
.

Software Synthesis

using Timed Decision Tables

Sumit Gupta

Rajesh Gupta

http://www.ics.uci.edu/�iesag

Technical Report #99-01

Department of Information and Computer Science

University of California, Irvine, CA 92697-3425

January 1999

Abstract

Timed Decision Tables (TDTs) have been used earlier for mod-
eling behavioral descriptions, applying presynthesis optimizations for
e�cient circuit synthesis and HDL restructuring. We describe here
work that optimizes TDT models for generation of software in a high-
level programming language. The optimization for software synthesis
is targeted at reducing the numbers of conditionals and actions in the
generated code. The TDT-based optimizations and software synthesis
is implemented in C++. Experimental results on a set of examples
show signi�cant reduction in the number of conditionals checked.
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1 Introduction

Software generation and optimization has been a focus of recent work on

embedded systems due to the increasing role of software in most applications

[1, 7, 8]. The emphasis of embedded software has been primarily on improved

code generation techniques for diverse architectures [2, 3, 4], on optimization

of memory resources [10, 5] and on address optimization [11, 12]. However,

as system design process incorporates more abstract models (such as State-

Charts, UML etc) there exists a need to generate software from these models

in a high level language (HLL) to handle increasingly complex software. The

high-level language description can then be input to multilevel optimization

techniques as is the case in conventional compiler frameworks.

Software synthesis refers to the process of generation of high-level lan-

guage code from abstract (behavioral) models. Prior work has been done on

code generation from dataow or synchronous dataow models [9, 14, 15].

Our work builds upon the Timed Descision Table (TDT) model which has

been used for hardware description language (HDL) based optimizations and

HDL code restructuring [13]. This model captures behavioral system descrip-

tions which can then be used for hardware and software synthesis. Behavioral

optimizations are attractive for their potential to apply optimization tech-

niques on a broader scope (e.g. beyond basic blocks, loops) while keeping

the computation costs low.

2 Timed Decision Tables

The TDT model has been explained at length in [13]. TDT models in gen-

eral can be behavioral or structural. In a structural TDT, actions represent

RTL operations whereas behavioral TDTs may use multi-cycle operations.

A TDT description consists of three tables: (1) a control ow table, which

captures the control-ow for a behavioral model, (or speci�es a controller

for a structural TDT); (2) a dependency table that captures the dependency

among operations for a behavioral level model, (or data dependency among

components in a structural model); (3) a delay table, which speci�es the
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Tdt0 :

a0 a1 a2 a3 tdt2
c0 Y Y N
c1 Y N -

- ŝ m m m a0 1 0 0
s - m m m a1 1 0 0
m m - ŝ m a2 0 1 0
m m s - m a3 0 1 0
m m m m - tdt2 0 0 1

Figure 1: A TDT description

operation delay. In the sequel, we consider only behavioral TDTs.

An example of a TDT is given in Figure 1. The control ow table consists

of four quadrants: (1) the condition stub is the set of conditions; (2) the

condition entries indicate possible conjunctions of conditions as rules; (3) the

action stub is the list of actions (4) the action entries indicate the actions

that are active for a certain rule. So a rule is a column in the right quadrants

of the table, where the condition entry quadrant corresponds to the decision

part of the rule and the action entry quadrant to the action part of the rule.

The dependency matrix represents the dependencies among actions. De-

pendencies can be one of, serial predecessor (s), serial successor (ŝ), concur-

rent (c) and mutually exclusive (m). The delay table is used to model the

execution delay associated with a datapath operation, to distinguish between

the timing semantics of signals and variables (as given in VHDL) and to spec-

ify communication protocols such as to represent bus delays etc. The delay

table completes the TDT description by incorporating information su�cient

to generate timing accurate HDL code from TDTs.

2.1 Hierarchy in TDTs

Hierarchy is represented in TDTs by allowing an action to be another TDT.

The TDT shown in Figure 1 is obtained by attening the hierarchy of TDTs

shown in Figure 2. The two actions, Tdt1 and Tdt2 called in Tdt0 are TDT

models, of which Tdt1 is also shown in the �gure. Hierarchy is necessary since

it allows modularity in the speci�cation and more importantly, prevents the

explosion in rules for complex systems. However, since a structure good for
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Tdt0 :

tdt1 tdt2
c0 Y N

- m tdt1 1 0
m - tdt2 0 1

Tdt1 :

a0 a1 a2 a3
c1 Y N

- ŝ m m a0 1 0
s - m m a1 1 0
m m - ŝ a2 0 1
m m s - a3 0 1

Figure 2: Hierarchy of TDTs

conceptualization may not always be good for synthesis, the hierarchy of the

TDTs can be re-structured based on resource sharing and frequency of calls

to shared code [13].

A set of behavior preserving transformations have been de�ned for the

TDT model [13]. Various column transformations and row transformations

in both the condition and action quadrants have been developed. Column op-

erations are column merging and elimination and action entry modi�cation.

Row operations in the condition quadrant are row elimination, insertion,

negation, encoding and swapping. Similarly, row operations in the action

quadrant are row merging, elimination and swapping. The TDT model also

facilitates easy identi�cation of duplicate actions and subsequent action shar-

ing.

3 Software Synthesis from TDTs

Synthesis of software from TDTs requires a selection of a schedule of op-

erations and subsequent HLL code generation according to a chosen style

[14, 15]. Scheduling a TDT eliminates concurrent \c" entries from the de-

pendency table. Operation scheduling is an important aspect of the software

synthesis process. However, for a given scheduling strategy, choice of coding

style has a signi�cant impact on the quality of the eventual code. Our ap-

proach to scheduling is based on relative scheduling that generates software
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Tdt1:
c1 Y Y Y
c2 N Y Y
c3 N Y

a1 1 1 1
a2 1 1
a3 1

Tdt2:
c1 Y Y Y
c2 Y Y
c3 Y

a1 1
a2 1
a3 1

Figure 3: Two types of TDTs
Generated from Tdt1
if c1 then
if �c2 then
a1;

else if �c3 then
a1; a2;

else
a1; a2; a3;

Generated from Tdt2
if c1 then
a1;
if c2 then
a2;
if c3 then a3;

Figure 4: Software corresponding to the TDTs

as a set of threads that begin with non-deterministic (anchor) actions [16].

Here, we focus on the coding style. TDTs can be used directly for generation

of HLL code by a mechanistic translation of its operational semantics [13]:

each rule corresponds to a condition clause determined by the condition col-

umn and an action part that is sequenced according to the dependency table

and invoked with the delay determined by the delay table. That would be

applicable in case the rules are invoked disjointly. Consider the example in

Figure 3 (we show here only the control ow tables in the TDTs). Software

synthesis from the two tables is shown in Figure 4.

The HLL code from both Tdt1 and Tdt2 has three conditional checks

corresponding to the three rules in the two TDTs. However, the nesting of

condition checks and reduced number of action activations from Tdt2 leads

to shorter assembly code from most compilers. Some code optimization (for

instance, code motion across conditionals) can optimize the code from Tdt1,

for instance, by moving action a1 to just after the �rst IF statement.

In general, conditions in HLL code adversely a�ect the quality of compiled

code generated, particularly, for modern deeply pipelined processors. Code
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c1 Y Y N
c2 N Y X

a1 1
a2 1
a3 1 1

quality can, therefore, be improved by reducing conditionals. Also, in general,

it is more e�cient to use nested conditionals since these reduce the condition

checking work in the generated code.

For the purpose of software synthesis, the TDT optimization goals are:

(a) to minimize the number of conditionals; (b) within each conditional, min-

imize the number of Boolean tests, i.e. minimize the number of condition

entries in the TDT; (c) and �nally to minimize action duplication or maxi-

mize action sharing by minimizing number of action entries in the TDT. In

the absolute minimum case, after dead code elimination, each condition is

checked only once and each action is invoked only once. However, this is not

always possible since it depends on the semantics of the target HLL.

Consider the example TDT shown in Figure 5 along with corresponding

Verilog (HDL) and C (HLL) descriptions. The Verilog code uses a control

jump statement, disable, to avoid repeating action a3, whereas the C code is

completely structured and repeats the action a3 in two control ow paths.

The coding style is a�ected by the type of the TDT used (Figure 4) and by

the choice of HLL (Figure 5). We consider the TDT types in the following

section.

3.1 Algebraic Model for Control Flow in TDTs

For each condition variable `c' in a TDT, we de�ne a positive condition

literal, lc, corresponding to a `Y' value in a condition entry and a negative

condition literal, l�c, corresponding to a `N' value. The `�' operator among

action and condition literals represents a conjunction operation, which is

both commutative and associative.

A TDT is a set of rules consisting of a condition part, which determines

when the rule is selected, and an action part, which lists the actions to be
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begin: blockA
if (C1)
begin
if (C2)
begin
a1;
disable blockA;
end

a2;
end

a3;
end;

if (C1)
f
if (C2)
a1;

else
f
a2; a3;
g

g
else
a3;

Figure 5: Generated code in (a) Verilog (b) C

executed for this rule. The condition part of a rule, Ki, is represented as:

i=numcY
ce(i)6=0X 0;i=1

�i; �i =

(
lci : ce(i) = `Y 0

l�ci : ce(i) = `N 0

where numc is the number of conditions in the TDT and ce(i) is the condition

entry value at the ith condition row for this rule. The action part of a rule,

�i, is given as
Q

i=numa

ae(i)6=000;i=1 lai, where numa is the number of actions and

ae(i) is the action entry value at the ith action row.

A rule is a tuple, denoted by ri = (Ki : �i), which can be expressed

as a product or cube of corresponding action and condition literals. For

a given TDT, T , we de�ne an algebraic expression, ET , that consists of a

disjunction of cubes corresponding to the rules in T . Therefore, a TDT can

be represented as,

ET =
ncolumnX

i=1

ri =
ncolumnX

i=1

(Ki : �i)

where ncolumn is the number of columns in ET . For simplicity, we use `c'

and `a' instead of lc and la in the following. A TDT expression is comprised

of the sum of products of the literals. A cube is a conjunction of some or

all of the literals lc and la. A minterm is a cube in which every literal in

the TDT expression appears. In a TDT, a cube is represented by a rule or
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column comprising of the condition part and the action part in the control-

ow table. A column, col1, in a TDT is said to dominate another column,

col2, if for every row in col1, col2 has the same entry in that row as col1. As

a coding style, the conditionals in the dominated columns are nested inside

conditionals in dominant columns.

The TDT expressions for the two TDTs in the example shown in Figure

4 are given as:

Tdt1 = C1
�C2a1 + C1C2

�C3a1a2 + C1C2C3a1a2a3

Tdt2 = C1a1 + C1C2a2 + C1C2C3a3

Expression Tdt1 uses 8 condition literals and 6 action literals, whereas ex-

pression Tdt2 uses 6 condition literals and 3 action literals. Fewer literals

coupled with nesting of condition checks leads to a shorter code sequence

from Tdt2. In general, TDTs are of two types:

� Disjoint Rule TDT (DR-TDT) : In a DR-TDT, the condition clauses

are disjoint. Each condition clause activates only one set of actions.

There exists no assignments of condition variables where two rules are

activated simulataneously.

� Minimum Condition TDT (MC-TDT) : MC-TDT uses the min-

imum number of conditions to activate a rule. This corresponds to

minimum number of condition literals in each rule. For instance, Tdt2
corresponds to the minimum 2-level sum of products representation.

Each action is enabled by a minimum number of conditions.

To improve quality of generated code, TDT optimizations must attempt to

generate TDTs which use fewer action and condition literals and maximally

order the columns according to dominance relation. The number of action

literals is minimized throgh a transformation called Action Sharing that at-

tempts to minimize the number of entries in the action table. This transfor-

mation is discussed in [17]. Condition literals are minimized by making each

product term in the two-level algebraic expression prime. A prime cover is

generated using two-level logic minimizer followed by column ordering based

on dominance relation. The overall ow for software synthesis is shown in

Figure 6. Code restructuring has been discussed in [18]. Action sharing cor-
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Behavioral Description

Code Restructuring Software Synthesis

High Level Code

Action Sharing

Algebraic Minimization

Scheduling

Behavioral TDT

Figure 6: Software Synthesis Methodology

responds to the identi�cation of identical actions in the TDT and subsequent

merging of the corresponding action rows. Merging is valid only when the

serialization relations among actions are maintained.

4 Implementation & Results

We have implemented the TDT based modeling system in C++ using the

hardware description language (hdl) VHDL [19] as the front-end system spec-

i�cation language and the output language as well. The present system per-

forms all the TDT optimizations, provides a user interface for speci�cation

of assertions for don't care analysis, performs TDT attening and kernel ex-

traction and software synthesis.

Benchmark Conditions checked
DR-TDT optimized TDT

prawn cpu 117 52
arm counter 175 47
tra�c light 46 29
kalman �lter 89 26

Table 1: Num. of conditionals in generated code

In Table 1, we compare the software generated using the disjoint TDTs

versus optimized TDTs. The comparison is based on the number of con-

ditionals checked. The benchmarks are the prawn cpu from [19], the arm

counter, the tra�c light controller and the Kalman �lter [20]. The optimized

TDTs generate 40-70 % fewer conditional checks than the DR-TDTs for all

the benchmarks considered.
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Work is ongoing on characterization of the e�ect of these optimizations

on the �nal assembly code. Future reports will include results to assess the

impact of TDT generated code on �nal code size.
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A Implementation Details

The TDT system presented here has been developed in C++ with VHDL

as the front-end language. All the previous work on optimization of TDTs

including all the table operations and attening and merging of a TDT hier-

archy have been implemented. In addition, a assertion based sub-system for

specifying don't care information has also been implemented. A TDT inter-

mediate format has been developed in which the TDT model can be output.

The system can also parse the TDT intermediate format and re-create the

TDT model. A \pretty print" function has also been developed to print out

the TDT model in a way which makes it more amenable to reading and un-

derstanding the model. As mentioned in the main body of the paper, the

TDT model can be used to generate code in VHDL. Action Sharing has been

implemented such that actions can be shared within a attened TDT. The

TDT expressions can also be extracted and then, from them the kernels can

be extracted. A TDT model simulator is currently being developed.

A.1 Assertion Subsytem

The assertion subsystem allows assertions to be given on the conditions in

the TDT model. For this, all the conditions in the TDTs are �rst assigned a

unique label in the format CfTDTNumg CondNum. For example, the second

condition in TDT number ten, would have the label, C10 2. Assertions can

then be speci�ed by a command with the format,

assert fBoolean Combination of Conditionsg = zero or one

For example, an assertion may look like,

assert not(C10 1) AND not(C10 2) = 0

The assertions are then used to create don't care columns in the TDT

model which are used to optimize the TDTs.

A.2 Kernel Extraction

Kernel extraction starts with determining the TDT expression followed by

extracting the kernels for each condition literal. The algorithm for kernel
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extraction is as given in [18]. An example is given below:

Tdt 8 =

c8_0 c8_1 a8_0 a8_1 +

c8_0 c8_1' a8_2 a8_3 a8_4

Extracting Kernels of the Tdt Expressions

Extracting Kernels for Tdt num 8

Printing Kernels

Kernel K0 =

c8_0 c8_1 a8_0 a8_1

+ c8_0 c8_1' a8_2 a8_3 a8_4

Kernel K1 =

c8_1 a8_0 a8_1

+ c8_1' a8_2 a8_3 a8_4

extractedLiterals =

c8_0

A.3 Obtaining the Distribution

A distribution of the TDT Based Optimization System (Topts) is available

on the internet at http://www.ics.uci.edu/�iesag/Topts.

The current release of the Topts distribution is Version 0.1. It has been

developed on a Sun Solaris platform using g++ as the compiler. How-

ever, except for the bison and ex �les, the rest of the distribution can be

compiled under the Microsoft Visual C++ environment. The bison and

ex �les can be compiled by installing their window's port available at

http://www.cygnus.com. The installation can be installed by untaring and

issuing a \make" command in the src directory. The distribution requires

\g++", \bison" and \ex". The executable, Topts, resides in the directory

bin after compilation.

The software is invoked by issuing the command Topts. It has an inter-

active command-line help. The following commands are supported:

� Help - Prints the help message on given command

Syntax: 'help [command|all]'
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� Quit - Quits from the FrontEnd system

Syntax: 'quit'

� EnterAssert - Enters the external Assertions sub system

Syntax: 'enter assert or assert [optional script �leName]'

� ListAssert - Lists the external Assertions

Syntax: 'list assert'

� ResetAssert - Clears the entered external Assertions

Syntax: 'reset assert'

� Flattens the Tdt hierarchy by one level by default. Flattens completely,

if the \all" directive is given

Syntax: 'atten [all]'

� MergeAll - Carry out all the merging transfromations

Syntax: 'merge all'

� Optimize Tdt - Perform column/row reductions

Syntax: 'op tdt '

� Merge Actions - Extracts Action Sharing and Merges the actions in the

Tdts

Syntax: 'merge acts'

� Finds the Same Actions - �nds all the same actions in the Tdts

Syntax: '�nd same acts, assign ids'

� Prints the Tdt Expressions of all the Tdts or the speci�ed Tdt Num

Syntax: 'print tdtExpr [optional tdt num]'

� Extracts the Kernel from the Tdt Expressions of all the Tdts or the

speci�ed Tdt Num

Syntax: 'extract kernel, ext kern [optional tdt num]'

� Print Tdt - Prints the TDT intermediate format

Syntax: 'printtdt'
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� Pretty Print Tdt - Prints the TDT intermediate format in a readable

format - although not parsable

Syntax: 'prettyprinttdt'

� ReadVhdl - Reads Vhdl from a �le

Syntax: 'readvhdl, read, r [�lename]'

� PrintVhdl - Prints Vhdl of the current Design

Syntax: 'printvhdl'

� PrintConditions - Prints the conditions in all the Tdts of the current

Design

Syntax: 'printconds, printconditions'

� ReadSimInp - Reads Simulator Input from a �le and run simulation

Syntax: 'readsiminp, runsim [�lename]'

Note: This is not fully implemented in this release

� McToDrTdt - Converts the Minimum Condition Tdt to Disjoint Rule

Tdt

Syntax: 'mctodr'
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