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Abstract—Utilities face complex problems of peak demand and
intermittent supply, made more pressing by the need to integrate
large EV loads and distributed generation. The added flexibility
of EV loads, which can charge at varying rates, together with
forecasts of renewable availability can be used to reduce inte-
gration costs. We show that, in addition, the lookahead provided
by requesting EVs to telegraph arrival times can be exploited to
shave peaks. We propose a novel optimization theoretic approach
to scheduling EV charging, that delays workload to minimize
charging cost while meeting latency constraints. We present
an online algorithm for dynamic deferral to determine a near
optimal balance of workload delay and power use. We validate
our algorithm on simulated EV workload, collected wind and
solar power generation data from our micro-grid and publicly
available electricity price traces from the grid. Results show that
the algorithm gives 10-30% energy-savings compared to the naı̈ve
‘follow the workload’ policy.

I. INTRODUCTION

There are two important challenges facing electricity gen-
eration and distribution companies - peak demand and time-
varying supply-demand imbalance. Serving a large demand
peak requires generation and distribution companies to build
and maintain larger capacity and more expensive infrastruc-
ture, which is under-utilized in non-peak situations. As a
particularly revealing example, it is estimated that a 5%
lowering of demand would have resulted in a 50% price
reduction during the peak hours of the California electricity
crisis in 2000/2001 [9]. In addition, large power flow peaks
lead to correspondingly larger losses and reduces the lifetime
of overloaded hardware like transformers.

Changes in the nature of demand and supply, in particular
the widespread and growing adoption of Electric Vehicles
(EVs) and renewable energy sources, have required a paradigm
shift in how utilities plan generation and distribution. EVs are
large demand sources, a single EV can store and consume daily
energy use equivalent of 3-5 homes [4], and are also much
more unpredictable - both in terms of location and load size.
Increased incorporation of renewable energy sources, like wind
and solar, have exacerbated the problem of demand supply
imbalance.

The adoption of new communication [15] and control [5]
infrastructure in the smart grid allows for increased prosumer
participation in grid operations. In order to limit peaks, min-
imize losses and reduce costs, utilities need to exploit the
patience and flexibility of consumers and any available local
storage. This begs the question: how can this infrastructure
exploit demand flexibility to ameliorate supply-demand uncer-
tainity and reduce costs?

In our work we focus on algorithms that shave peaks and
efficiently allocate time varying demand to cheaper supply.
In particular we focus on EVs. While there is much work in
this area - see Section V and references therein - our work is
distringusihed by two features:
• We demonstrate that the lookahead provided by request-

ing EVs to telegraph arrivals times, can be exploited
to reduce costs. This information is often available in
practice - for example, as people drive to EV charging
stations - but has not been used in any prior work.

• We design computationally efficient algorithms, with
provable gaurantees, that utilize this information and
flexibilities in deferral to minimize the total energy cost
for EV charging tasks.

Finally, we substantiate our theroretical claims through exten-
sive simulations on data collected from a working microgrid
in operation.

II. MODEL FORMULATION

We start with discussion of a model in Section II that serves
as a basis devising practical online algorithms discussed later
in Section III.

We consider a charging station managing the EV-charging
jobs of its customers. We assume that time is slotted t ∈
{1, 2, . . . , T} where T is the total number of time slots in a
billing period, which can be one day or one month depending
on the billing policy. The EVs can be charged from the station
but the energy price varies over time. The goal of the charging
station is to minimize the energy consumption across all time
slots in the billing period. Let pt be the unit energy price at
time t.

We consider a sequence J of EV charging jobs and denote
the total number of jobs |J | = n. Each job i ∈ J can be
represented by a 4-tuple (si, di, ei, ri), which indicates that
this EV arrives at the beginning of time slot si ∈ T , departs
at the end of time slot di ∈ T and requires ei amount of energy
to finish its request (we also refer to ei as the demand). The
4-th term ri ∈ T is the reservation time for the job i. Since
a job can only be reserved in advance and EVs depart after
they arrive, we have ri ≤ si < di. We also assume that each
EV arrives with some amount of charge vi (we also refer to
vi as the resource) which is known at the time of arrival si.
This stored charge can be used to charge the other EVs when
the electricity price is high in order to save total energy cost
for meeting all the demands. But at the time of departure di,
the amount of energy stored in the battery should be (ei+vi).



Let xi,t denote the charging/discharging rate of EV i at
time t. We use negative values of xi,t to denote discharging.
EVs have maximum charging and discharging rate EC and
ED at each time slot i.e. −ED ≤ xi,t ≤ EC for t ∈ [si, di]
and xi,t = 0 for t ∈ T − [si, di] . Then the total energy
consumption at time t is xt =

∑n
i=1 xi,t.

Cost Model

The goal of this paper is to minimize the total charging cost
and maximize the renewable energy usage for charging EVs.
The EV charging cost consists of two parts: charging cost
and switching cost. Charging cost is the cost for charging the
EVs which in our model is proportional to the amount of the
charging requirement multiplied by the electricity price as a
function of time:

C(xt) = αptxt

where α is a constant and xt is the amount of charging
accomplished in a time slot. We note that this model is
general and allows for incorporation of parameters such as
heat density, battery lifetime which make the optimization
problem nonlinear. Our algorithms can, however, be applied
since optimization is a single independent step.

Switching cost β is the cost incurred for changing the total
power demand. We consider the cost of both increasing and
decreasing the charging requirements. Switching cost at time
t is defined as follows:

St = β|xt − xt−1|

where β is a constant (e.g. see [18]) which comes from the
ramp constraints in power generation.

We can formulate the offline energy cost minimization
problem while satisfying all the EV demands by the following
optimization:

minxi,t α

T∑
t=1

ptxt + β

T∑
t=1

|xt − xt−1| (1)

subject to
di∑
t=si

xi,t ≥ ei ∀i

t∑
k=si

xi,t ≥ −vi si < t < di,∀i

− ED ≤ xi,t ≤ EC ∀i,∀t

Suppose the charging station is equipped with renewable
generation plants (solar, wind, etc.). Let Rt be the amount
of renewable power generated at time t which can be used
to reduce the energy consumption from the grid. Then the
power drawn from the grid is zt = xt − Rt. As we do not
consider separate energy storage (other than the EV batteries)
for renewable energy, we have zt ≥ 0. We can replace the
variable xt with variable zt in the optimization objective of
(1):

minxi,t,zt α

T∑
t=1

ptzt + β

T∑
t=1

|zt − zt−1| (2)

subject to
di∑
t=si

xi,t ≥ ei ∀i

t∑
k=si

xi,t ≥ −vi si < t < di,∀i

− ED ≤ xi,t ≤ EC ∀i,∀t
zt ≥ xt −Rt, zt ≥ 0 ∀t

While this model requires a priori knowledge about all EV
jobs, it serves as a basis for a more practical online algorithm
discussed next.

III. ONLINE ALGORITHM

In this section, we consider the online case where at any
time t we do not have information about future EV jobs.
We only know the reservation information ri about job i
before it is released at time si. In the online algorithm,
we use this reservation information to reduce the total cost
of charging/discharging. The interesting part of the online
optimization is the incorporation of the reservation information
in the formulation.

At each time t, we have unfinished tasks with released time
si ≤ t ≤ di, ∀i ∈ J . We denote the unfinished (active) jobs
at time t by Jt ⊆ J such that si ≤ t ≤ di, ∀i ∈ J . Let Dt =
maxi∈Jt(di − t) be the maximum deadline of the active jobs
at time t. Then at each step t, we apply the following online
optimization on the active jobs for the interval [t, t+Dt]:

minxi,t,zt α(ptzt +

t+Dt∑
j=t+1

p̃jzj) + β

t+Dt∑
j=t

|zj − zj−1| (3)

subject to
di∑
j=si

xi,j ≥ ei ∀i ∈ Jt

j∑
k=si

xi,t ≥ −vi si < j < di,∀i ∈ Jt

− ED ≤ xi,j ≤ EC ∀i ∈ Jt, t ≤ j ≤ t+Dt

zt ≥ xt −Rt, zj ≥ 0 t ≤ j ≤ t+Dt

where p̃j is the predicted electricity price for j > t. After
solving optimization (3) at time t, we only use the values xi,t,
zi,t to determine the charging/discharging of each vehicle and
discard the other values. For the next time slot t+1, we apply
optimization (3) again.

Incorporation of reservation information

To utilize the prior knowledge of reservation, we simplify
the formulation (3) by dropping the index i from the variable
xi,t. We use the terms Ei and Vi to denote the average demand
and resource for job i in the interval [si, di],

Ei =
ei

di − si
Vi =

vi
di − si



We now incorporate reservation information by dropping
index i in the formulation (3).

Let Jst ⊆ Jt, J
r
t ⊆ Jt, J

d
t ⊆ Jt be the sets of jobs that

have start time si = t, reservation time ri = t, and end
time di = t, respectively for i ∈ J . Suppose Lst =

∑
i∈Js

t
ei

be the total load demand from the grid at time s = t. The
information about this load curve is revealed at the time
of reservation. Let Lrt =

∑
i∈Jr

t
ei and Ldt =

∑
i∈Jd

t
ei

be the reservation and deadline curves respectively at time
t. Similarly, V st =

∑
i∈Js

t
vi and V dt =

∑
i∈Jd

t
vi be the

resource curves corresponding to arrival and deadlines of EVs
respectively at time t.

Thus we have three fundamental constraints on the amount
of task done for all t:
(C1) Deadline Constraint:

∑t
j=1 L

d
j ≤

∑t
j=1 xj

(C2) Release Constraint:
∑t
j=1 xj ≤

∑t
j=1 L

s
j

(C3) Discharge Constraint:
∑t
j=1 V

s
j −

∑t
j=1 V

d
j ≤ xt

Condition (C1) says that all the charging tasks done up to
time t cannot violate deadline and Condition (C2) says that
the charging tasks done up to time t cannot be greater than
the total released EV workload up to time t. Condition (C3)
illustrates that total discharging at any time cannot exceed the
available resources. Using these constraints we reformulate the
optimization (3) as follows:

minxt,zt α(ptzt +

t+Dt∑
j=t+1

p̃jzj) + β

t+Dt∑
j=t

|zj − zj−1| (4)

subject to
t∑

j=1

Ldj ≤
t∑

j=1

xj ,

t+Dt∑
j=1

xj =

t+Dt∑
j=1

Lsj

zt ≥ xt −Rt,
t∑

j=1

V sj −
t∑

j=1

V dj ≤ xt

zj ≥ 0 t ≤ j ≤ t+Dt

After solving this optimization problem, at each time slot t,
we charge the EVs with maximum charging rate EC according
to the EDF (Earliest Deadline First) policy; if there is a tie
in the deadline, we charge in the descending order of (Ei −
Vi) > 0 if ∃i ∈ Jt. We also discharge the EVs with maximum
discharging rate ED according to the EDF policy; if there is
a tie in the deadline, we discharge in the descending order of
(Vi−Ei) > 0 if ∃i ∈ Jt. Then we calculate new Ei and Vi for
the remaining part of the active jobs (i ∈ Jt) for the interval
[t+ 1, di].

Going beyond online formulation in (4), we can reduce
the switching cost even more by looking beyond Dt slots.
We do that by accumulating some EV charging tasks from
periods of high loads and execute that amount of EV tasks
later in valleys without violating constraints (C1) and (C2).
Note that by accumulation we do not violate deadline at each
slot, as we execute a portion of the accumulated workload by
swapping with the newly released workload by EDF policy.
To determine the amount of accumulation and execution we
use the load Lst curve. Thus the online algorithm looks ahead
using the reservation curve Lrt to determine the amount of
charging/discharging. We determine the amount of accumula-
tion and execution by controlling the set of feasible choices
for xt in the optimization. By having a lower bound on

Fig. 1. The curves Ls
t and Lr

t and their intersection points. The peak from
the Ls

t curve is cut and used to fill the valley of the same curve.

xt for the valley (low workload) and an upper bound for
the high workload, we control the execution in the valley
and accumulation in the peak. Thus in the online algorithm,
we have two types of optimizations: Local Optimization and
Global Optimization. Local Optimization is used to smooth
the ‘wrinkles’ (we define wrinkles as the small variation in
the workload in adjacent slots e.g. see Figure 1) within Dt

consecutive slots and accumulate some workload. On the other
hand, Global Optimization accumulates workload from the
peak and fills the valleys with the accumulated workload.

A. Local Optimization
The local optimization is applied over future Dt slots and

finds the optimum capacity for current slot by executing
no more than Lst workload. Let t be the current time slot.
At this slot we apply a slightly modified version of online
optimization (3) in the interval [t, t + Dt]. We apply the
following optimization LOPT(Lst , L

d
t , Lrt , zt−1) to determine

xt, zt in order to smooth the wrinkles by optimizing over Dt

consecutive slots. We restrict the amount of execution to be
no more than the Lst workload while satisfying the deadline
constraint (C1).

minxt,zt α(ptzt +

t+Dt∑
j=t+1

p̃jzj) + β

t+Dt∑
j=t

|zj − zj−1| (5)

subject to
t∑

j=1

Ldj ≤
t∑

j=1

xj ,

t+Dt∑
j=1

xj =

t+Dt∑
j=1

Lsj

zt ≥ xt −Rt,
t∑

j=1

V sj −
t∑

j=1

V dj ≤ xt

zj ≥ 0 t ≤ j ≤ t+Dt

After solving the local optimization, we get the value of
xt, zt for the current time slot. For the next time slot t +
1 we solve the local optimization again to find the values
for xt+1, zt+1. Note that the deadline constraint (C1) and the
release constraint (C2) are satisfied at time t, since from the
formulation

∑t
j=1 L

d
j ≤

∑t
j=1 xj ≤

∑t
j=1 L

s
j ≤

∑t
j=1 L

r
j .

B. Global Optimization
The global optimization is applied to accumulate workload

from the peak (peak optimization) and execute in the valley
(valley optimization). Before giving the formulation for the
peak/valley optimization, we need to detect a peak/valley.



Let p1, p2, . . . , pn be the sequence of intersection points
of Lrt and Lst curves on the Lrt curve (see Figure 1) in
nondecreasing order of their x-coordinates (tp values). Let
p′1, p

′
2, . . . , p

′
n be the corresponding sequence of points on

Lst (see Figure 1). We discard all the intersection points
(if any) between pu and p′u from the sequence such that
tu+1 ≥ t′u. Note that at each intersection point pu, the curve
from pu to p′u is known. To determine whether the curve Lst
between pu and p′u is a peak or a valley, we calculate the area
A =

∑t′u
t=tu

(Lst − Lstu).
1) Peak Optimization: If A is positive, then we regard the

curve between pu and p′u as a global peak though it may
contain several small peaks and valleys. If the curve between
pu and p′u is a global peak, we accumulate some (possibly
all) of the workload by not executing more than the Lst
workload while satisfying the deadline and release constraints
(C1) and (C2). For each t, we apply the following optimization
POPT(Lst , L

d
t , Lrt , zt−1) in the interval [t, t +D] to find the

value of xt, zt where tu ≤ t ≤ t′u.

minxt,zt α(ptzt +

t+Dt∑
j=t+1

p̃jzj) + β

t+Dt∑
j=t

|zj − zj−1| (6)

subject to
t∑

j=1

Ldj ≤
t∑

j=1

xj ,

t+Dt∑
j=1

xj ≤
t+Dt∑
j=1

Lsj

zt ≥ xt −Rt,
t∑

j=1

V sj −
t∑

j=1

V dj ≤ xt

zj ≥ 0 t ≤ j ≤ t+Dt

2) Valley Optimization: If A is negative, then we regard
the curve between pu and p′u as a global valley though it may
contain several small peaks and valleys. If the curve between
pu and p′u is a global valley, we execute some (possibly all) of
the accumulated workload by executing up to the Lrt workload
while satisfying the release constraint (C2). For each t, we
apply the following optimization VOPT(Lst , L

d
t , Lrt , zt−1) in

the interval [t, t + D] to find the value of xt, zt where tu ≤
t ≤ t′u.

minxt,zt α(ptzt +

t+Dt∑
j=t+1

p̃jzj) + β

t+Dt∑
j=t

|zj − zj−1| (7)

subject to
t∑

j=1

Ldj ≤
t∑

j=1

xj ,

t+Dt∑
j=1

xj ≤
t+Dt∑
j=1

Lrj

zt ≥ xt −Rt,
t∑

j=1

V sj −
t∑

j=1

V dj ≤ xt

zj ≥ 0 t ≤ j ≤ t+Dt

Note that the deadline constraint (C1) and the release con-
straint (C2) are satisfied at time t, since

∑t
j=1 L

d
j ≤

∑t
j=1 xj

≤
∑t
j=1 L

s
j . We apply the valley optimization (7) or peak

optimization (POPT) for each tu ≤ t ≤ t′u and local
optimization (5) for each time slot t. Algorithm 1 summarizes
the procedures for our online algorithm. For each new time
slot t, Algorithm 1 detects a peak or valley by checking
whether the curves Lrt and Lst intersect. If t is inside a peak,
Algorithm 1 applies peak optimization (POPT); if t is inside a

valley, Algorithm 1 applies valley optimization (VOPT); local
optimization (LOPT), otherwise.

Algorithm 1
1: global← 0; flag ← 0; z0 ← 0
2: for each new time slot t do
3: if global = 0 and Lr intersects Ls then
4: Calculate Area A =

∑t′u
t=tu

(Ls
t − Ls

tu)
5: global = t′u − tu
6: if A < 0 then
7: flag ← −1 {valley}
8: else if A > 0 then
9: flag ← 1 {peak}

10: end if
11: end if
12: if global = 0 then
13: x[t], z[t] ← LOPT(L[1 : t],Ls[1 : t],Ld[1 : t],zt−1)
14: else if flag = 1 then
15: x[t], z[t] ← POPT(L[1 : t],Ls[1 : t],Ld[1 : t],zt−1)
16: global = global − 1
17: else if flag = −1 then
18: x[t], z[t] ← VOPT(L[1 : t],Ls[1 : t],Ld[1 : t],zt−1)
19: global = global − 1
20: end if
21: end for

We now analyze the competitive ratio of the online algo-
rithm with respect to the offline formulation (2). We denote
the charging cost of the solution vectors X = (x1, x2, . . . , xT )
and Z = (z1, z2, . . . , zT ) by costc(X,Z) = α

∑T
t=1 ptzt,

switching cost by costs(X,Z) = β
∑T
t=1 |zt−zt−1| and total

cost by cost(X,Z) = costc(X,Z) + costs(X,Z). We have
the following lemma.

Lemma 1. costs(X,Z) ≤ 2β
∑T
t=1 zt

Proof. Switching cost at time t is St = β|zt − zt−1| ≤
β(zt + zt−1), since zt ≥ 0. Then costs(X,Z) ≤ β·∑T
t=1(zt + zt−1) ≤ 2β

∑T
t=1 zt where z0 = 0.

Let X∗ and Z∗ be the offline solution vectors from opti-
mization (3). The following theorem proves that the compet-
itive ratio of the online algorithm is bounded with respect to
the offline formulation (3).

Theorem 2. cost(X,Z) ≤ (αPmaxT+2β)
αPminT

cost(X∗, Z∗).

Proof. Since the offline optimization assigns all the workload
in the [1, T ] interval,

∑T
t=1 x

∗
t =

∑T
t=1 Lt ≤

∑T
t=1(z

∗
t +Rt),

where we used z∗t ≥ x∗t −Rt for all t. Hence cost(X∗, Z∗) ≥
costc(X

∗, Z∗) = α
∑T
t=1 ptz

∗
t ≥

∑T
t=1 pt(Lt − Rt) ≥

αPminT
∑T
t=1(Lt −Rt).

In the online algorithm, we set zt ≥ xt −Rt and
∑t
j=1 xj

≤
∑t
j=1 Lj for all t ∈ [1, T ]. Hence by lemma 1, we have

cost(X,M) = costc(X,M)+costs(X,M) ≤ α
∑T
t=1 ptzt+

2β
∑T
t=1 zt ≤ α

∑T
t=1 pt(Lt − Rt) + 2β

∑T
t=1(Lt − Rt) =

(αPmaxT + 2β)
∑T
t=1(Lt −Rt).

IV. EVALUATION

A. Simulation Setup
1) Cost Benchmark: A common approach for power usage

in EV stations is to follow the workload curve. In this policy,
the amount of power usage at each time is determined by the



amount of released workload. This is a conservative estimate
as it meets all the deadlines. We compare the total energy cost
from Algorithm 1 with the ‘follow the workload’ (x = Ls)
strategy (FTW) and evaluate the energy reduction.

2) Cost Function Parameters: We used a time slot length
of 10 minutes because of the granularity of the available
renewable traces. The values of α, β are chosen 1 and 10
respectively.

3) EV Data: EVs arrive at the charging station with pois-
sion inter arrival rate. Reservation interval, deadline, charging
demand and available resource for each EV task are generated
by poission distribution with different rates.

4) Electricity Price: There are two types of electricity
markets: day-ahead market and real-time market. For the
purposes of our simulation, we use traces from the real-time
market as they exibit significant volatility with high frequency
variation. Electricity price in this market varies on a 5-minute
or 15 minute basis. We collected the publicly available real
time electricity prices from the Independent System Operator
(ISO) located at New England (ISO-NE).

We now illustrate our model for predicting the electricity
price p̃j in the future time slots j ∈ [t + 1, t + D]. There
are several electricity price prediction models (e.g. ARIMA,
EWMA [8] etc.) based on time series prediction which often
ignore seasonal/historical components. To capture the hourly
and weekly trends, we use two different methods to estimate
the mean and variance of the electricity. In other words,
we model future prices within a 24-hour time-frame by
Gaussian random variables with known means, which are
the predicted prices, and some estimated variance. The mean
for the Gaussian distribution is predicted by the widely used
moving average method for time series. The variance for the
Gaussian distribution is estimated from the history by the
weighted average price prediction filter proposed in [11]. In
this model, variances are predicted by linear regression from
the previous prices from yesterday, the day before yesterday
and the same day last week. By using two different methods
for mean and variance, we exploit both the temporal and
historical correlation of renewable generation. To facilitate the
future price prediction, we denote the set of the time slots in
a 24-Hour time frame by K ⊂ T . Let µ̃κ[χ] and σ̃κ[χ] be the
predicted means and standard deviations for each time slot κ
on day χ. Then the mean of the prediction model for Gaussian
distribution is obtained as follows:

µ̃κ = ε0 +

D∑
j=0

εκ−jpκ−j , ∀κ ∈ K

Here, εj are the coefficients for the moving average method
which can be estimated by training the model over the previous
day prices. The variance parameter σ̃κ[χ] is estimated from the
history using the following equation:

σ̃κ[χ] = k1σκ[χ− 1] + k2σκ[χ− 2] + k7σκ[χ− 7],

∀i ∈ n, ∀κ ∈ K

Here, σκ[χ−1], σκ[χ−2] and σκ[χ−7] denote the previous
standard deviation values σκ on yesterday, the day before
yesterday and the same day last week, respectively. We use
the optimal daily coefficients for the price prediction filter
from [11] for estimating σ̃κi [χ]. Figure 2 illustrates the real

Fig. 2. Illustration of five minute locational marginal electricity prices in real
time market on 26th, 25th and 19th October, 2011 from Independent System
Operator located at New England (ISO-NE).

(a) Wind (b) Solar

Fig. 3. Illustration of the renewable power (a) wind traces on 01 August 2006
(b) solar traces on 01 August 2012 used in the simulation.

time electricity prices from (ISO-NE) for Wednesday (15th
February, 2012), the day before wednesday and the same day
last week and chose k1 = 0.837, k2 = 0 and k7 = 0.142.

5) Renewable Power: We simulated on collected traces
from two renewable energy sources: solar and wind.

Wind traces: The wind power generation data over time
is taken from the publicly available western wind dataset
from National Renewable Energy Laboratory (NREL) website.
Figure 3(a) shows the wind power generated over time in 10
minutes granularity for 24 hours on 01 August, 2006. For our
simulation, we normalize the power data with the workload
to capture the variation in the wind power to align with the
workload variation.

Solar traces: We use the solar power generation data from
the PV panels at UC San Diego campus. Figure 3(b) shows the
variation in the solar power traces over 24 hours on 01 August
2012. Note that we do not use the solar thermal generation as
it requires significant infrastructure for a solar thermal plant.
Since solar thermal plants typically incorporate a day’s thermal
storage [10], we cannot apply variation mitigation techniques
via workload deferral. Similar to wind traces, we normalize
the solar data to match the workload.

Hybrid traces: Since wind and solar trends are quite dif-
ferent, we combine the two traces and present analysis for a
hybrid system. We generate hybrid power traces by combining
10% solar and 90% wind power at any time and show that this
hybrid system gives better cost reduction than with solar or
wind traces alone.

B. Analysis of the Simulation
We analyze total cost reduction for wind, solar and hybrid

traces and recommend the system with the best cost savings.



(a) Deadline (b) Reservation

Fig. 4. Energy cost reduction for different values of (a) λd for solar, wind and
hybrid traces with arrival rate λr = 0.2 and reservation interval λs = 0.2,
(b) reservation interval λs for solar, wind and hybrid traces with inter-arrival
time λr = 0.2 and deadline λd = 1.0.

1) Savings with deadline: We vary the deadline by chang-
ing the interval λd in the poission distribution. The total cost
savings from the online algorithm increases with the increase
in the flexibility of deadline. However, larger deadlines can
increase the total cost due to prediction errors. Figure 4(a)
shows the cost reduction from our algorithm with λd with
respect to FTW algorithm for solar, wind and hybrid traces.
Since solar power is not available at night, solar traces gives
less cost savings. However, we can use the solar traces at
day-time to reduce the variation in wind traces which results
in more cost savings as found with the hybrid traces.

2) Savings with reservation: The energy reduction in-
creases with the increase in the flexibility in reservation time.
Figure 4(b) shows the cost reduction from our algorithm with
different reservation intervals λs with respect FTW algorithm
for solar, wind and hybrid traces. For the hybrid system we
get more energy savings with respect to only using wind and
solar generation.

V. RELATED WORK

Our work builds upon a significant background work on
algorithm for scheduling EVs with bounds on computational
efficiency and quality of results.

Soares et. al. [14] extend day ahead markets to schedule EV
charing. Bitar and Low [2] study the performance of Earliest
Deadline First algorithms when EVs are presented with higher
prices for earlier deadlines. Gan et. al. [7] and Subramaniam
et. al. [16] study real time algorithms that optimize charging
profiles. Park et. al. [12] develop algorithms that recommend
charging locations and slots based on travel route and EV
charge requirements. In [13], Qin et. al. study scheduling
algorithms that minimize waiting time. In contrast to our work,
Tang et. al. [17] design optimal schedules without lookahead
forecasts. Zhang et. al. [19] study schedules that are robust to
uncertainties in EV arrival and price.

In support of our work, Chen et. al. [3] show that optimal
policies in certain grid structures are valley filling, like the
policies we design. Valley filling algorithms are also studied
in [6], [20].

There has also been much work on distributed versions
of the EV scheduling algorithm. In [1], (dual) prices are
broadcast to EVs to maximize utility while respecting capacity
constraints.

VI. CONCLUSION

We have presented an algorithm for EV integration into
the smart grid that uses the flexibility of charging/discharging

reservation information along with task deferral while mit-
igating the variation in renewable power generation. Our
simulation shows around 30% cost savings by utilizing these
flexibilities with renewables incorporated into a hybrid system
of solar and wind.
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