
LazySync: A New Synchronization Scheme for

Distributed Simulation of Sensor Networks

Zhong-Yi Jin and Rajesh Gupta

Department of Computer Science and Engineering
University of California, San Diego
{zhjin, rgupta}@cs.ucsd.edu

Abstract. To meet the demands for high simulation fidelity and speed,
parallel and distributed simulation techniques are widely used in build-
ing wireless sensor network simulators. However, accurate simulations
of dynamic interactions of sensor network applications incur large syn-
chronization overheads and severely limit the performance of existing
distributed simulators. In this paper, we present LazySync, a novel con-
servative synchronization scheme that can significantly reduce such over-
heads by minimizing the number of clock synchronizations during sim-
ulations. We implement and evaluate this scheme in a cycle accurate
distributed simulation framework that we developed based on Avrora,
a popular parallel sensor network simulator. In our experiments, the
scheme achieves a speedup of 4% to 53% in simulating single-hop sensor
networks with 8 to 256 nodes and 4% to 118% in simulating multi-hop
sensor networks with 16 to 256 nodes. The experiments also demonstrate
that the speedups can be significantly larger as the scheme scales with
both the number of packet transmissions and sensor network size.

1 Introduction

Accurate simulation is critical to the design, implementation and evaluation of
wireless sensor networks (WSNs). Numerous WSN simulators have been devel-
oped based on event driven simulation techniques [1] and the fidelities of WSN
simulators are rapidly increasing with the use of high fidelity simulation models
[2–5]. In event driven simulations, fidelity represents the bit and temporal ac-
curacy of events and actions. Due to the need for processing a large number of
events, high simulation fidelity often leads to slow simulation speed [6] which is
defined as the ratio of simulation time to wallclock time. Simulation time is the
virtual clock time in the simulated models [7] while wallclock time corresponds
to the actual physical time used in running the simulation program. A simulation
speed of 1 indicates that the simulated sensor nodes advance at the same rate
as real sensor nodes and this type of simulation is called real time simulation.
Typically, real time speed is required to use simulations for interactive tasks such
as debugging and testing.

To meet the demands for high simulation fidelity and speed, most of latest
WSN simulators are based on parallel and distributed simulation techniques [8–
11]. WSN simulators can be broadly divided into two types: sequential simulators



TS0

TS1

TW0 TW1

Node B

Node A
S

im
u
la

ti
o

n
 T

im
e

 (
T

S
)

Wallclock Time (TW)

B.ReadChannel

Fig. 1. The progress of simulating in parallel a wireless sensor network with two nodes
that are in direct communication range of each other on 2 processors.

and parallel/distributed simulators. Sequential simulators simulate all the sensor
nodes of a WSN in sequence on a single processor and therefore cannot benefit
from running on a multi-core processor or on multiple processors. Parallel and
distributed simulators seek to improve simulation speed by simulating different
sensor nodes on different cores or processors in parallel.

A problem with existing distributed simulation techniques is the large over-
heads in synchronizing sensor nodes during simulations [10, 6]. When sensor
nodes are simulated in parallel, their simulation speeds can vary due to the
differences in simulated nodes, such as different sensor node programs, sensor
node inputs and values of random variables, as well as the differences in sim-
ulation environments, such as different processor speeds and operating system
scheduling policies. Because of this, simulated sensor nodes need to synchronize
with each other frequently to preserve causality of events and ensure correct
simulation results [9, 10, 6]. For example, as shown in Fig. 1, two nodes in direct
communication range of each other are simulated in parallel on two processors.
After TW0 seconds of simulation, Node B is simulated faster than Node A as
indicated by the fact that the simulation time of Node B (TS1) is greater than
the simulation time of Node A at TW0. At TS1, Node B is supposed to read
the wireless channel and see if there is an incoming transmission from Node A.
However, after reaching TS1 at TW0, Node B cannot advance any further be-
cause at TW0 Node B does not know whether Node A is going to transmit at
TS1 or not. In other words, Node B cannot be simulated any further than TS1

until Node A reaches TS1. There are two general approaches to handle cases
like this: conservative [1] or optimistic [12]. The conservative approach works
by ensuring no causality relationships among events are violated while the op-
timistic approach works by detecting and correcting any violations of causal
relationships [6]. To the best of our knowledge, almost all distributed WSN sim-



ulators are based on the conservative approach as it is simpler to implement
and has a lower memory footprint. With the conservative approach, simulated
sensor nodes need to synchronize their clocks and coordinate their simulation
orders frequently. These tasks introduce communication overhead and manage-
ment overhead to distributed simulations respectively [13].

As described in [10, 6], the performance gains of existing distributed WSN
simulators are often compromised by the rising overheads due to inter-node
synchronizations. In this paper, we propose LazySync, a novel conservative syn-
chronization scheme that can significantly reduce the number of clock synchro-
nizations in parallel and distributed simulations of WSNs. We validate our ap-
proaches by their implementations in PolarLite, a cycle accurate distributed
simulation framework that builds upon Avrora and serves as the underlying
simulation engine [6].

We discuss related work in Sect. 2. The LazySync scheme is presented in
Sect. 3 and its implementations are described in Sect. 4. In Sect. 5 we present
the results of our experiments followed by the conclusion and future work in
Sect. 6.

2 Related Work

Prior work on improving the speed and scalability of WSN simulators can be
divided into two categories. The first category of work can be applied to both
sequential and distributed simulators. It focuses on reducing the computational
demands of individual simulation model without significantly lowering fidelity.
For example, since emulating a sensor node processor is computationally ex-
pensive [4], TimeTOSSIM [5] automatically instruments applications at source
code level with cycle counts and compiles the instrumented code into the na-
tive instructions of simulation computers for fast executions. This significantly
increases simulation speed while achieving a cycle accuracy of up to 99%. How-
ever, maintaining cycle counts also slows down TimeTOSSIM to about 1/10 the
speed of non-cycle-accurate TOSSIM [2] which TimeTOSSIM is based on. Our
work can make this type of effort scalable on multiple processors/cores.

The second category of work focuses on distributed simulators only. There is
a large body of research on improving the speed and scalability of distributed
discrete event driven simulators in general. Among them, use of lookahead time
[1] is a commonly used conservative approach [14, 15]. Our previous work [6, 13]
follows this direction. In [6], we describe a technique that monitors the duty
cycling of sensor nodes and uses the detected sensor node sleep time to reduce
the number of synchronizations. As demonstrated in the paper, using the node-
sleep-time based technique can significantly increase speed and scalability of
distributed WSN simulators. However, the technique is only able to exploit the
time when both the processor and radio of a sensor node are off for speedup
because it is not possible to predict the exact radio wakeup time when the
processor is running. In [13], we develop new techniques to address the limitation
of [6]. By exploiting the radio wakeup latency and MAC backoff time, the new



techniques are effective even when the processor or radio of a node is active.
Our LazySync approach is different from the lookahead approach as we do not
explicitly exploit lookahead time.

As an alternative to the lookahead approach, the performance of distributed
simulators can also be improved by reducing the overheads in performing syn-
chronizations. DiSenS [10] reduces the overheads of synchronizing nodes across
computers by using the sensor network topology information to partition nodes
into groups that do not communicate frequently and simulating each group on
a separate computer. However, this technique only works well if most of the
nodes are not within direct communication range as described in the paper.
LazySync is very different from DiSenS in the sense that it works by reducing
the total number of clock synchronizations in a simulation rather than by reduc-
ing the overhead of performing an individual clock synchronization. In addition,
LazySync is particularly effective in improving the performance of simulating
dense WSNs with a large amount of communication traffic.

LazySync is based on similar ideas as lazy evaluation which have been used
in earlier work on very different problems from architectural designs to program-
ming languages [16]. Though conceptually similar, we show how the notion of
lazy evaluation can be applied in sensor networks for improved performance of
distributed simulations.

3 Lazy Synchronization Scheme

In distributed simulations, each sensor node is commonly simulated in a separate
thread or process. To maximize parallelism, a running node should try to prevent
other nodes from waiting by communicating its simulation progress to those
nodes as early as possible (AEAP). If a node has to wait for other nodes due to
variations in simulation speeds, the thread/process simulating the waiting node
should be suspended so the released physical resources can be used to simulate
some other non-waiting nodes1. For maximum parallelism, suspended nodes need
to be revived AEAP once the conditions that the nodes wait for are met. For
example, Node A in Fig. 1 should synchronize with Node B immediately after
it advances past TS1 to resume the simulation of Node B.

The AEAP synchronization scheme is adopted by most existing distributed
WSN simulators [9, 10, 6]. It is commonly implemented [9, 6] by periodically send-
ing the simulation time of every non-waiting node to all its neighboring nodes,
which are nodes that are within its direct communication range. Ideally, the
clock synchronization period should be as short as possible for maximum paral-
lelism. However, due to the overheads in performing clock synchronizations [6],
the synchronization period is commonly set to be the minimal lookahead time,
which is the smallest possible lookahead time in the simulation. As mentioned,
lookahead time is the maximum amount of simulation time that a simulated
sensor node can advance freely without synchronizing with any other simulated

1 For synchronization purposes, a non-waiting node refers to a node that is not waiting
for any simulation events. It may still be ready, active or inactive in a given simulator.



TS0

TS1

TW0 TW1

Node B Node A
S

im
u
la

ti
o

n
 T

im
e

 (
T

S
)

Wallclock Time (TW)

B.ReadChannel

Node C

A.ReadChannel

TW2

TS2

Fig. 2. The progress of simulating in parallel a wireless sensor network with three nodes
that are in direct communication range of each other on 2 processors.

sensor nodes [7]. For example, in the case of simulating Mica2 nodes [17], the
minimal lookahead time is the lookahead time of nodes with radios in the lis-
tening mode. It is equal to the amount of time to receive one byte over Mica2’s
CC1000 radio [6] and is equivalent to 3072 clock cycles of the 7.32728MHz AVR
microcontroller in Mica2. Therefore, when simulating a network of Mica2 nodes,
every non-waiting node needs to send its simulation time to all its neighboring
nodes every 3072 clock cycles. Depending on simulator implementations, once
the simulation time is received by a neighboring node, some mechanisms will be
triggered to save the received time and compute the earliest input time (EIT)
[1]. EIT represents the safe simulation time that the neighboring node can be
simulated to. If the neighboring node happens to be waiting, then it will also be
revived if its EIT is not less than the wait time. To be revived AEAP, a waiting
node commonly sends its waiting time to the nodes that it depends on before
entering into the suspended state. By doing so, the depending nodes can send
their simulation time to the waiting node immediately after they advance past
the waiting time.

3.1 Limitations of AEAP Synchronization Scheme

While the AEAP synchronization scheme is sound in principle, its effectiveness
is based on the assumption that there is always a free processor available to
simulate every revived node. However, this is generally not the case in practice
as the number of nodes under a simulation is usually a lot larger than the number
of processors used to run the simulation. As a result, the AEAP synchronization
scheme may slow simulations down in many simulation scenarios by introducing
unnecessary clock synchronizations. For example, Fig. 2 shows the progress of
simulating in parallel 3 nodes that are in direct communication range of each
other on 2 processors. In the simulation, Node A and B are simulated first on the
two available processors and Node B reaches TS1 at TW0. Similar to the case in



Fig. 1, Node B has to wait at TS1 until the simulation time of both Node A and
Node C reach TS1. However, unlike the case in Fig. 1, while Node B is waiting,
the simulation of Node C begins and both processors are kept busy. With the
AEAP synchronization scheme, Node A should send its simulation time to Node
B at TW1 so the simulation of Node B can be resumed. However, since both
processors are busy simulating Node A and C at TW1, reviving Node B at TW1

does not increase simulation performance at all. In fact, this may actually slow
the simulation down due to the overhead in performing this unnecessary clock
synchronization. For example, instead of synchronizing with Node B at TW1,
Node A can delay the synchronization until a free processor becomes available
at TW2 when Node A needs to read the wireless channel and waits for Node B
and C. By delaying the clock synchronization to TS2 at TW2, Node A effectively
reduces one clock synchronization.

Another area that existing AEAP synchronization algorithms [9, 10, 6] fail to
exploit for synchronization reductions is the simulation time gaps among neigh-
boring nodes. Due to the lack of processors to simulate all non-waiting nodes
simultaneously, the potential simulation time gaps of different nodes can be
quite large during a simulation. For example, an actively transmitting node can-
not hear transmissions from other nodes and therefore can be simulated without
waiting until it stops transmitting and reads the wireless channel. Given such
time gaps, a node receiving the simulation time of a node in the future can com-
pare the future node’s time with its own simulation time and calculate potential
dependencies between the two nodes in the future. Consequently, the node falling
behind can skip clock synchronizations if there are no dependencies between the
two nodes. For instance, as shown in Fig. 2, once Node A sends a clock synchro-
nization message to Node B at TS2, Node B knows implicitly that Node A does
not depend on it before TS2 and therefore does not need to synchronize its clock
with Node A until then. In other words, Node B no longer needs to send its
simulation time to Node A every minimal lookahead time before TS2 as it does
with the AEAP synchronization algorithms. By delaying clock synchronizations,
we can fully extend the time gaps and as a result create more opportunities
for nodes falling behind to act upon and reduce clock synchronizations. We will
discuss this in detail in the following section.

3.2 Lazy Synchronization Algorithm

To address the performance issue of the AEAP synchronization scheme, we pro-
pose a novel conservative synchronization scheme: LazySync. The key idea of
the LazySync scheme is to delay a synchronization even when it should be done
according to conservative simulations. It is opposite of opportunistic synchro-
nization in that the simulator seeks to avoid synchronization until it is essential
and it is able to do it given simulation resource constraints. Together, we show
that the concept of lazy evaluation can be extended to specifically benefit from
the operational characteristics of sensor networks. By procrastinating synchro-
nizations, delayed clock synchronizations may be safely discarded or substituted



by newer clock synchronizations in simulating WSNs. As a result, the total num-
ber of clock synchronizations in a simulation can be reduced.

Note that if free processors are available, our LazySync scheme must perform
synchronizations AEAP so potential nodes can be revived to use the available
physical resources. To make this possible, we track the number of non-waiting
nodes and only procrastinate synchronizations when the number is below a
threshold. Ideally, the threshold should be set to be the number of processors
used to run the simulation in order to maximize clock synchronization reduction
and processor usage. However, considering the frequency of checking the number
of non-waiting nodes and the overheads in reviving waiting nodes and performing
scheduling, the threshold should be set to a number slightly larger than that in
practice. Tracking the number of non-waiting nodes on a computer should incur
very little overhead since that is already done by the underlying thread/process
library or OS as part of their scheduling functions. For distributed simulations
on multiple computers, the number of non-waiting nodes on each computer can
be exchanged as part of clock synchronization messages sent between computers.
If a computer does not receive any clock synchronization messages from another
computer for a predetermined period of time, the nodes on the first computer
can revert back to the AEAP scheme.

Our proposed LazySync algorithm is presented in Algorithm 1. As shown in
Algorithm 1, we design the LazySync algorithm to work differently on nodes in
different states because nodes may have different synchronization needs. In a
simulation, a sensor node can be in one of two states, the independent state and
the dependent state.

A node is in the independent state if its radio is not in receiving mode. This
happens when the radio is off, in transmission mode or in any one of the initial-
ization and transition states. Since a node in the independent state (independent
node) does not take inputs from any other nodes, it can be simulated without
waiting for any other nodes until the state changes. However, if free processors
are available, an independent node still needs to synchronize with neighboring
nodes so that the nodes depending on the outputs of the independent node can
be simulated. In the LazySync algorithm, an independent node checks the num-
ber of non-waiting nodes every minimal lookahead time and only sends a clock
synchronization message to its neighboring nodes if the number of non-waiting
nodes is below a threshold.

A node is in the dependent state if its radio is in receiving mode. Since any
node in direct communication range of a dependent node (a node in the depen-
dent state) can potentially transmit, a dependent node needs to meet Condi-
tion 1 before actually reading the wireless channel to ensure correct simulation
results. In other words, a dependent node needs to evaluate Condition 1 to de-
termine if it can read the wireless channel and continue the simulation or has to
wait for some neighboring nodes to catch up for their potential outputs. Since
a dependent node has its radio in receiving mode, it needs to read the wireless
channel at least once every minimal lookahead time (∆T ) which is the lookahead
time of a node in the dependent state. Therefore, Condition 1 is evaluated at



Algorithm 1 Lazy Synchronization Algorithm

Require: syncThreshold /*sync threshold*/
Require: ∆T /*minimal lookahead time, the lookahead time of a node in the depen-

dent state*/
1: set timer to fire at every ∆T

2: syncT ime ⇐ 0 /*the time a sync condition is verified*/
3: while simulation not end do

4: simulate the next instruction

5: if in independent state then

6: if timer.fired then

7: syncT ime ⇐ current sim time
8: if numLiveNode < syncThreshold then

9: send current sim time to all neighboring nodes not ∆T ahead
10: else if in dependent state then

11: if instruction needs to read the wireless channel then

12: syncT ime ⇐ current sim time
13: if ((Condition 1) == true) then

14: if numLiveNode < syncThreshold then

15: send current sim time to all neighboring nodes not ∆T ahead
16: else

17: send current sim time to all neighboring nodes not ∆T ahead
18: wait until ((Condition 1) == true)
19: read the wireless channel
20: if syncT ime - (current sim time) > ∆T then

21: syncT ime ⇐ current sim time
22: if numLiveNode < syncThreshold then

23: send current sim time to all neighboring nodes not ∆T ahead

Condition 1 If a node Ni reads wireless channel Ck at simulation time TSNi
, then

for all nodes Ns that are in direct communication range of Ni, (TSNs
+ ∆T ) ≥ TSNi

,
where TSNs

is the simulation time of Ns and ∆T is the lookahead time of Ni which is
in the dependent state.

least once every ∆T . In the LazySync algorithm, a dependent node only per-
forms clock synchronizations under two circumstances. The first circumstance
happens when Condition 1 is evaluated to be false and as a result, a dependent
node has to wait for neighboring nodes. To prevent deadlocks, a synchroniza-
tion has to be performed in this case before suspending the node, regardless of
the number of available processors. A deadlock occurs when nodes wait for each
other at the same simulation time. For instance, it happens when nodes within
direct communication range read the wireless channel at the same simulation
time. The second circumstance occurs when Condition 1 is evaluated to be true
so a dependent node can go ahead to read the wireless channel. If the number
of non-waiting nodes is below a threshold at this point, a clock synchronization
is required to revive some nodes to use the available processors. Note that the
block of code from line 20 to 23 in Algorithm 1 is just a safety mechanism to



guard against the cases that a node does not stay in any of the two states long
enough to check for synchronization conditions.

It is important to note that a dependent node may only perform clock syn-
chronizations at the times it reads the wireless channel. This is very different
from the case in a typical AEAP synchronization algorithm. A node in an AEAP
synchronization algorithm may perform clock synchronizations at any time ac-
cording to the waiting times of other nodes. The decision to limit dependent
nodes to perform clock synchronizations at channel read time only is based on
the assumption that there are no free processors available to simulate any other
nodes until an actively running dependent node gives up its processor due to
waiting. By procrastinating clock synchronizations to channel read time, we can
eliminate all intermediate synchronizations that need to be performed otherwise
in AEAP synchronization algorithms, as described in Sect. 3.1.

With the LazySync algorithm described above, a node can be simulated for a
long period of time without sending its simulation time to neighboring nodes. As
discussed in Sect. 3.1, the extended simulation time gaps of neighboring nodes
can be exploited effectively to reduce clock synchronizations. According to Con-
dition 1, a dependent node Ni can read the wireless channel only if the simulation
time of all neighboring nodes are equal to or greater than the simulation time
of Ni minus ∆T . If the simulation time of a neighboring Ns is more than ∆T

ahead of the simulation time of Ni, there are no needs for Ni to send its sim-
ulation time to Ns until the simulation time of Ni is greater than TSNs

− ∆T .
The same also applies if an independent node receives a simulation time that is
more than ∆T ahead. Based on these, the LazySync algorithm uses a filter to
remove unnecessary clock synchronizations.

It is important to see that our LazySync algorithm still follows the principles
of conservative synchronization algorithms [1, 7, 8] to not violate any causality
during simulations. We only delay and discard unnecessary clock synchroniza-
tions to improve the performance of distributed simulations of WSNs. Due to
space limits, a formal correctness proof of the LazySync algorithm is not given
here.

4 Implementation

The proposed LazySync scheme is implemented in PolarLite, a distributed simu-
lation framework that we developed based on Avrora [6]. Our simulation frame-
work provides the same level of cycle accurate simulations as Avrora but uses a
distributed synchronization engine instead of Avrora’s centralized one.

As with Avrora, PolarLite allocates one thread for each simulated node and
relies on the Java virtual machine (JVM) to assign runnable threads to any
available processors on an SMP computer. However, we cannot identify any
Java APIs that allow us to check the number of suspended/blocked threads in a
running program. As an alternative, we track that using an atomic variable. The
syncThreshold in Algorithm 1 is configurable via a command line argument.



To implement the LazySync algorithm, we need to detect the state that a
node is in. In discrete event driven simulations, the changes of radio states are
triggered by events and can be tracked. For example, in our framework, we
detect the radio on/off time by tracking the IO events that access the registers
of simulated radios. We verify the correctness of our implementation by running
the same simulations with and without the LazySync algorithm using the same
random seeds.

5 Evaluation

To evaluate the performance of the LazySync scheme, we simulate some typical
WSNs with PolarLite using both the AEAP synchronization algorithm from
[6] and the LazySync algorithm from Sect. 3.2. The performance results are
compared according to three criteria:

– Speedavg: The average simulation speed.
– Syncavg: The average number of clock synchronizations per node.
– Waitavg: The average number of waits per node.

Speedavg is calculated using Equation (1) based on the definition specified in
Sect. 1. Note that the numerator of Equation (1) is the total simulation time in
units of clock cycles. Syncavg is equal to the total number of clock synchroniza-
tions in a simulation divided by the total number of nodes in the simulation.
Similarly, Waitavg is equal to the total number of times that nodes are sus-
pended in a simulation due to waiting divided by the total number of nodes in
the simulation.

Speedavg =
total number of clock cycles executed by the sensor nodes

(simulation execution time) × (number of sensor nodes)
(1)

The WSNs we simulate in this section consist of only Mica2 nodes [17] run-
ning either CountSend (sender) or CountReceive (receiver) programs. Both pro-
grams are from the TinyOS 1.1 distribution and are similar to the programs used
by other WSN simulators in evaluating their performance [2, 9, 10]. For example,
CountSend broadcasts a continuously increasing counter repeatedly at a fixed
interval. If the interval is set to 250ms, it behaves exactly the same as CntToRfm
which is used in [2, 9, 10] for performance evaluations. CountReceive listens for
messages sent by CountSend and displays the received values on LEDS.

All simulation experiments are conducted on an SMP server running Linux
2.6.24. The server features a total of 8 cores on 2 Intel Xeon 3.0GHz CPUs
and 16GBytes of RAM. Sun’s Java 1.6.0 is used to run all experiments. In the
simulations, the starting time of each node is randomly selected between 0 and
1 second of simulation time to avoid any artificial time locks. All simulations
are run for 120 seconds of simulation time and for each experiment we take the
average of three runs as the results. The synchronization threshold (Algorithm 1)
of the LazySync algorithm is set to 9 (the number of processors plus one) for all
experiments.



-20

0

20

40

60

0 32 64 96 128 160 192 224 256 288

Number of Nodes

%

Increase of Speedavg Decrease of Syncavg Decrease of Waitavg

Fig. 3. Performance improvements of the
LazySync scheme over the AEAP scheme
in simulating one-hop WSNs. Senders
transmit at a 250ms interval.

0

20

40

60

0 32 64 96 128 160 192 224 256 288

Number of Nodes

%

Increase of Speedavg Decrease of Syncavg Decrease of Waitavg

Fig. 4. Performance improvements of the
LazySync scheme over the AEAP scheme
in simulating one-hop WSNs. Senders
transmit as fast as possible.

5.1 Performance in One-hop WSNs

In this section, we evaluate the performance of the LazySync scheme in simu-
lating one-hop WSNs of various sizes. One-hop WSNs are sensor networks with
all their nodes in direct communication range. All the one-hop WSNs that we
simulate in this section have 50% of the nodes running CountSend and 50% of
the nodes running CountReceive.

In the first experiment, we modify CountSend so that all senders transmit
at a fixed interval of 250ms. Five WSNs with 8, 16, 32, 128 and 256 nodes are
simulated and Fig. 3 shows the percentage improvements of the LazySync scheme
compared to the AEAP scheme. As shown in Fig. 3, the LazySync scheme reduces
Syncavg in all cases and the percentage reductions grow slowly with network
sizes. It is important to see that the total number of clock synchronizations in a
distributed simulation of a one-hop WSN is on the order of N ∗ (N − 1) where
N is the network size [6]. So, although the percentage reductions of Syncavg

increase slowly with network sizes in Fig. 3, the actual values of Syncavg decrease
significantly with network sizes.

The significant percentage reduction of Syncavg in simulating 8 nodes with
8 processors is due to the time gap based filter and the fact that the synchro-
nization threshold is only checked every ∆T or at channel read time. Since the
threshold is not monitored at a finer time granularity, a processor may be left
idle for a maximum of the amount of wallclock time to simulate a node for ∆T

according to Algorithm 1. As a result, we can see in Fig. 3 that there are mod-
erate increases of Waitavg when simulating small WSNs with 8 and 16 nodes.
However, as the WSN size increases, the percentage reduction of Waitavg in-
creases because processors are more likely to be kept busy by the extra nodes.
In fact, the LazySync scheme performs better in terms of percentage reductions
of Waitavg when simulating 128 and 256 nodes, as shown in Fig. 3. We believe
this is because more CPU cycles become available for real simulations after sig-
nificant reductions in the number of clock synchronizations. For the same reason,



0

20

40

60

80

100

120

0 32 64 96 128 160 192 224 256 288

Number of Nodes

%

Increase of Speedavg (as fast as possible)

Decrease of Syncavg (as fast as possible)

Decrease of Waitavg (as fast as possible)

Increase of Speedavg (250ms)

Decrease of Syncavg (250ms)

Decrease of Waitavg (250ms)

Fig. 5. Performance improvements of the LazySync scheme over the AEAP scheme in
simulating multi-hop WSNs.

despite the increases of Waitavg in simulating small WSNs, we see increases of
Speedavg in all cases, ranging from 4% to 46%.

Our second experiment is designed to evaluate the LazySync scheme in busy
WSNs that have heavy communication traffic. It is based on the same setup as
the first experiment except all senders transmit as fast as possible. As shown in
Fig. 4, the LazySync scheme provides more significant percentage reductions of
Waitavg in busier networks. This is because a busier network has more transmis-
sions and consequently more independent states. The increased number of inde-
pendent states in a busier network provides more opportunities for the LazySync
scheme to exploit. It allows nodes to skip synchronizations and gives the filter
larger gaps to exploit. As a result, the LazySync scheme brings a 12% to 53%
increase of Speedavg in Fig. 4. We can also see in Fig. 4 that there are no in-
creases of Waitavg in simulating small WSNs as in the first experiment. This is
because it takes more CPU cycles to simulate all the communications in a busy
network and that keeps the processors busy.

5.2 Performance in Multi-hop WSNs

In this section, we evaluate the performance of the LazySync scheme in simulat-
ing multi-hop WSNs of various sizes. Nodes are laid 15 meters apart on square
grids of various sizes. Senders and receivers are positioned on the grids in such



a way that nodes of the same types are not adjacent to each other. By setting a
maximum transmission range of 20 meters, this setup ensures that only adjacent
nodes are within direct communication range of each other. This configuration
is very similar to the two dimensional topology in DiSenS [10].

We simulate WSNs with 16, 36, 100 and 256 nodes. For each network size, we
simulate both a quiet network with all the senders transmitting at a fixed 250ms
interval and a busy network with all the senders transmitting as fast as possible.
The results are shown in Fig. 5. We can see that the percentage decreases of
Syncavg are more significant in the multi-hop networks than in the one-hop net-
works. The reason for this is that there are fewer dependencies among nodes in
our multi-hop networks than in the one-hop networks, as a result of only having
adjacent nodes in communication range in the multi-hop network setup. Having
fewer dependencies brings two opportunities to the LazySync scheme. First, a
node can be simulated for a longer period of time without waiting. Second, the
increased number of non-waiting nodes keeps processors busy. Together, they
enable nodes to skip clock synchronizations in LazySync. In addition, the in-
creased simulation time gaps can also be exploited by LazySync to reduce clock
synchronizations. As shown in Fig. 5, the percentage reductions of Syncavg are
significantly higher in the busy multi-hop networks than in the quiet ones. This
demonstrates once again that the LazySync scheme can exploit wireless trans-
missions in a WSN for synchronization reductions. As a result, we see significant
percentage increases of Speedavg in simulating busy multi-hop networks, ranging
from 25% to 118%.

6 Conclusion and Future Work

We have presented LazySync, a synchronization scheme that significantly im-
proves the speed and scalability of distributed sensor network simulators by
reducing the number of clock synchronizations. We implemented LazySync in
PolarLite and evaluated it against an AEAP scheme inside the same simulation
framework. The significant improvements of simulation performance on a multi-
processor computer in our experiments suggest even greater benefits in applying
our techniques to distributed simulations over a network of computers because
of their large overheads in sending synchronization messages across computers
during simulations.

As future work, we are planning to combine LazySync with some other per-
formance increasing techniques that we developed in the past [6, 13]. Since these
techniques exploit different aspects of WSNs for performance improvements, we
believe combining the techniques can further improve the speed and scalability
of distributed WSN simulators.

References

1. Chandy, K.M., Misra, J.: Asynchronous distributed simulation via a sequence of
parallel computations. Commun. ACM 24(4) (1981) 198–206



2. Levis, P., Lee, N., Welsh, M., Culler, D.: Tossim: accurate and scalable simulation
of entire tinyos applications. In: SenSys ’03: Proceedings of the 1st international
conference on Embedded networked sensor systems, New York, NY, USA, ACM
Press (2003) 126–137

3. Shnayder, V., Hempstead, M., rong Chen, B., Allen, G.W., Welsh, M.: Simulating
the power consumption of large-scale sensor network applications. In: SenSys ’04:
Proceedings of the 2nd international conference on Embedded networked sensor
systems, New York, NY, USA, ACM (2004) 188–200

4. Polley, J., Blazakis, D., McGee, J., Rusk, D., Baras, J.: Atemu: a fine-grained sensor
network simulator. In: Sensor and Ad Hoc Communications and Networks, 2004.
IEEE SECON 2004. 2004 First Annual IEEE Communications Society Conference
on. (4-7 Oct. 2004) 145–152

5. Landsiedel, O., Alizai, H., Wehrle, K.: When timing matters: Enabling time ac-
curate and scalable simulation of sensor network applications. In: IPSN ’08: Pro-
ceedings of the 2008 International Conference on Information Processing in Sensor
Networks, Washington, DC, USA, IEEE Computer Society (2008) 344–355

6. Jin, Z., Gupta, R.: Improved distributed simulation of sensor networks based on
sensor node sleep time. In: International Conference on Distributed Computing in
Sensor Systems (DCOSS). (2008) 204–218

7. Fujimoto, R.M.: Parallel and distributed simulation. In: WSC ’99: Proceedings
of the 31st conference on Winter simulation, New York, NY, USA, ACM (1999)
122–131

8. Riley, G.F., Ammar, M.H., Fujimoto, R.M., Park, A., Perumalla, K., Xu, D.: A fed-
erated approach to distributed network simulation. ACM Trans. Model. Comput.
Simul. 14(2) (2004) 116–148

9. Titzer, B.L., Lee, D.K., Palsberg, J.: Avrora: scalable sensor network simulation
with precise timing. In: IPSN ’05: Proceedings of the 4th international symposium
on Information processing in sensor networks, Piscataway, NJ, USA, IEEE Press
(2005) 477–482

10. Wen, Y., Wolski, R., Moore, G.: Disens: scalable distributed sensor network sim-
ulation. In: PPoPP ’07: Proceedings of the 12th ACM SIGPLAN symposium on
Principles and practice of parallel programming, New York, NY, USA, ACM Press
(2007) 24–34

11. Henderson, T.: NS-3 Overview. (2008)
12. Jefferson, D.R.: Virtual time. ACM Trans. Program. Lang. Syst. 7(3) (1985)

404–425
13. Jin, Z., Gupta, R.: Improving the speed and scalability of distributed simulations

of sensor networks. Technical Report CS2009-0935, UCSD (2009)
14. Filo, D., Ku, D.C., Micheli, G.D.: Optimizing the control-unit through the resyn-

chronization of operations. Integr. VLSI J. 13(3) (1992) 231–258
15. Liu, J., Nicol, D.M.: Lookahead revisited in wireless network simulations. In: PADS

’02: Proceedings of the sixteenth workshop on Parallel and distributed simulation,
Washington, DC, USA, IEEE Computer Society (2002) 79–88

16. Hughes, J.: Why functional programming matters. Comput. J. 32(2) (1989) 98–107
17. Crossbow: MICA2 Datasheet. (2008)


