Energy Aware Non-Preemptive Scheduling for Hard Real-Time Systems

Ravindra Jejurikar Rajesh Gupta
Center of Embedded Computer Systems  Department of Computer Science
University of California, Irvine University of California, San Diego
Irvine, CA 92697 La Jolla, CA 92093
jezz@ics.uci.edu gupta@cs.ucsd.edu
Abstract has been shown to be beneficial in multimedia applications

[3]. This work focuses on energy efficient scheduling of
Slowdown based on dynamic voltage scaling (DVS) pro- non-preemptive real-time tasks.

vides the ability to perform an energy-delay tradeoff in the  The two major techniques of minimizing the processor
system. Non-preemptive scheduling becomes an integraknergy consumption areshutdownand slowdown Slow-
part of systems where resource characteristics makes pre-down through dynamic voltage and frequency scaling (re-
emption undesirable or impossible. We address the prob-ferred to as DVS) is known to be effective in energy mini-
lem of energy efficient scheduling of non-preemptive tasksmization [18, 1, 23]. A reduction in the supply voltage de-
based on the Earliest Deadline First (EDF) scheduling pol- creases the power consumption of the processor because of
icy. We present thetack based slowdowalgorithm that the quadratic relationship between power and voltage. The
builds upon the optimal feasibility test for non-preemptive power consumptior®, is given by:
systems. We also propose a dynamic slack reclamation pol-
icy to further enhance energy savings. Simulation results
show on an averagé&5%energy savings using static slow-
down factors and20% savings with dynamic slowdown,
over known slowdown techniques.

P=Ceft-Viy- f (1)

whereCej ¢ is the effective switching capacitantéyg is the
supply voltage and is the operating frequency. However,
the transistor gate delay (and hence frequency) depends on
the voltage and a decrease in voltage has to be accompa-
_ nied by a decrease in processor frequency. There is a linear
1 Introduction dependence between frequency and voltage [20], resulting
in a linear increase in the execution time of a task. Thus
The concept of a task that is invoked periodically is cen- voltage scaling provides the ability to perform an energy-
tral to a real-time system. Tasks are executed on a pro-delay tradeoff in the system. Real-time systems have strict
cessor and must complete execution in a timely manner.timing requirements and slowdown has to be performed ju-
Based on the task characteristics, priorities are assigned taliciously in achieving our goal of minimizing energy.
tasks, which drive the scheduling decisions. Task schedul- Previous works on energy aware scheduling have mainly
ing can be classified into two broad categoripseemptive  focussed on preemptive scheduling. Among the earliest
scheduling anashon-preemptivecheduling. Under preemp- works, Yaoet al. [21] presented an optimal off-line al-
tive scheduling, the current task execution can be preemptedyorithm to schedule a given set of jobs with arrival times
by a higher priority task, whereas under non-preemptive and deadlines. For a similar task model, optimal algorithms
scheduling, a higher priority task can be scheduled only have been proposed for fixed priority scheduling [15, 22]
after the completion of the current task. Though preemp- and scheduling over a fixed number of voltage levels [11],
tive scheduling can guarantee a higher system utilization,[7]. Energy efficient scheduling of periodic real-time task
there are scenarios where properties of hardware devicesets has also been addressed. Real-time feasibility analysis
and software configuration make preemption either impos-has been used in previous works to compute static slow-
sible or prohibitively expensive. Non-preemptive schedul- down factors for tasks [18], [4]. Aydirt al. [1] have
ing also has the advantages of accuratpaase time anal-  addressed the problem of energy minimization considering
ysis, ease of implementation, no synchronization overheadthe task power characteristics. When tasks complete ear-
and reduced stack memory requirements. Non-preemptivdier than the worst case, there is opportunity for additional
scheduling is used in light weight multi-tasking kernels and (dynamic) slowdown which increases the energy savings



[14, 2, 10]. The problem of maximizing the system value each taskr;). Each invocation of the task is calledjab
for a specified energy budget, as opposed to minimizing theand thek!" invocation of taskr; is denoted agjx. Tasks
total energy, is addressed in [17, 16]. Note that these worksare non-preemptively scheduled on a single processor sys-
assume a preemptive task system. Non-preemptive schedukem. A task set is said to bieasibleif all tasks meet
ing has been addressed primarily in the context of multi- the deadlines. The processor utilization for the task set,
processor scheduling [5]. Zhareg al. [24] have givena U =5[_,Ci/T < 1 is a necessary condition for the feasi-
framework for non-preemptive task scheduling and voltage bility of any schedule [13]. We say that an executing task
assignment for dependent tasks on a multi-processor sysis blockinganother task, if a higher priority task is waiting
tem. They have formulated the voltage scheduling problemin the ready-queue for the completion of current task exe-
as an integer programming problem. The problem of mini- cution. Equivalently, the higher priority task idockedin
mizing the energy consumption by performing a slowdown the system. Note that a blocking task would have been pre-
tradeoff in the computation and communication subsystemsempted under a preemptive scheduling policy.
is addressed in [12].

In this work, we address non-preemptive scheduling of 2.2 Processor Model
periodic tasks on a uni-processor system. Zhang and Chan-
son have addressed energy efficient scheduling for the same Recent processors such as the Intel XScale [6] and Trans-
model and have presented the dual speed (DS) algorithmmeta Crusoe [19] support variable frequency and voltage
[23]. The DS algorithm computes two speeds, a low speedlevels, that can be varied at run-time. We defirsboavdown
L based on an analysis for an independent task set and #actor as a normalized operating frequency. At a given in-
high speedH taking into account the blocking time aris- stance, it is the ratio of the current frequency to the max-
ing due to non-preemption. Note that the computation of imum processor frequency. Note that the voltage and fre-
the high speed, based on a sufficient feasibility test, is notquency levels are tightly coupled, and{frequency, volt-
optimal. This can result in usingtd speed higher than re- age pair is associated with each slowdown factor. We as-
quired and consume more energy. Furthermore, the duakume that processing speed can be varied over a discrete
speed algorithm switches to the high speed whenever anyange, with fmin and fnax being the minimum and maxi-
task is blocked, which may not be needed during every mum operating frequency respectively. We normalize the
task blocking. We propose a novel algorithm (ttack speed to the maximum frequency to have discrete points in
based slowdowalgorithm) that minimizes the transitions the interval[Nmin, 1], wherenmin = fmin/ fmax The over-
to a higher speed by computing different slowdown fac- head incurred in changing the processor speed is assumed
tors based on the blocking task. The algorithm is based onto be incorporated into the task execution time. Consider-
the optimal feasibility test under non-preemptive schedul- ing static and dynamic slowdown, a speed change can occur
ing [8]. We also enhance the stack based slowdown algo-only when a task begins execution or when a higher priority
rithm with dynamic slack reclamation for additional energy task is blocked. This overhead is constant and can be incor-
savings. While earlier works do not perform dynamic slow- porated in the worst case processing time of a task. Note
down when tasks are blocking high priority tasks, we over- that the same assumption is made in prior works [1],[2],
come this limitation in this work. [21],[23].

The rest of the paper is organized as follows: Sect. 2
describes the preliminaries and formulates the problem. In2.3  Motivating Example
Sect. 3, we present the stack based slowdown algorithm for
non-preemptive task scheduling. A dynamic slack reclama-  Consider a real time system comprised of 3 periodic
tion algorithm follows in Sect. 4. The simulation results are tasks as described below,

given in Sect. 5 and we conclude in Sect. 6.
11 ={4,4,1},1,={6,6,2},13={10,10,2}

2 Preliminaries To generate a scenario where tasks are blocked, we assume
that taskry 1 (first instance of tasky) andtz 1 arrive at time
2.1 System Model t = 0 and taskry 1 arrives just after tasko1 begins exe-

cution. Figure 1(a) shows the jobs for each task at their
The system consists of a task setngferiodic real time  arrival time and their workload at maximum speed. All
tasks, denoted ds= {11, ..., Tn}. Each task; is a 3-tuple  task deadlines are equal to task period (arrival time of the
{Ti, Di,Ci}, whereT; is the period of the taslb; is the rel- next instance of the same task). The task schedule under
ative deadline an@; is the worst case task execution time the Dual Speed (DS) algorithm is shown in Fig. 1(b). The
(WCET) at the maximum processor speed. We assume thespeeds computed by the DS algorithm [23] Bre- 0.916
relative task deadline is equal to the peri@ & T, for andL = 0.78. At timet = 0, the system begins execution



|} Taskarrival
't' isexecution time
at maximum speed

2 3 4 5 6 7 8 9 10
time —=

(a) Task description: Task arrival times and WCET at maximum speeed

H=oa1 , H=0o1 H= 001
e I s R O
H=0.91 e H=0;91
@ L=078 _p=oo1
0 1 2 3 4 5 6 7 8 i 9 10
(b) Dual Speed Schedule time —
n=07s /N =08 n =078
} t } ) b7
;l n=078 __n=083 lil
n=078
0 1 2 3 4 5 6 7 8 9 10
time —=

(c) Improved Schedule

sibility of higher priority tasks, the system can continue ex-
ecution at thd. speed even when tasks are blocked. An
analysis of the task set (described later in Section 3) con-
cludes that task, can execute at the speed even when
tasks are blocked. When task; blocks a task, switch-
ing to a speed ofiz3 = 0.833 ensures meeting all deadlines.
Based on this analysis, an improved schedule is shown in
Fig. 1(c). The system begins execution at the lower speed
L = 0.78. When tasky1 blocks taskry; at system start,
the speed is unchanged and tagksandt, 1 execute at the

L speed as opposed to thHespeed under DS algorithm. At

t = 3.85, taskts 1 begins execution at thespeed and task
T12 is blocked on arrival. The system switches to a speed of
n = 0.83 (as opposed to a speedtbf= 0.91) and all tasks
with a deadline less than or equaltte:- 10 are executed at
this speed. All tasks meet the deadline and the schedule is
shown in Fig. 1(c).

3 Static Slowdown Factors

3.1 Constant Static Slowdown

Feasibility conditions for non-preemptive scheduling are
well studied [8]. Theoptimalfeasibility condition based on

Figure 1. (a) Task arrival times and deadlines (NOT a task the EDF scheduling policy (with no inserted idle intervals)

schedule), tasks, andts arrive att = 0 and taskr; arrives
slightly later thari = 0. (b) Task schedule based on the Dual
speed (DS) algorithm. (c) Improved energy efficiency task

schedule with fewer transitions to a higher speed.

is stated below.

Theorem 1 [8] A periodic task set, sorted in non-
decreasing order of the task period, can be feasibly sched-
uled under a non-preemptive EDF scheduling policy iff,

n Ci
at theL speed and schedules the highest priority ready task, 2T < 1 (2)
To1. Taskty; arrives immediately and is blocked by task =
To1. The processor speed is increasedHt@n blocking . . i-1 ¢
and jobst,; andty1 execute at théd speed. We consider Vi, 1<i<mVt Ti<t<Ti: G +k21l?kJCk <t (3)

an improvement to the DS algorithm, whereby the system
can switch back to the speed, when a lower priority task Note that it suffices to check the feasibility at time in-
than the blocking task begins execution. Thus the systemstances corresponding to the deadline of higher and equal
changes to the speed when taskg 1 is scheduled. Joby » priority tasks, called the scheduling points. The scheduling
arrives during the execution o1 and the processor speed points for each task are given byg = {KTjlj=1,...,ik=
is again changed tbl. The remaining portion of tasks 1 1,..,|1]}. Theorem 1 leads to the computation of the op-
and taskr; 2 are scheduled at the speed. The complete o constant static slowdown factor, as described next.
task schedule with the speed transitions is shown in Fig.
1(b). Corollary 2 : A periodic task set, sorted in non-decreasing
Note that theH speed is computed using a simple feasi- order of their period, can be feasibly scheduled under the
bility test in the DS algorithm. This can result in a higher nNon-preemptive EDF scheduling policy, ata constant slow-
H speed - thereby consuming more energy. Fhepeed  down ofn, iff
can be computed using the optimal feasibility test in [8]
(given by Theorem 1 in Section 3.1). For the given example,
the optimal feasibility test computes a speedicf 0.833
which suffices as thel speed. Furthermore, we show that
switching to theH speed is not always required when a task
is blocked. If a blocking task does not compromise the fea- (5)

120G
-y dca 4
N2, S (4)

L 1 1t
VI,1<I§n,Vt,T1§t§T,. H(C|+I(Z1L?kJCk)§t



3.2 Stack Based Slowdown Algorithm the system. The processor speed is always set to the slow-

down factor at the top of the stack(n)) and the system
Though Corollary 2 can compute a constant slowdown, €xecution begins at the base speed (similar to the dual speed
the system can be under-utilized at this slowdown and resultalgorithm). While jobJ. is executing, if jobJ; with a pri-

(6)

S|

in idle intervals. Similar to the dual speed algorithm[23], ©rity higher than that of joldc arrives, the higher priority
we can execute tasks at a lower processor speedlled  J0b Ji is blocked due to non-preemption. If the current job
the base speedn the absence of task blocking. The base IS blocking a higher priority job and the slowdown factor
speed is the same as thespeed under DS algorithm and Nc (0f job J) is greater than the stack top slowdown fac-
satisfies the following constraint: tor n(sn), then a new node is pushed on the stack with a
slowdown and priority that of job.. In that case, a node
2 Cy sn(nc, P (X)) is pushed on the stack (lines 6-12). A stack
kzl?k <1 top node $n) is popped off the stack when a job with a
a priority lower than the stack top prioritP(sn)) is exe-

If a higher priority task is blocked due to the non- cuted (lines 13-17). This ensures that all jobs with priority
preemptive nature of the system, the execution speed mayigher than that of the blocking tasB) are executed at a
need to be increased to ensure all deadlines. The impact oflowdown of at leastic, which guarantees all higher prior-
the blocking arising from the current task execution can be ity task deadlines. Since the stack is initialized with a base
computed. A slowdown factor af;, based on the blocking ~node with priority—co (equivalent to an infinitely large task
taskT;, suffices if the following constraints are satisfied: ~ deadline), the base node is never popped off the stack. If

the system becomes idle, all nodes except the base node are
1 popped from the stack (line 19). We prove that the SBS
— algorithm guarantees the feasibility of the system.

i-1
n (CH'ZL?I(JCk) <t ()

! k=1

VT <t<T:

The above constraints compute a slowdown factor that en-Algorithm 1 Stack Based Slowdown (SBS) Algorithm

sures meeting the deadlines of tasks with a priority higher 1. Notation :
than the b|OCking task. Note thatrlf is lower than the cur- 2 J: the current ]0b (instance aﬁ:) executing in the
rent processor speed, no change in speed is requingdsif system

greater than the current speed and ta$kocks a task, then 3
the processor speed is increased;tor he system switches o
back to the original speed (that before the system speed was 4 Stack Initialization :

increased t@);) on executing a task with lower priority than : Push base nodan(n, —) on the (empty) stack;
that of taskt; or if the system becomes idle. Thus we en-
sure that all tasks with a priority greater than or equal to

: sn : the node at the top of the stack

a

: On arrival of job J; in the system:
. if (processor IDLE before task arrivahen

6

7

that of taskt; execute at a speed of at least The speed 8
9

transitions resemble stackoperation and, indeed, we use

algorithm. 12:
13:
3.2.1 Slowdown Algorithm 14:
15:

Algorithm 1 describes the proposed Stack Based Slowdown

SetSpeegh(sn));

: else if(P (%) > P(J) and n¢ > n(sn)) then
a stack to implement the algorithm. Hence the proposed al- 1.
gorithm is referred to as the Stack Based Slowdown (SBS) 11

Pushsn(ne, P (J)) on the stack;

SetSpee(c);
end if

On execution of each johJ; :
while (P (J) < P(sn)) do
Popsn from the stack{Pop the stack top nodle

(SBS) algorithm. The algorithm maintains a st&gland 1? gg?swt:d](s D:
each stackode,sn has an associated slowdowry) @nd a ' P )
priority(P), represented asn(n,P). We use the notation  18: On system idle:

n(sn) andP (sn) to represent the slowdown and priority of

19:

Pop all nodes from stackxcepthe base node;

a stack node (sn) respectively. The stack is initialized with
a slowdown factor equal to these speedn) and a prior-
ity lower that the lowest priority that any job can achieve,
which is represented by . This node is called thbase
nodeand is represented asyn,—o) (lines 4-5). At all

Theorem 3 A task set, sorted in non-decreasing order of

times, letsn represent the node at the top of the stack and the relative task period, can be feasibly scheduled by the

let J; (an instance of task;) be the current job executing in

stack based slowdown algorithm at a base spgexhd a



slowdown factors); for taskT; if,
1 n
= z S <1 (8)
n k=1Tk
1 ot
— G+ —|C | <t
Ni ( I kzlt-rkJ k) B
9)

Proof: Suppose the claim is false and tdie the first
time that a task instance misses its deadline. tLbe the

Vi,l<i<m Vvt T1<t<T:

the latest time beforesuch that there are no pending jobs
with arrival times beforé’ and deadlines less than or equal

Thus, the total execution time of these jobs is bounded by
n_lb(cb+ z?;ll[%JCi). Since a task misses its deadline at
timet, the execution time for the jobs i and that of job

Jp exceedsX, the length of the interval. Therefore,

1 bt X
m(cb-i- i;LfJCi) > X

SinceX < Ty, this contradicts (9). Hence all tasks meet
the deadline when scheduled by the stack based slowdown
algorithm. ]

3.2.2 Computational Complexity

tot. Since no requests can arrive before system start timeThe computation of task slowdown factors depends on the

(time=0), t' is well defined. LetA be the set of jobs that

arrive no earlier thati and have deadlines at or befordy
choice oft’, the system is either idle befoteor executing

a job with a deadline greater thar\We consider both these

number of scheduling points for each task. The number
of scheduling points are determined by the maximum task
period and the computation of slowdown factors is fast in
practice. Theoretically, the number of scheduling points

cases separately. Note that by the EDF priority assignmentcan be pseudo polynomial in the problem size. Note that

only jobs inA are allowed tcstart execution int’, t]. Also,
there are pending requests of jobsAimat all times during

the computation of slowdown factors is done off-line and
it is beneficial to compute them with the optimal feasibility

the intervalt’,t] and the system is never idle in the interval. test.

Case I: If the system were idle at tim, then only the
jobsinA execute in the intervdt’ t]. Let X =t —t'. Since
all the jobs are periodic in nature and the jobdAirarrive
no earlier thart’, the number of executions of each task
in A in the intervalX is bounded by % |. By the stack

based slowdown algorithm, the base node is never poppecyv
during the entire execution. Nodes pushed on the stack hav
a speed higher than the base speed, and all tasks execute Bt

a speed greater than or equal to the base speéthus the
execution time of each job Bounded bCi/n. Since atask

misses its deadline at timigthe execution time for the jobs

in A exceeds the interval lengih.

Therefore,
n X 1
—|C=>X
i;LTiJ N
which implies
110G
=y —=—>1
n&gT

which contradicts (8).

Case ll: Let J, be the job that blocks a job iA, exe-
cuting at timet’ with a deadline greater thdn Sincel, is
executing at time’, with a deadline greater thgtX < Ty
andA C {13,...1¢}, whereT < X andk < b. Only the task
J, and the tasks i\ execute in the intervat’,t]. When

Dynamic Slack Reclamation

Dynamic slack arises due to early task completions as
ell as when tasks execute at a higher speed than the base
peed. This slack can be reclaimed to further reduce the
ocessor speed, resulting in increased energy savings.

4.1 Motivation

One of the limitations of prior works is that they do not
reclaim slack when task are blocked in the system (e.qg.
DSDR [23]). This can severely limit slack reclamation un-
der non-preemptive scheduling and we overcome this lim-
itation in our work. When no higher priority tasks are
blocked, it is known that tasks can reclaim the higher prior-
ity (than the task priority) run-time while meeting all dead-
lines. However, these techniques cannot be directly applied
to blocking tasks. We show that reclaiming higher priority
run-time (slack) when (higher priority) tasks are blocked
can lead to tasks missing the deadline. We illustrate this
with an example, shown in Fig. 2. The task set is comprised
of three tasks with the following parameters:

1= (5, 5, 2), T = (10, 10, 3), I3 = (10, 10, 3)

the taskty, blocks another task, if the stack top slowdown
is smaller thamp, thenny, is pushed on the stack. Since
this stack node is not popped until all jobs with priority
greater thart, execute, the speed of all jobs in this inter-
val is at leastn, (Note that blocking of other jobs in the

interval can only increase the speed to greater tipgn

The arrival times are as shown in Fig 2(a) witharriving
att = 1 and taskg, andts arriving att = 0. The system
is feasible withU = n = 1.0 and the stack top slowdown
is always bey(sn) = 1.0. The task schedule, where tasks
reclaim higher priority run-time is shown in Fig. 2(b). Task



T, completes earlier at time= 0.5, leaving an unused run- } Task arrival .10 worstcase execution time

time of 25 time units. This run-time has the same priority } Task deadiine actual execution time
as taskrz and can be reclaimed when no tasks are blocked. [ runtime usage
Using the available free run-time task computes a slow- talk L

down factor to complete at time= 6.0 (free run-time of T, L2 P

t = 2.5 and its own budget of 3 time units). Taskarrives e = T T T S ‘
at timet = 1 and is blocked by tasks. If task 13 contin- 2 IR ‘

ues execution at the same speed, we see thattasisses 10 - T T L S
its deadline oft = 6.0. It can be seen than the blocking o 1 2 3 a4 5 & 7 .8 9 10

. . . . . time —
time for taskt; cannot egkeed 3 time units, else it can miss

its deadline. Thus we need to limit the blocking time to
3 time units. This can require computing a different slow-

(a) Task set description: Task arrival times and WCET

Deadline miss

down factor when a task is blocked. When taglarrives at 4 blocked o

timet = 1, a new slowdown factor is computed so that the tasrk Y o=
remaining portion of tasks completes in 3 time units. This o S N ; | ‘ ‘ ! ‘ ‘ ‘
bounds the blocking time of tagk to meet its deadline as T, i —— | ‘ ‘ | ‘ ‘ !
shown in Fig. 2(c). N — . o
4.2 Computing Maximum Blocking Time (B™®) SR fime’ —="

(b) Incorrect salck reclamation and deadline miss

We compute the maximum blocking timB{{?) permis-

sible to taskt; while guaranteeing all higher priority task Deadiine met

blocked

deadlines.B"® is used to bound the blocking time under task } ‘ —
slack reclamation. When tagk blocks another task, the Wl : ‘ ‘ ‘ ‘
stack top slowdown is at IeaBta>(ni , r_]) and higher prior- T, D;- — limiting the run-time usage when blocking

ity tasks (than the blocking task) are executed at least at this . i ‘ ‘ ‘ ‘ -y
3

slowdown factor. Given tasks are sorted by their period, we

computeB"® for taskt; such that the following condition SO A A
is satisfied. (b) Correct Slack Reclamation under task blocking
1 -1 Figure 2. Dynamic slack reclamation of blocking tasks: (a)
VT <t<Ti: B4 —— ( | JCk) <t Task arrival times and deadlines (NOT a task schedule). (b)
maxni,n) \ ;& T Reclaiming higher priority run-time by a blocking tagi)
(10)  and taskt; missing the deadline. (c) Limiting the slack
reclamation by the maximum blocking time for taskand

4.3 Slack Reclamation Preliminaries all tasks meet the deadline.

Dynamic slack reclamation algorithms manage the allo-
cation of time budgets for tasks as well as the time budgetsexecution, the blocking run-time for the job is initialized to
that can be reclaimed during execution. We definertme B The blocking run-time is used to limit the blocking
timeof a job as the time budget allocated to the job, basedtime under slack reclamation.
on the task workload and the slowdown factor. The run- Under the SBS algorithm, the stack top noste, is cru-
time of a job with a workloadC (at maximum speed) and cial and determines the time budget &ach job execution.
slowdownn, is C/n. Each run time has a time budget and We say a stack noden dominatessn; if n(sn) > n(sn;)

a priority associated with it, and is represented by a pair OF equivalentlysn; is dominated bysn. Since only higher
(t,P). The priority of a run time associated with a job is slowdown factors than the stack top slowdown factor are

the same as the ]0b pnonty A JOb consumes run time as pUShed on the StaCk, a node dominates all nodes below it in
it executes. The unused run time of jobs is maintained in the stack. We use similar notation and definitions used in
a priority list called theFree Run Time list (FRT-lis{R3]. [23] to explain our algorithm.

A FRT-list is maintained sorted by priority of the run-time,
with the highest priority at the head of the list. Run-time
is always consumed from the head of the list. In addition o R/(t): the available run time of jobj at timet.

to the run-time of a task, blocking run-times also main-

tained for each task. When a instance of task begins e B{(t) : the blocking run-time available t§ at timet.

¢ J : the current job of task;.



RE(t) : the free run time available for Jab- the run
time from the FRT-list with priority> P (J)

C/(t) : the residual workload of jofi.

RY(D) :
putation based on the slowdown of noglg and that
of its immediately dominatedode (adjicentnode be-
low nodesny in the stack)sry, on a stack. If)p and
Ng be the slowdown of nodesy, andsry respectively
(No > Na), thenR¥(D) = (£ — &), is the difference
in run time at the two speegis.

Algorithm 2 Dynamic Slack Reclamation Algorithm

1
2:
3:

Stack Initialization:
Initialize stack with a base nodg,(—)
FRT-list is initially empty.

The difference between the run-time com-

slack reclamation are (1) early completion of tasks and (2)
execution at speed greater than the base sppedgfore

the execution of each job, the algorithm reserves a run-time
for the job based on the slowdown factor of the stack top
node,sn. As shown in line 15, jold; (an instance of task

1) is assigned a run-time @ /n(sn). The blocking run-

time of jobJ; is initialized toB®*. If nodesn is not the base
node then tasks are executed faster than the base speed. The
extra time budget that would be available if the task were ex-
ecuted at the base speed, is the slack in the system. For each
stack nodesrnp dominating the base node, the difference in
the budget arising from a slowdownigpfsrny) and the slow-
down factor of the (adjacenijnmediate dominatedode
n(sny), is added to the FRT-list with a priority ¢¥(sm)

as shown in line 18 of the algorithm. The other source of
dynamic slack is when a task completes before consuming
its allocated time budget. On job completion, the unused
run time is added to FRT-list with the same priority as the

4 Qn af”"a' Of.JOb J in the system: job priority. When no tasks are blocked, a jglzan use its

o if (.‘]C is runningand P () > P (J)) then own run time as well higher priority run-time from FRT-list

6. if (Nc>n(sn)) then (i.e. RE(t). The task slowdown factor is computed to uti-

v Pgsh sic, P (J)) on the stack; lize the maximum time budget available (line 20). The dy-

g endif ) namic slowdown factor is the ratio of the residual workload

9: setSpee min{(Rg(t)cj-ng(t)),Bf(t)}); to the available runtime, as described in line 20 of Algo-

10: end if ' rithm 2. When tasks are blocked, the algorithm ensures that
the blocking task1) completes by its maximum blocking

11: On execution of each johJ; :

taskBI'®. This is achieved by limiting the run-time avail-

12: while (P(J) < P(sn)) do able for taskr to min{(RF (t) + R (t)),B/(t)}. The slow-

13:  Pop t.he stack top node; down computation on blocking is shown in line 9 of Algo-
14: end while rithm 2. Note that it suffices to recompute the slowdown
15: R (t) =Ci/n(sn); when the first task is blocked during the execution of the
16: B (t) = B blocking task (no re-computation is required for subsequent
17: for (each stackodesn, dominating the base noddd blocking by the same johl{)).

18:  Add (RM(D),P(smp)) to FRT-list; The following rules are used by the slack reclamation
19: end for ) algorithm. Note that the rules need to be applied only on
20: setSpe _r(t)'JrR_F(t))? the arrival and completion of a task in the system.

21: On Completion of job J;: - e As job J executes, it consumes run time at the same
22: Add run-time(R (t), P (3)) to FRT-list; speed as the wall clock (physical time) [23]Rf (t) >

23: On System Idle: 0, the run time is used from the FRT-list, eREt) is

24: Pop all nodes except base node used.

4.4 Slack Reclamation Algorithm

e When the system is idle, it uses the run time from the
FRT-list if the list is non-empty.

¢ When a (high priority) task is blocked, the executing

We propose a slack reclamation scheme that works with
the SBS algorithm and is called the Stack Based Slowdown
with Dynamic Reclamation (SBS-DR) algorithm. The SBS-
DR policy is described in Algorithm 2. The system initial-
izes the stack with a base node and an empty FRT-list (line
2). The conditions under which stack nodes are pushed and
popped are the same as the SBS algorithm (shown in lines We prove that tasks can reclaim the slack in this manner
6-8 and lines 12-14 of Algorithm 2). The two sources of while guaranteeing all deadlines.

task consumes the blocking run-time at the same speed
as the wall clock (physical time). If no task is blocked,
thenBf(t) is unchanged. Note that the blocking run-
time management is performed in addition to the above
mentioned run-time management.



Theorem 4 A task set, sorted in non-decreasing order of Note that, with no dynamic slack reclamation, the base
the relative task period, can be feasibly scheduled by thespeed § = U) is the lower bound on the task slowdown
stack based slowdown with dynamic reclamation (SBS-DR)factor. However non-preemptive scheduling can demand a
algorithm (Algorithm 2) at a base speedand slowdown  a higher slowdown factanmax) (as given by Corollary 2).
factorn; for taskr; if, The DS and the SBS algorithms exploit opportunities to ex-
n C ecute at a speed lower thgpax to result in energy savings.
z it (11) The extent of energy savings are proportional to the differ-
K=1 T ence in the slowdown factors given Qyandnmax. The dif-
- ference in the two speeds is captured by the gain fa@g, (
VET<t<T: C. n z t <t (12)  Which is defined ag = I — 1. For most of the gener-
- ated task-sets, the gain factor was uniformly distributed in
1 (.-1 ( the range of @ - 0.5 (for a few tasks with lower utilization,
=] k)

J|||—\

<t the gain factor was even larger). We have classified the task
sets into groups that have a gain factor within a range of
(13) Gt £ 0.05 and the results for a gain factor®f = 0.1 and
Gt = 0.3 are shown in Figure 3.

VLT <t<T: BM4

maxni,n) \,& T

The details of the proof are present in [9].
Figure 3 compares the energy consumption of the DS
5 Experimental Setup and th'e.SB'S algorithm normalized to the OCS aIgorithrn.
The utilization of the task set is shown along the X-axis
and the normalized energy consumption along the Y-axis.
We show that the DS algorithm only perform marginally
better than the OCS method. This is due to the fact that
task blocking is frequent under non-preemptive scheduling,
which results in tasks executing at the high speddr most
of the time. Note that the dual speed algorithm does not use
the optimal feasibility test to compute thiespeed. This can
lead to a higheH speed than the OCS algorithm and result
in higher energy consumption than OCS method, as seen at
U =90% Gt = 0.1). On the other hand, the SBS algorithm
uses the optimal feasibility test and always consumes less
energy than the OCS algorithm. Furthermore, the system
only switches to higher speeds when needed, as opposed
to the DS algorithm which switches to the high speld (
whenever a task is blocked. Thus the system manages to
remain in the lower speed for a longer duration under the
SBS algorithm, which leads to higher energy savings.

To evaluate the effectiveness of our proposed tech-
nigues, we perform simulations on randomly generated
task-sets each containing 10 to 15 tasks. A mixed work-
load is used with task periods uniformly distributed in the
following three ranges: [1000,4000], [5000,10000] and
[15000,20000]. An initial processor utilizatian of each
task was uniformly assigned in the range [0.05, 0.10]. The
worst case execution times (WCET) for each task was set.
to y; - Tj, at the maximum processor speed. The task exe-
cution times are scaled to ensure the feasibility of the task
set under non-preemptive scheduling. The execution times
are further reduced (uniformly scaled) to vary the processor
utilization of the task set. We simulate several task sets in
our experimentation and the average results are presented in
the paper.

The processor power model is based on the dynamic
power consumption in CMOS circuits, as indicated by (1).
The operating voltage range for the processor.&/Qo With a decrease in the utilization, the energy savings are
1. 8V which is the trend in current embedded processors. seen to decrease with Sl|ght irregularities (rise and fa”S) in
We normalize the operating speed and support discretdhe energy savings. Note that the relative difference in en-

slowdown factors in steps of@6 in the normalized range. ~ €rgy consumption & andnmax is lower at smaller slow-
down factors (lower utilization). This is an inherent power

5.1 Slowdown with no slack reclamation consumption characteristic and leads to a decrease in energy
savings at lower utilization The irregularity arises from the

niques based on statically computed slowdown factors (With Furthermore, the mapping of continuous slowdown factors
each task assumed to execute up to its WCET) : to discrete levels is also another cause. We show that the

SBS algorithm performs better than the DS algorithm and
» Optimal Constant Slowdown (OCS) algorithm (Corol-  results on an average 15% energy savings over the DS algo-
lary 2) rithm. The energy savings are seen to increase with higher
: gain factors as shown faBs = 0.1 andGs = 0.3. The
* Dual Speed (DS) algorithm [23] higher the gain factor, the higher is the difference in the base
« Stack Based Slowdown (SBS) algorithm, proposed in speed 1§) and the maximum speed, and the energy savings
this paper. of executing a task at the base speed are higher.



(a) Energy consumption normalized to OCS (gain factor, G_f = 0.1) (b) Energy consumption normalized to OCS (gain factor, G_f = 0.3)

1.1 T T T T T 1.1 T T T T T
Optimal Constant Slowdown (OCS) —— Optimal Constant Slowdown (OCS) ——
Dual Speed (DS) E Dual Speed (DS) -
1 Stack Based Slowdown (SBS) - 1 Stack Based Slowdown (SBS) s
- - B ST p———" - S—
> >
: 09 F : 09
w Y9I e L 3 w Y
‘‘‘‘‘‘‘‘ e g,
FRE S e R 3
S . " S e,
= L = SR
£ 0.8 £ 0.8 ..
0.7 t : 0.7 f T
0.6 . . . . . . . 0.6 . . . . . .
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80
% processor utilization at maximum speed % processor utilization at maximum speed

Figure 3. Energy consumption based on static slowdown factors, for gain fagtors0.1 andGs = 0.3.

5.2 Dynamic slack reclamation Comparing the energy savings@t = 0.1 andGs = 0.3,
we see that the relative energy savings reduce at higher

We now compare the additional energy gains achievedvalues of gain factor. Larger gain factors result in higher
through dynamic slack reclamation techniques. To generatenmaxand executing tasks at higher speed results in relatively
varying execution times, we vary thmest case execution higher energy consumption. Though dynamic slowdown re-
time (BCET)of a task as a percentage of its WCET. The ex- duces the energy consumption, it can increase the number
ecution times are generated by a Gaussian distribution withof transitions to higher speed and the relative energy sav-
meanu= (WCET+ BCET)/2 and a standard deviation, ings are seen to reduce at higher values of gain factor (Fig.
0= (WCET-BCET)/6. The BCET of the task is varied 4 (a) and 4 (b)).
from 100% to 10% in steps of 10%. Experiments were per-
formed on various task sets and Fig. 4 shows the energy
gains as BCET is varied at gain factors® = 0.1 and 6 Conclusions and Future Work
Gt = 0.2 (with a task utilization of 70% - 80%). The vari-
ation of BCET is shown along the X-axis and the energy ] .
consumption is along the Y-axis. The energy consumption We have presented energy aware scheduling algorithms

is normalized to the SBS algorithm (no slack reclamation). for non-preemptive systems. The techniques are impor-
We compare the following schemes: tant in systems where task preemption is impossible or pro-

hibitively expensive (such as ultra-low power sensor net-

» Stack Based Slowdown (SBS) algorithm. work nodes). Compared to preemptive scheduling, a higher
e Stack Based Slowdown with Dynamic Reclamation SPeed may be necessary under non-preemptive scheduling.
(SBS-DR) algorithm. Identifying the time intervals when a higher speed is nec-

) ) essary is important to reduce the energy consumption. The
+ Dual Speed Dynamic Reclamation (DSDR) [23] algo- stack based slowdown (SBS) algorithm minimizes transi-
rithm tions to a higher speed and increases the energy efficiency
Note that dynamic slack reclamation leads to energy sav-0f the system. Simulation results show on an average 15%
ings even under worst case execution time, or BCET of savings in energy consumption when scheduling with static
100%. This is lecause slack also arises from (1) executing Slowdown factors. Our dynamic slack reclamation tech-
tasks at a speed higher than the base speed and (2) mappirfijgue enables slowdown of blocking tasks and result in an
tasks to discrete voltage levels. A decrease in the BCETadditional 20% increase in energy efficiency. We plan to
increases the slack in the system and we see a steady d@pply these scheduling techniques to communication sub-
crease in the energy consumption. SBS-DR performs slacksystems and extend it to a distributed scheduling policy.
reclamation (even under task blocking) to result on an aver-
age 20% energy gains over the SBS algorithm. On the othe
hand, the DSDR algorithm results in significantly higher en-
ergy consumption (even higher than SBS scheme - no slack
reclamation). This is because of the frequent titéoss to We acknowledge support from National Science Foun-
the higher speed and also due to the fact that no slack recladation (Award CCR-0098335) and from Semiconductor Re-
mation is performed when tasks are blocked in the system. search Corporation (Contract 2001-HJ-899).

rAcknowledgments



normalized Energy

(a) Energy consumption normalized to SBS (gain factor, G_f = 0.1)
1.3

Dual Speed Dynamic Reclamation (DSDR) A—
1.2 Stack Based Slowdown (SBS) ---#---

Wynamic Reclamation (SBS-DR) s
11+

0.9 [, —

normalized Energy

0.8 r

0.7 -

0.6 . L "
100 60 50 30 20
% variation of BCET

70 40 10

15
1.4
1.3
1.2
11

1
0.9
0.8
0.7

100

(b) Energy consumption normalized to SBS (gain factor, G_f = 0.3)

Dual Speed Dynamic Reclamation (DSDR) ——
Stack Based Slowdown (SBS) ----#----
Stack Based Slowdown with Dynamic Reclamation (SBS-DR) s |

60 50 40 30 20
% variation of BCET

90 80 70 10

Figure 4. Energy consumption with dynamic slack reclamation, for gain fa¢sers; 0.1 andG; = 0.3.

References

(1]

(2]

(3]

[4]

(5]

[6]
[7]

(8]

(9]

[10]

[11]

H. Aydin, R. Melhem, D. Moss; and P. M. Alvarez. Deter-
mining optimal processor speeds for periodic real-time tasks
with different power characteristics. Proc. of EuroMicro
Conference on Real-Time Systetws. 2001.

H. Aydin, R. Melhem, D. Moss, and P. M. Alvarez. Dy-

namic and aggressive scheduling techniques for power- [15]

aware real-time systems. Rroceedings of IEEE Real-Time
Systems Symposiypages 95-105, Dec. 2001.

S. Dolev and A. Keizelman. Non-preemptive real-time
scheduling of multimedia taskslournal of Real-Time Sys-
tems 17(1):23-39, 1999.

F. Gruian. Hard real-time scheduling for low-energy using
stochastic data and dvs processorsPloceedings of Inter-
national Symposium on Low Power Electronics and Design
pages 46-51, Aug. 2001.

I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. Srivas-

tava. Power optimization of variable-voltage core-based sys- [18]

tems. IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systenis8(12):1702-14, 1999.
Intel XScale Processor. Intel
(http://developer.intel.com/design/intelxscale)

T. Ishihara and H. Yasuura. \oltage scheduling problem
for dynamically variable voltage processor.liternational
Symposium on Low Power Eletronics and Desigages
197-202, Aug. 1998.

K. Jeffay, D. F. Stanat, and C. U. Martel. On non-preemptive
scheduling of periodic and sporadic tasksPhoc. of IEEE
Real-Time Systems Symposipages 129-139, Dec. 1991.
R. Jejurikar and R. Gupta. Energy aware non preemptive
scheduling in hard real-time systems. @ECS Technical
Report #05-xx, UC IrvineMar. 2005.

W. Kim, J. Kim, and S. L. Min. A dynamic voltage scaling
algorithm for dynamic-priority hard real-time systems using
slack time analysis. IfProceedings of Design Automation
and Test in Europgpages 788—-794, Mar. 2002.

W. Kwon and T. Kim. Optimal voltage allocation techniques
for dynamically variable voltage processorsProceedings
ofthe Design Automation Conferenpages 125-130, 2003.

Inc.

10

[12] J. Liu, P. H. Chou, and N. Bagherzadeh.

[13]
[14]

[16]

[17]

[19]

Communica-
tion speed selection for embedded systems with networked
voltage-scalable processors Rroceedings pf International
Symposium on Hardware/Software Codesigov. 2002.

J. W. S. Liu.Real-Time SystemPBrentice-Hall, 2000.

P. Pillai and K. G. Shin. Real-timdynamic voltage scal-
ing for low-power embedded operating systemsPtac. of
Symposium on Operating Systems Princigk@91.

G. Quan and X. Hu. Minimum energy fixed-priority
scheduling for variable voltage processors.Phoc. of De-
sign Automation and Testin Europgeages 782—87, 2002.

C. Rusu, R. Melhem, and D. Mosse. Maximizing rewards
for real-time applications with energy constraint4CM
Transactions on Embedded Computer Syste2(®):537—
559, Nov. 2003.

C. Rusu, R. Melhem, and D. Mosse. Multi-version schedul-
ing in rechargeable energy-aware real-time systemBrdn
ceedings of EuroMicro Conference on Real-Time Systems
pages 95-104, 2003.

Y. Shin, K. Choi, and T. Sakurai. Power optimization of
real-time embedded systems on variable speed processors.
In Proceedings of International Conference on Computer
Aided Designpages 365—-368, Nov. 2000.
Transmeta Crusoe Processor.
(http://Iwww.transmeta.com/technology)

Transmeta Inc.

20] N. Weste and K. EshraghiaRrinciples of CMOS VLSI De-

sign Addison Wesley, 1993.

[21] F. Yao, A. J. Demers, and S. Shenker. A scheduling model

[22]

(23]

[24]

for reduced CPU energy. IRroc. of IEEE Symposium on
Foundations of Computer Sciengages 374—-382, 1995.

H. Yun and J. Kim. On energy-optimal voltage scheduling
for fixed-priority hard real-time system3rans. on Embed-
ded Computing Sy2(3):393-430, 2003.

F. Zhang and S. T. Chanson. Processor voltage schedul-
ing for real-time tasks with non-preemptible sections. In
Proceedings of IEEE Real-Time Systems Sympogiages
235-245, Dec. 2002.

Y. Zhang, X. S. Hu, and D. Z. Chen. Task scheduling and
voltage selection for energy minimization.Rnoceedings of
the Design Automation Conferenpages 183-188, 2002.



