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ABSTRACT
Distributed simulation techniques are commonly used
to improve the speed and scalability of wireless sensor
network simulators. However, accurate simulations of
dynamic interactions of sensor network applications in-
cur large synchronization overheads and severely limit
the performance of existing distributed simulators. In
this paper, we present two novel techniques that signif-
icantly reduce such overheads by minimizing the num-
ber of sensor node synchronizations during simulations.
These techniques work by exploiting radio and MAC
specific characteristics without reducing simulation ac-
curacy. In addition, we present a new probing mecha-
nism that makes it possible to exploit any potential ap-
plication specific characteristics for synchronization re-
ductions. We implement and evaluate these techniques
in a cycle accurate distributed simulation framework
that we developed based on Avrora. In our experiments,
the radio-level technique achieves a speedup of 2 to 3
times in simulating 1-hop networks with 32 to 256 nodes.
With default backoffs, the MAC-level technique achieves
a speedup of 1.1 to 1.3 times in the best case scenarios
of simulating 32 and 64 nodes. In our multi-hop flood-
ing tests, together they achieve a speedup of 1.5 to 1.8
times in simulating networks with 36 to 144 nodes. The
experiments also demonstrate that the speedups can be
significantly larger as the techniques scale with the num-
ber of processors and radio-off/MAC-backoff time.

Categories and Subject Descriptors
I.6.7 [SIMULATION AND MODELING]: Simula-
tion Support Systems—Sensor Networks
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1. INTRODUCTION
Wireless sensor network (WSN) simulators are impor-

tant in developing and debugging WSN applications.
By running sensor network programs on top of simu-
lated sensor nodes inside simulated environments, the
states and interactions of sensor network programs can
be inspected and studied easily and repeatedly. In addi-
tion, the properties of the simulated entities (simulation
models) such as the locations of sensor nodes and the
inputs to the sensor nodes can be readily changed before
or during simulations. By choosing appropriate simula-
tion models, one can build an entire WSN application,
including the underlying operating system, using simu-
lations.

There are two key requirements to WSN simulators:
fidelity and speed. Fidelity reflects bit and temporal ac-
curacy of events and actions. High fidelity often leads
to low simulation speed [10], defined as the ratio of sim-
ulation time to wallclock time. Simulation time is the
virtual clock time in the simulated models [2] while wall-
clock time corresponds to the actual physical time used
in running the simulation program. A simulation speed
of 1 indicates that the simulated sensor nodes advance
at the same rate as real sensor nodes and this type of
simulation is called real time simulation. In general, real
time speed is required to use simulations for interactive
tasks such as debugging and testing.

The fidelity of WSN simulators is rapidly increasing
with the use of high fidelity simulation models [13, 18,
17, 11]. However, most of these improvements of fidelity
are largely achieved at the cost of decreased simulation
speed and scalability because significant computational
resources are required to execute high fidelity simulation
models. For example, even with TOSSIM [13], a pop-
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Figure 1: The progress of simulating in paral-
lel two nodes that are in direct communication
range of each other

ular and one of the fastest sequential WSN simulators,
one can only simulate, without cycle accuracy, about
32 nodes in real time on fast computers [13, 20]. As
alternatives, parallel and distributed WSN simulators
[20, 21, 3] leverage the combined computing resources of
multiple processors/cores on the same computer and on
a network of computers, respectively. They can signifi-
cantly improve simulation speed and scalability because
sensor nodes may be simulated in parallel on different
processors or computers. However, when sensor nodes
are simulated in parallel, their simulation speeds can
vary [20]. This is either caused by the differences in
sensor node programs, sensor node inputs and values of
random variables or due to the differences in simulation
environments, such as different processor speeds and op-
erating system scheduling policies. Since different nodes
may get simulated at different speeds, simulated nodes
often need to synchronize with each other to preserve
causality of events and to ensure correct simulation re-
sults.

Synchronization of two sensor nodes is illustrated in
Figure 1 which shows the progress of simulating in par-
allel two sensor nodes that are within direct communica-
tion range of each other. After starting the simulation
for TW0 seconds of wallclock time, Node A advances
to simulation time TS2 while Node B only advances to
TS1. The speeds of simulating the two nodes could be
different for any of the reasons described earlier. At
TS2, Node A is supposed to read the wireless channel
and continue its execution along different paths based
on whether there are active wireless transmissions or
not. However, at TW0, Node A may not be simulated
any further than TS2 because Node A does not know, at
TW0, whether Node B is going to transmit at TS2 or not
(since TS1 < TS2). In other words, at TS2, the input of
Node A depends on the output of Node B.

To maintain such dependencies, simulated sensor nodes
often need to synchronize with each other during simula-
tions. There are two general approaches to handle syn-
chronizations: conservative [2] or optimistic [9]. Con-
servative synchronization requires that Node A waits at
TS2 until the simulation time of Node B reaches TS2.
The optimistic approach, on the other hand, would al-
low Node A to advance assuming there will be no trans-
missions from Node B at TS2. However, the entire sim-
ulation state of Node A at TS2 has to be saved. If Node
A later detects that Node B actually transmits to Node
A at TS2, it can correct the mistake by rolling back
to the saved state and start again. To the best of our
knowledge, almost all distributed WSN simulators are
based on the conservative approach as it is simpler to
implement and has a smaller memory footprint.

Synchronizations bring significant overheads to dis-
tributed simulations. With the conservative approach,
the overheads can be divided into management over-
heads and communication overheads. Management over-
heads come from managing the threads or processes that
simulate sensor nodes. For example, to maximize paral-
lel use of computational resources, the thread or process
simulating Node A in Figure 1 needs to be suspended
while waiting for Node B so another thread or process
simulating another node can be swapped in for execu-
tion. Suspended nodes also need to be swapped back in
for simulation later on. These usually involve context
switches and large numbers of them would significantly
reduce simulation speed and scalability. Communica-
tion overheads arise because nodes need to communi-
cate their progresses to each other during simulations.
For example, in Figure 1, Node B must notify Node A
after it advances past TS2 so that Node A can continue.
Communicating across processes or threads is generally
expensive. In the case where nodes are simulated on dif-
ferent computers, the communication overheads could
be very high as messages have to be sent across slow
networks.

The performance gains of existing distributed WSN
simulators are often compromised by the rising over-
heads due to inter-node synchronizations. For example,
with Avrora [20], a cycle accurate parallel WSN sim-
ulator, it is faster to simulate 32 nodes with 2 proces-
sors than using all 8 processors of a parallel computer
in some of our tests (Figures 4 and 11) because of large
overheads in synchronizing threads (1 node/thread) across
processors. In the case of DiSenS [21], a cycle accurate
distributed WSN simulator, if all nodes are within com-
munication range, DiSenS needs 16 computers to simu-
late 16 nodes in real time despite the fact that each of
the computers can simulate 8 nodes in real time [21].
This sub-linear performance in DiSenS is due to the
large communication overheads in synchronizing nodes
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that are simulated on different computers.
In this paper, we propose two novel techniques that

greatly reduce synchronization overheads by cutting the
number of synchronizations. The techniques work by
exploiting radio and MAC specific characteristics with-
out reducing simulation fidelity. They are effective even
when node processors or radios are active and can sig-
nificantly improve simulation speed and scalability. To
support the MAC-level technique, we develop a new
probing mechanism that tracks the internal states of any
WSN applications during simulations for synchroniza-
tion reductions. We validate the proposed techniques by
their implementations in PolarLite, a cycle accurate dis-
tributed simulation framework that builds upon Avrora
and serves as the underlying simulation engine [10].

We discuss related work in Section 2. The speedup
techniques are described in Section 3 and their imple-
mentations in Section 4. In Section 5 we present the
results of evaluating the techniques followed by the con-
clusion and future work in Section 6.

2. RELATED WORK
Previous work in improving the speed and scalabil-

ity of WSN simulators can be broadly divided into two
categories. The first category focuses on reducing the
computational demands of individual simulation mod-
els without significantly reducing fidelity. For example,
it is very computationally expensive to emulate an ac-
tual sensor node processor in a simulation model for
cycle accurate simulations [17]. To reduce the large
computational needs, TimeTossim [11] automatically in-
struments applications at source code level with cycle
counts and compiles the instrumented code into the na-
tive instructions of simulation computers for fast ex-
ecutions. This significantly increases simulation speed
while achieving a cycle accuracy of up to 99%. However,
maintaining cycle counts also slows down TimeTossim
to about 1/10 the speed of TOSSIM [13] which Time-
Tossim is based on. Our work makes this type of effort
scalable on multiple processors/cores.

The second category of work focuses on reducing over-
heads in parallel and distributed simulations. DiSenS
reduces the overheads of synchronizing nodes across com-
puters by using the sensor network topology information
to partition nodes into groups that do not communicate
frequently and simulating each group on a separate com-
puter [21]. However, this technique only works well if
most of the nodes are not within direct communication
range as described in the paper. In [10], we describe a
technique that uses sensor node sleep time to reduce the
number of synchronizations. As demonstrated in the pa-
per, using the node-sleep-time-based technique can sig-
nificantly increase speed and scalability of distributed
WSN simulators. However, the technique is only able

to exploit for speedup the time when both the processor
and the radio of a sensor node are off. This is because
it is not possible to predict the exact radio wakeup time
when the processor is running. As a result, we can not
apply the node-sleep-time-based technique if the radio
is on or if the sensor node processor is kept alive by
tasks such as reading and monitoring sensor inputs.

The techniques we propose in this paper are new and
are orthogonal to the previous techniques. They are not
bounded by the number of neighboring nodes and are
effective even when the processor or the radio of a node
is active. While the techniques are developed specifi-
cally for simulating WSNs, they can also be applied to
any general distributed network simulators such as NS-
3 [7] for improved performance in simulating wireless
networks.

There is a large body of work on improving the speed
and scalability of distributed discrete event driven sim-
ulators in general. Among them, exploiting lookahead
time is a commonly used conservative approach [5, 6,
14]. Our techniques belong to this category in the sense
that we also improve speed and scalability by increasing
the lookahead time. However, our techniques are fun-
damentally different as we use application specific char-
acteristics in a different context to increase lookahead
time.

3. REDUCING SYNCHRONIZATIONS IN DIS-
TRIBUTED SIMULATIONS OF WSNS

Sensor node synchronizations are required for enforc-
ing dependencies between simulated sensor nodes due
to their interactions over wireless channels. Our ap-
proach to increase simulation speed and scalability by
reducing synchronizations is based on identifying and
exploiting parallelism between nodes according to their
communication capabilities. A node can“lookahead” for
a minimum guaranteed interval to identify periods when
no transmitting or receiving events in a discrete event
driven simulator would occur. Such a lookahead is of-
ten closely tied to the event scheduling algorithm used
in the simulators. Based on the distributed scheduling
algorithm in [10], we present two techniques for reducing
the number of synchronization events at the radio-level
or at the MAC-level.

3.1 Radio-level Speedup Technique
Our radio-level speedup technique exploits the radio

off time when a sensor node radio is duty cycled. Radio-
level duty cycling works by selectively turning radios on
and off. Since radios are one of the most power consum-
ing components of sensor nodes, radio-level duty cycling
is ubiquitously used in WSNs to reduce energy consump-
tion and extend working life of energy constrained sen-
sor nodes. Due to its wide applications and the complex

171



tradeoffs in energy savings and communication over-
heads, radio-level duty cycling is commonly built into
energy efficient WSN MACs such as S-MAC [22] and
B-MAC [15].

Our radio-level speedup technique is illustrated in Fig-
ure 2 which shows the progress of simulating two sensor
nodes in parallel. In this simulation, Node B turns its
radio off at time TS1 and puts it back on at time TSx.
With existing distributed simulators, after running the
simulation for TW0 seconds of wallclock time, Node A
has to wait at TS3 for Node B to catch up from TS2, de-
spite the fact that node B will not transmit any packets
at TS3. Ideally, we can avoid this unnecessary synchro-
nization by having Node B notify node A at time TS1

that its radio is off until TSx. However, this will not
work as it is not possible for Node B to predict the
exact radio wakeup time TSx at TS1. This is because
while the radio is off at TS1, the sensor node processor
is still running and it can turn the radio back on at any
time based on current states, application logics and sen-
sor readings. In other words, it is just not possible for
Node B to predict when the radio will be turned on in
the future.

Instead of predicting the exact radio wakeup time,
our radio-level speedup technique exploits the radio off
period by calculating the earliest possible communica-
tion time, TEarliestCom. TEarliestCom is the earliest time
that a turned off radio can be used to send or receive
data over wireless channels and can be calculated based
on TAct, the amount of time to fully activate a turned
off radio. A turned off radio can not be activated in-
stantly for sending or receiving data. It takes time for
the radio to be initialized and become fully functional
[16]. For example, the CC1000 radio of Mica2 nodes [4]
needs 2.45ms to be activated and the CC2420 radio of
Telos nodes [16] needs about 1.66ms without counting
the SPI acquisition time [12]. The exact delays in terms
of numbers of clock cycles are hard coded into WSN
MAC protocols and can be easily identified in the source
code. For example, in TinyOS 1.1 [8, 19], B-MAC waits
for a total of 34300 clock cycles for the CC1000 radio
of MICA2 by calling the TOSH_uwait function. While
the delays seem to be small, they are significantly larger
than typical lookahead times in simulating WSNs. For
example, it is about 11 times larger than the 3072 clock
cycle lookahead time in simulating Mica2 nodes [20, 10].
As mentioned, lookahead time is defined as the maxi-
mum amount of simulation time that a simulated sen-
sor node can advance freely without synchronizing with
other simulated sensor nodes [10].

Our radio-level speedup technique works by tracking
when sensor node radios are turned on and off. When we
detect that a sensor node radio is turned off, we imme-
diately send its TEarliestCom in a clock synchronization
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Figure 2: The progress of simulating two nodes
that are in direct communication range with the
radio-level speedup technique

message to all neighboring nodes and then repeatedly
send the latest TEarliestCom every TAct time until the
radio is detected to be turned on. TEarliestCom can be
calculated as the sum of current simulation time and
TAct. As a result, neighboring nodes no longer need
to synchronize with the radio off node until the latest
TEarliestCom. For example, as shown in Figure 2, when
we detect that Node B turns its radio off at TS1, we
immediately send its TEarliestCom to Node A and re-
peat that every TAct time which is fixed according to
the radio of Node B. The clock synchronization mes-
sages are shown as arrows from Node B to Node A in
the figure. Upon receiving the second TEarliestCom, the
lookahead of node A increases to a time beyond TS3 and
therefore it no longer needs to wait at TS3 after TW0

seconds of simulation. In other words, Node A knows
before TW0 that Node B will not be able to transmit
any packet at TS3. Since the increase of lookahead time
(TAct − OldLookAheadT ime) may just be a very small
fraction of the total radio off period, it is critical to
repeatedly send TEarliestCom every TAct time to fully
exploit the entire radio off period.

The radio-level speedup technique also reduces the
number of clock synchronizations. In distributed simu-
lations, clock synchronization messages are used to send
the simulation time of a node to all its neighboring
nodes so causality can be maintained and suspended
waiting nodes can be revived. To maximize parallelism
in simulations, a node needs to send 1 clock synchroniza-
tion message for every lookahead time of its neighbor-
ing nodes [20, 21, 10]. Since our radio-level speedup
technique increases the lookahead times of neighbor-
ing nodes, the number of clock synchronizations can be
greatly reduced. For example, in the case of simulat-
ing Mica2 nodes, one TEarliestCom message can increase
lookahead time by a factor of 11 and therefore eliminates
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10 clock synchronization messages.

3.2 MAC-level Speedup Technique
While the radio-level speedup technique takes advan-

tage of physical delays in WSN radios, our MAC-level
speedup technique exploits the random backoff behav-
iors of WSN MACs. Almost all WSN MACs need to per-
form random backoffs to avoid concurrent transmissions
[22, 15]. For example, before transmitting a packet, B-
MAC would first perform an initial backoff. If the chan-
nel is not clear after the initial backoff, B-MAC needs to
repeatedly perform congestion backoffs until the chan-
nel is clear. Because a MAC will not transmit any data
during backoff periods, we are able to exploit the back-
off times for speedups. Although the backoff times are
random and MAC specific, they are usually a lot longer
than typical lookahead times in simulating WSNs. For
example, in the case of B-MAC, the default initial back-
off is 1 to 32 times longer than the 3072 clock cycle
lookahead time in simulating Mica2 nodes. The default
congestion backoff is 1 to 16 times longer in B-MAC.

Our MAC-level speedup technique is illustrated in
Figure 3 which is similar to Figure 2 except Node B
enters into a backoff period from TS1 to TS4. The MAC-
level speedup technique works by detecting the start and
the duration of a backoff period. When the start of a
backoff period is identified, the end time of the backoff
period is first calculated based on the duration of the
period and then sent to the neighboring nodes. This
effectively increases the lookahead times of neighbor-
ing nodes and helps to eliminate unnecessary synchro-
nizations. For example, in order to avoid the unnec-
essary synchronization of Node A at TS3 after running
the simulation for TW0 seconds of wallclock time, our
MAC-level speedup technique first detects at TS1 the
start of Node B’s backoff period as well as the duration
of the backoff period. Then we compute the end time
of the backoff period and send that in a clock synchro-
nization message to Node A. Once Node A knows that
Node B will not transmit until TS4, it no longer needs
to wait at TS3. Similar to the radio-level speedup tech-
nique, the MAC-level technique also reduces the num-
ber of clock synchronizations, which provides additional
speedup. We discuss how to detect the start and the du-
ration of a random backoff period in Section 4.

The MAC-level speedup technique is a good comple-
ment to the radio-level technique as WSNs usually have
very bursty traffic loads. Nodes in a WSN usually do
not communicate frequently and can duty cycle their
radios extensively until certain triggering events occur.
Once triggered by those events, nodes need to actively
communicate and interact with each other to accom-
plish certain tasks. Our MAC-level technique is most
effective when wireless channels are busy.
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TS0 TS3TS2

Dependency

MAC Backoff

TS1

ClockSync

TS5TS4

Read Channel

TW0

Figure 3: The progress of simulating two nodes
that are in direct communication range with the
MAC-level speedup technique

4. IMPLEMENTATION
The proposed speedup techniques are implemented

in PolarLite, a distributed simulation framework that
we developed based on Avrora [10]. PolarLite provides
the same level of cycle accurate simulation as Avrora
but uses a distributed synchronization engine instead
of Avrora’s centralized one. This makes it possible to
implement and evaluate our speedup techniques in a dis-
tributed simulation environment. The synchronization
engine of PolarLite is based on the distributed synchro-
nization algorithm described in [10]. With this algo-
rithm, nodes can be synchronized separately according
to their own lookahead times. In other words, if a node
is not accessing the wireless channel, it only needs to
communicate to neighboring nodes its simulation time
and does not need to wait for any other nodes. Some
minor code optimizations are made to the PolarLite syn-
chronization engine in [10] and the speedup techniques
are implemented on the newer version. As a result, we
evaluate the speedup techniques by comparing with the
newer version in Section 5. As with Avrora, PolarLite
allocates one thread for each simulated node and relies
on the Java virtual machine (JVM) to assign runnable
threads to any available processors on an SMP com-
puter.

To implement the radio-level speedup technique, we
need to detect when radios are turned on and off. In
discrete event driven simulations, the changes of radio
states are triggered by events and can be tracked. For
example, in our framework, we detect the radio on/off
time by tracking the IO events that access the registers
of simulated radios.

Detecting MAC backoff times and durations for the
MAC-level speedup technique are considerately more
difficult. The backoffs are MAC and application spe-
cific and generally do not correlate to any unique events
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or actions that can be easily tracked. In addition, the
backoff durations are completely random. One possible
solution to this problem is to insert special code into
the source code of an application that is to be simu-
lated. These special pieces of code are compiled into
the application and used to report to the simulator the
MAC backoff times and durations during simulations.
However, this technique does not work for cycle accu-
rate simulators like ours.

Cycle accurate sensor network simulators [17, 20, 21,
10] offer the highest level of fidelity among all types
of sensor network simulators. They provide simula-
tion models that emulate the functions of major hard-
ware components of a sensor node, mainly the processor.
Therefore, they take as inputs the same binary code (im-
ages) that are executed by real sensor nodes. To detect
backoff times and durations without changing the source
code of the applications under simulation, we develop a
generic probing mechanism based on pattern matching
to expose the internal states of sensor network applica-
tions during simulations.

Our probing mechanism works by first using patterns
to pinpoint from compiled applications the machine in-
structions that represent events of interest during the
start of a simulation. The identified instructions are
then replaced by corresponding “hook” instructions to
report the internal states of the applications, such as
the backoff durations, to a simulator during simulations.
Hook instructions are artificial instructions that behave
exactly the same as the original instructions they re-
place except they will pass to a simulator the memory
locations or registers accessed by the original instruc-
tions during simulations. The values stored in those
locations are the internal states of the applications that
correspond to the events of interest. Since an instruc-
tion may access multiple locations, we associate with
each pattern a list that indicates the operands of inter-
est based on their order in the instruction. Therefore,
an instruction may be translated into different hook in-
structions according to the list. To maintain cycle accu-
racy, our simulator ensures that the hook instructions
consume the same number of clock cycles as the original
instructions.

Our current implementation of the probing mecha-
nism is largely based on existing constructs from Avrora.
In Avrora, a compiled program (object file) is disas-
sembled first before simulation and each disassembled
instruction is loaded into a separate instruction object
(Java object). Once an instruction of interest is iden-
tified with pattern matching, we encapsulate the corre-
sponding instruction object in a new hook instruction
object and attach to the hook instruction object a probe
object created specifically for the pattern. When exe-
cuted, the hook instruction invokes the original instruc-

tion first and then calls the probe attached to it. It
is the specific probe that turns a regular hook instruc-
tion into a unique hook instruction and reports values
of interest to a simulator during simulations.

We do not use addresses to identify instructions of
interest because addresses tend to vary across compila-
tions after source code changes, even if the changes are
at places not related to the instructions. With pattern
matching, we only need to create a set of patterns once
if the corresponding source code does not change. For
example, if an application is written with TinyOS, the
instructions that assign backoff durations to B-MAC are
part of the OS, regardless of whether the backoffs are
calculated by default functions in the OS or user sup-
plied functions in the application. Therefore, we only
need to create a set of patterns once for each version
of TinyOS to track the backoff times in B-MAC during
simulations.

We use regular expressions for pattern matching. To
uniquely identify an instruction, we need to match ad-
ditional instructions before or after that instruction as
well. In the current implementation, the backoff match-
ing process for B-MAC is hard coded in our simulator.
To match the initial backoff, we first locate the block of
code that corresponds to the send function in a disas-
sembled program by using the function name (symbol
name). The send function is a part of TinyOS and is
where the initial backoff calculation function is invoked.
Then we match within this code block a continuous se-
quence of instructions (sts,sts,sts,lds,out,and,brne,rjmp)
which are instructions that immediately follow the ini-
tial backoff calculation code. Note that we only need
to match the names of the instructions in the sequence.
Once this pattern is found, the value for initial back-
off can be tracked via the first 2 sts instructions in the
matched code. Similarly, we can identify the instruc-
tions that store congestion backoffs. For simplicity, we
consider that MAC backoffs start at the times that the
hook instructions report the backoff durations. It is safe
to do so as no data will be sent from this point on until
the end of the backoff periods.

Note that we can not simply use the symbol names
of the backoff calculation functions for pattern match-
ing because these functions are in-lined by the com-
piler. However, there are always some caller functions
in TinyOS, such as the send, that are not in-lined due to
space and other constrains. Based on these functions,
we can create patterns that remain the same as long as
the functions do not change.

5. EVALUATION
We conduct a series of experiments to evaluate the

performance of our speedup techniques. All experiments
are carried out on an SMP server running Linux 2.6.24.
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Table 1: Radio off periods under different duty
cycling modes of B-MAC

Duty cycling Mode Radio off Time (ms)

0 0
1 20

2 85

3 135
4 185

The server features a total of 8 cores on 2 Intel Xeon
3.0GHz CPUs and 16GBytes of RAM. Sun’s Java 1.6.0
is used to run all experiments. Simulation speed is cal-
culated using Equation (1) according to the definition
in Section 1. Note that the numerator of Equation (1)
is the total simulation time in units of clock cycles and
consequently the calculated speed is in units of Hz.

Speed =
total number of simulated clock cycles

(execution time) × (number of nodes)
(1)

All of the experiments are based on the CountSend
(sender) and CountReceive (receiver) programs from the
TinyOS 1.1 distribution. They are similar in nature to
the programs used by other WSN simulators in evalu-
ating their performance [13, 20, 21]. CountSend broad-
casts at a fixed interval the value of a continuously in-
creasing counter. CountReceive simply listens for mes-
sages sent by CountSend and displays the last received
value on LEDs. The programs are executed on sim-
ulated Mica2 nodes [4] and the starting time of each
node is randomly selected between 0 and 1 second of
simulation time to avoid any artificial time locks. All
simulations are run for 300 seconds of simulation time
and for each experiment we take average of three runs
as the results.

5.1 Performance of Radio-level Technique
For experiments in this section, we modify the sender

and receiver programs slightly to enable B-MAC’s built-
in radio-level duty cycling feature. This can be done
by calling the SetListeningMode and SetTransmitMode
functions of TinyOS 1.1 at start. B-MAC supports a
total of 7 radio-level duty cycling modes in TinyOS 1.1
and the 5 modes used in our experiments are shown
in Table 1. Once enabled, B-MAC turns a radio off
periodically for a duration corresponding to the duty
cycling mode. The radio is turned back on either when
there are data to transmit or a radio off period ends.
The radio is turned off again once there are no pending
packets to transmit and the channel is clear for a fixed
period of time. In the case of TinyOS 1.1 and Mica2
nodes, the channel clear time is the amount of time to
transmit 8 bytes over the radio [8, 19].

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2 4 6 8

Number of processors

S
im

u
la

tio
n

 S
p

ee
d

 (M
H

z)

PolarLite with radio-level
speedup (1 packet / 1 s)

PolarLite with radio-level
speedup (1 packet / 5 s)

PolarLite with radio-level
speedup (1 packet / 10 s)

PolarLite with radio-level
speedup (no
transmissions)
Avrora (1 packet / 1 s)

Avrora (1 packet / 5 s)

Avrora (1 packet / 10 s)

Avrora (no transmissions)

Figure 4: Speed of simulating with Avrora and
PolarLite running the radio-level speedup (1
sender 31 receivers, mode 3)

5.1.1 Speed and Scalability with respect to the num-
ber of processors

Our first set of experiments evaluates the performance
of the radio-level speedup technique over different num-
bers of processors, or cores in this case. For these exper-
iments, we simulate a WSN of 32 nodes that are within
direct communication range using 2 to 8 processors. The
32 nodes are set up in such a way that one node is con-
figured as a sender and the rest as receivers. Since all
nodes are within direct communication range, any one
of the nodes can be chosen as the sender. The frequency
that the sender transmits packets is varied for different
experiments. The radio-level duty cycling modes of all
nodes are set to 3. For comparisons, we conduct the
same experiments using Avrora, PolarLite without any
speedups and PolarLite with the radio-level speedup.

As a baseline, Figure 4 compares the speeds of simu-
lating with Avrora and PolarLite running the radio-level
speedup technique. We can see that PolarLite running
the radio-level speedup technique is considerably faster
than Avrora (up to 544% or 6.44 times) and scales with
the number of processors. In contrast, the speeds of
simulating with Avrora decrease with increasing num-
ber of processors in this set of experiments due to larger
synchronization overheads1.

We can also see in Figure 4 that the speeds of simulat-
ing with our radio-level speedup technique increase with
transmission intervals. This is because our radio-level
speedup technique is based on exploiting radio off time
and large transmission intervals increase that. Note
that at a given radio-level duty cycling mode, increasing
the transmission intervals will also increase the radio off
time of the receivers because radios have to be left on

1Our results are different from results of similar expriments
in [20] as our experiments use faster 3.0GHz CPUs, com-
pared to 900MHz ones of theirs.
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chronizations using the radio-level speedup
technique in PolarLite (1 sender 31 re-
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Figure 6: Speed of simulating with and
without the radio-level speedup technique
in PolarLite (1 sender 31 receivers, mode
3)

when receiving packets. However, as shown in Figure 4,
the percentage increases of simulation speed with the
radio-level speedup technique decrease quickly with in-
creasing transmission intervals. This is due to the fact
that when transmission intervals increase, the radio off
time is determined more by the radio-level duty cycling
mode than by the transmission intervals.

Figure 5 shows the percentage reductions of synchro-
nizations based on numbers collected by running with
and without the radio-level speedup technique in Polar-
Lite. For accurate evaluations, we only show synchro-
nization reductions within our PolarLite framework be-
cause PolarLite and Avrora are based on different syn-
chronization algorithms and our speedup techniques are
only implemented in PolarLite.

As shown in Figure 5, the percentage reductions of

synchronizations are significant in all cases and actually
grow very slowly with the number of processors. This is
because more nodes can be simulated in parallel when
the number of processors increases. As a result, our
radio-level speedup technique has more radio sleep time
to exploit at a given time. Although the reduction num-
bers are very close with respect to the number of pro-
cessors, simulation speeds increase significantly with the
number of processors in Figure 6 which shows the speed
of simulating with and without the radio-level speedup
technique in PolarLite using different number of proces-
sors. The reason is that per-synchronization overheads
increase with the number of processors due to high inter-
processor communication overheads.

As shown in Figure 6, using the radio-level speedup
technique increases simulation speeds significantly (up
to 111%) in PolarLite. Comparing with Figure 4, we
observe that PolarLite alone without any speedup tech-
niques is faster than Avrora in these experiments. This
is because our distributed synchronization algorithm (Sec-
tion 4) can provide more parallelism by allowing nodes
to be synchronized separately according to their own
lookahead times. Avrora on the other hand synchronizes
all nodes together at a fixed time interval. However,
even using the distributed synchronization algorithm,
PolarLite alone does not scale well with the number of
processors as shown in Figure 6. Using the radio-level
speedup technique significantly improves scalability.

5.1.2 Speed and Scalability with respect to network
sizes and radio off times

We also evaluate the radio-level speedup technique
over WSNs of different sizes and radio sleep durations
(radio-level duty cycling modes). Similar to the setups
in Section 5.1.1, nodes in these experiments are within
direct communication range and only one node is con-
figured as the sender. The sender transmits a packet
every 10 seconds to the rest of receiver nodes. Figures 7,
8 and 9 show the results of simulating with or without
the radio-level speedup technique in PolarLite using all
8 processors.

Figure 7 shows significant percentage reductions of
synchronizations using the radio-level speedup technique.
There are no reductions when the radio is constantly on
because the radio-level speedup technique works by ex-
ploiting radio off time. Figure 7 also shows that the re-
duction percentages scale with radio off durations since
larger durations bring more radio off time. While the re-
duction percentages are about the same for all network
sizes at a given radio off duration, the percentage in-
creases of simulation speed actually grow with network
sizes according to Figure 7. This is because in a network
where all nodes are in direct communication range, the
total number of synchronizations in a distributed sim-
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Figure 7: Percentage reductions of synchro-
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ulation is in the order of N ∗ (N − 1) where N is the
network size. Therefore, the total number of reductions
in the experiments grows with network sizes. This can
be seen clearly in Figure 8 which shows the total number
of synchronizations in logarithmic scale.

We can also see from Figure 7 that the percentage
increases of simulation speed scale well with radio off
durations. The case of simulating 16 nodes with 135ms
radio off duration appears to be an outlier, showing a
much higher increase in simulation speed than normal.
The figure also shows that in this case, the reduction in
synchronizations is not unusual to cause a higher simula-
tion speedup. We find that this outlier point is actually
caused by a slow simulation speed in PolarLite without
using the radio-level speedup technique. In fact, when
increasing the sleep duration from 85ms to 135ms, the
simulation speed actually decreases from 37.45MHz to
37.10MHz. So, when we apply radio-level speedup to
this case, the relative increase becomes larger than ordi-
nary. This shows that the proposed radio-level speedup
is effective even when the baseline simulation in Polar-
Lite can not benefit from the increased radio off time.

Finally, we evaluate the scalability of the radio-level
speedup technique over larger WSNs under a transmis-
sion rate of 1 packet/10 seconds and a radio-level duty
cycling mode of 3, using all 8 processors. The results
are shown in Figure 9. We can see that the radio-level
speedup technique increases simulation speed in large
WSNs as well. It provides a 197% increase of simu-
lation speed when simulating 256 nodes in PolarLite.
That is an additional 106% improvement over the 91%
speed increase in simulating 32 nodes under the same
setup in Figure 7. In other words, although simulation
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speeds decrease with network sizes due to the limited
computational power of our server, the percentage in-
creases of simulation speed using the radio-level speedup
technique still grow with network sizes.

5.2 Performance of MAC-level Technique
The performance of our MAC-level speedup technique

depends on how busy wireless channels are and how of-
ten sensor nodes transmit around the same time. In-
stead of evaluating with a large number of scenarios,
we study the maximum speedup that can be achieved
in simulating a WSN with the MAC-level speedup tech-
nique. For experiments in this section, we enable Count-
Send to send as fast as possible by modifying CountSend
such that it sends out a new packet as soon as it is no-
tified by the MAC that the previous packet is sent. We
also disable the radio-level duty cycling for both Count-
Send and CountReceive.
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We simulate two WSNs that have 1 receiver and 31
or 63 senders using Avrora, PolarLite without speedups
and PolarLite with the MAC-level speedup. Unless ex-
plicitly specified, the default backoff calculation func-
tions in TinyOS 1.1 are used for the senders. The results
are shown in Figures 10, 11 and 12.

5.2.1 Speed and Scalability with respect to the num-
ber of processors and backoff times

We can see from Figure 10 that the MAC-level speedup
technique reduces synchronizations by about 44% to
47% in PolarLite. As a result, it brings a speedup of
14% to 31% (96% to 323% compared to Avrora) us-
ing the default backoff calculation functions of TinyOS
1.1 as shown in Figure 11. However, the default back-
off windows are not large enough for our experiments
since we observe a significant amount of colliding trans-
missions causing dropped packets. This limits the per-
formance of our MAC-level speedup technique as nodes
may transmit at the same time without backoffs. To fur-
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Figure 12: Speed of simulating with MAC-level
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ther investigate this, we perform the same experiments
by doubling the sizes of the default backoff windows
and the results are shown in Figure 12. We can see that
our MAC-level speedup technique brings more signifi-
cant increases of simulation speed with larger backoff
windows. We can also see that as the number of nodes
increases, the speeds of simulating with the MAC-level
speedup technique drop faster than with Avrora. This is
because given the small backoff window sizes, the num-
ber of colliding transmissions increases quickly with the
network size in these setups where nodes transmit as
fast as possible.

5.2.2 Speed and Scalability with respect to network
sizes

Figure 10 also shows that the percentage reductions
of synchronizations using the MAC-level speedup tech-
nique increase with network sizes in PolarLite. As ex-
plained in Section 5.1.2, the total number of synchro-
nizations in these experiments is in the order of the
square of the network size. Therefore, the total num-
ber of reductions is very significant when the network
size doubles from 32 to 64. We can see in Figure 11
that the percentage increases of simulation speed using
the MAC-level speedup technique scale with network
sizes even with the default backoff windows. We no-
tice the unusually low increase of speed in simulating
with 6 processors. Since the percentage reductions of
synchronizations are consistent according to Figure 10,
we believe this is caused by the asymmetrical use of all
4 cores of 1 CPU and 2 cores of another CPU in our
server.

5.3 Performance with Both Techniques
We evaluate the combined performance of our speedup

techniques with a real world scenario. In this scenario,
we simulate a WSN service that floods data to every
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node in a WSN. This service works by having every node
in a WSN relay, by broadcasting, messages it receives.
To avoid sending duplicate messages, a node only relays
messages with IDs greater than the largest IDs of the
messages it has already sent. For experiments in this
section, we modify CountReceive to relay messages the
way we just described.

In our experiments, we simulate WSNs that have nodes
laid 3 meters apart on square grids of different sizes.
For each of the WSNs, a corner node is configured as
the sender and the rest of nodes are configured as re-
laying nodes running the modified CountReceive pro-
gram. The sender transmits a new packet every 20 sec-
onds with an increasing ID. The radio-level duty cycling
modes of all nodes are set to 4 (Table 1) and the back-
off windows are doubled from TinyOS 1.1 defaults. The
transmit range of all nodes is set to 19 meters. We

conduct the experiments with all 8 processors and the
results are shown in Figures 13 and 14.

As shown in Figures 13 and 14, PolarLite running
both speedup techniques is significantly faster and pro-
vides a speedup of 51% to 75% over PolarLite alone
and 289% to 462% compared to Avrora. We can also
see from Figure 14 that the speedup techniques reduce
synchronizations significantly by 58% to 70%. However,
we observe that the reduction percentages decrease with
increasing network sizes. This is caused by our simple
flooding protocol. As the network size increases, the
number of relaying messages grows as well. Although a
node does not transmit the same message twice, it can
be forced to receive the same message multiple times
from different neighboring nodes. In other words, a
transmitting node can keep all nodes within its commu-
nication range from turning off their radios. This signifi-
cantly reduces the sleep time of the nodes and lowers the
performance of our radio-level speedup technique. How-
ever, even under this setup, our speedup techniques still
provide significant increases of simulation speed. This
is because our MAC-level speedup technique benefits
from an increasing number of backoffs in the larger net-
works. In practice, more advanced protocols are usu-
ally used to reduce the number of unnecessary relaying
messages. Therefore, we expect significant better per-
formance with the speedup techniques in those cases.

6. CONCLUSION AND FUTURE WORK
We have described two speedup techniques that signif-

icantly improve the speed and scalability of distributed
sensor network simulators by reducing the number of
sensor node synchronizations during simulations. We
implemented the techniques in PolarLite, a cycle accu-
rate distributed simulation framework based on Avrora.
The significant improvements of simulation performance
on a multi-processor computer in our experiments sug-
gest even greater benefits in applying our techniques to
distributed simulations over a network of computers be-
cause of their large overheads in sending synchronization
messages across computers during simulations.

We have also developed a general probing mechanism
that can expose the internal states of any sensor network
applications during simulations. By knowing the inter-
nal states during simulations, one can exploit any appli-
cation specific characteristics for the increase of looka-
head time and as a result, improve simulation speed and
scalability.

As future work, we plan to use the probing mechanism
to exploit scheduled transmission slots in TDMA type
MACs such as S-MAC [22]. With this type of MAC, a
node can only send data in scheduled transmission slots.
By knowing the time of the slots during simulations, we
can identify the periods that a node does not trans-
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mit and therefore increase the lookahead time. We also
plan to merge our implementation with the latest devel-
opment branch of Avrora. This would make it possible
to simulate TinyOS 2.0 [1] based applications with our
speedup techniques. Although the techniques are cur-
rently implemented in a cycle accurate simulator, they
can also be applied to other simulators like TOSSIM to
make them more scalable over multiple processors.
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