultaneously.
Figure 7 shows that average RT and MEPI are also reduced
as a result.

However, the default configuration of Hotline performed
better than relaxed access in simulations with bigger cliques
or smaller network sizes due to the reduced opportunity of
parallel operation in both cases. The nodes with oustanding
requests in relaxed access configuration did not get immedi-

 0

 50

 100

 150

 200

 250

 300

 2 4 6 8 10 12 14 16

T
im

e
[s

]

Avg Size of Cliques

No loss
20% loss
40% loss
60% loss

(a) Average Response Time per node at high load L1.

 0

 10

 20

 30

 40

 50

 60

 2 4 6 8 10 12 14 16

T
im

e
[s

]

Avg Size of Cliques

No loss
20% loss
40% loss
60% loss

(b) Average Response Time per node at low load L4.

Figure 8. Simulations for 7x7 grid with default FCFS execution under
varying packet loss rates. 80% loss is not shown for clarity, but exhibits
the same trend.

ate locks on their resources when nodes with higher priority
requests temporarily relinquished their requests as there was
no coordination among the relinquishing nodes. Therefore,
not enough nodes released requests to let the lower priority
nodes proceed.

C. Tolerance to Packet Loss

We repeated the simulations described in Section VI-A,
but with varying average packet loss rates from 0% to
80% in steps of 20. Packet loss was simulated by dropping
packets randomly at each node with an additional temporal
correlation to mimic real wireless communication links. At
each step, losses due to collisions were also present as
before. Figure 8 demonstrates that average RT increases
exponentially with packet loss. The same trend is observed
for MEPI as well, but not shown due to space limitations.

VII. RELATED WORK

Mutex locks are used in virtually all DSMs for protected
access to shared data. Many permission-based and token-

based mutual exclusion algorithms [11][10][16][17] have
been proposed that mediate mutually exclusive access to
discrete and non-intersecting resources amongst all nodes
in the network. Unlike these prior protcols, PhyLock en-
forces mutex among local subsets of nodes for access to
overlapping resources; and, it does not assume reliable and
in-order delivery of messages provided by the network stack
to guarantee deadlock-free and safe operation.

We believe that the latter is an important design choice to
enable support for IEEE 802.15.4 based low-power radios.
The support is necessary as the radios are cheap, ubiquitous
in sensor-actuator networks, and - unlike their 802.11 (WiFi)
counterparts - energy-efficient for frequent signalling using
short packet lengths [18]. However, many of the current
network stacks for these radios do not offer reliable multi-
hop any-to-any communication. Although IPv6 has been
ported to work on these devices, applications continue to
use UDP for practical reasons [19]. TCP has been well
known to perform poorly on wireless networks, and as a
result, many solutions have been proposed to overcome
these imperfections [20]. Nevertheless, none of them are
available on 802.15.4 radios because of device constraints
too. Thus, many of mutex solutions proposed for wired or
WiFi networks can not be trivially applied here.

Alternative token-based mutex algorithms [16] were not
chosen for PhyLock as they suffer from the fatal problem of
token loss [17], which can be frequent in low power wireless
networks with high link variability.

ACKNOWLEDGMENTS

This material is based upon work supported by the NSF
under award #CCF-0820061 and CCF-0820034. Lucas Wan-
ner is supported in part by CAPES/Fulbright grant #1892/07-
0. Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the author(s)
and do not necessarily reflect the views of the NSF or
CAPES/Fulbright. The authors will also like to thank Chenni
Qian for her invaluable help with the figures.

REFERENCES

[1] Y. Park, J. Shamma, and T. Harmon, “A Receding Horizon
Control algorithm for adaptive management of soil moisture
and chemical levels during irrigation,” Environmental Mod-
elling & Software, vol. 24, no. 9, pp. 1112–1121, 2009.

[2] A. Kansal, W. Kaiser, G. Pottie, M. Srivastava, and
G. Sukhatme, “Virtual High Resolution for Sensor Networks,”
in ACM Sensys, November 1-3, 2006.

[3] V. Singhvi, A. Krause, C. Guestrin, J. Garrett Jr, and
H. Matthews, “Intelligent light control using sensor net-
works,” in ACM Sensys, 2005.

[4] A. Nedic and D. Bertsekas, “Incremental subgradient methods
for nondifferentiable optimization,” SIAM Journal of Opti-
mization, vol. 12, no. 1, 2001.

[5] M. Rabbat and R. Nowak, “Distributed optimization in sensor
networks,” IPSN, 2004.

[6] L. Montestruque, M. Lemmon, and L. EmNet, “CSOnet:
a metropolitan scale wireless sensor-actuator network,” in

International Workshop on Mobile Device and Urban Sensing
(MODUS), 2008.

[7] N. Kothari, R. Gummadi, T. Millstein, and R. Govindan,
“Reliable and efficient programming abstractions for wireless
sensor networks,” in ACM SIGPLAN 2007 Conference on
Programming Language Design and Implementation; San
Diego, CA, 2007, pp. 200–210.

[8] L. Lamport, “Ti clocks, and the ordering of events in a
distributed system,” Communications of the ACM, vol. 21,
pp. 558–565, 1978.

[9] M. Maekawa, “An algorithm for mutual exclusion in decen-
tralized systems,” ACM Transactions on Computer Systems
(TOCS), vol. 3, no. 2, 1985.

[10] W. Wu, J. Cao, and J. Yang, “A fault tolerant mutual exclusion
algorithm for mobile ad hoc networks,” Pervasive and Mobile
Computing, vol. 4, no. 1, pp. 139–160, 2008.

[11] G. Ricart and A. Agrawala, “An optimal algorithm for mutual
exclusion in computer networks,” Communications of the
ACM, vol. 24, no. 1, pp. 9–17, 1981.

[12] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler, “Hood:
a neighborhood abstraction for sensor networks,” in MobiSys,
2004, pp. 99–110.

[13] M. Welsh and G. Mainland, “Programming sensor networks
using abstract regions,” NSDI, 2004.

[14] K. Lin and P. Levis, “Data Discovery and Dissemination with
DIP,” in IPSN, 2008.

[15] S. Srinivasan, K. Ramamritham, and P. Kulkarni, “ACE in the
hole: adaptive contour estimation using collaborating mobile
sensors,” in IPSN, 2008.

[16] M. Benchaı̈ba, A. Bouabdallah, N. Badache, and M. Ahmed-
Nacer, “Distributed mutual exclusion algorithms in mobile
ad hoc networks: an overview,” ACM SIGOPS Operating
Systems Review, vol. 38, no. 1, pp. 74–89, 2004.

[17] H. Attiya, A. Kogan, and J. L. Welch, “Efficient and robust
local mutual exclusion in mobile ad hoc networks,” IEEE
Trans. on Mobile Computing, vol. 9, pp. 361–375, 2010.

[18] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient
MAC protocol for wireless sensor networks,” in INFOCOM,
2002.

[19] X. Jiang, S. Dawson-Haggerty, P. Dutta, and D. Culler,
“Design and implementation of a high-fidelity ac metering
network,” in IPSN, 2009.

[20] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz,
“Improving tcp/ip performance over wireless networks,” in
MobiCom ’95. ACM, 1995, pp. 2–11.

