
Energy Aware Non-Preemptive Scheduling for Hard Real-Time Systems

Ravindra Jejurikar
Center of Embedded Computer Systems

University of California, Irvine
Irvine, CA 92697
jezz@ics.uci.edu

Rajesh Gupta
Department of Computer Science

University of California, San Diego
La Jolla, CA 92093
gupta@cs.ucsd.edu

Abstract

Slowdown based on dynamic voltage scaling (DVS) pro-
vides the ability to perform an energy-delay tradeoff in the
system. Non-preemptive scheduling becomes an integral
part of systems where resource characteristics makes pre-
emption undesirable or impossible. We address the prob-
lem of energy efficient scheduling of non-preemptive tasks
based on the Earliest Deadline First (EDF) scheduling pol-
icy. We present thestack based slowdownalgorithm that
builds upon the optimal feasibility test for non-preemptive
systems. We also propose a dynamic slack reclamation pol-
icy to further enhance energy savings. Simulation results
show on an average15%energy savings using static slow-
down factors and20% savings with dynamic slowdown,
over known slowdown techniques.

1 Introduction

The concept of a task that is invoked periodically is cen-
tral to a real-time system. Tasks are executed on a pro-
cessor and must complete execution in a timely manner.
Based on the task characteristics, priorities are assigned to
tasks, which drive the scheduling decisions. Task schedul-
ing can be classified into two broad categories:preemptive
scheduling andnon-preemptivescheduling. Under preemp-
tive scheduling, the current task execution can be preempted
by a higher priority task, whereas under non-preemptive
scheduling, a higher priority task can be scheduled only
after the completion of the current task. Though preemp-
tive scheduling can guarantee a higher system utilization,
there are scenarios where properties of hardware devices
and software configuration make preemption either impos-
sible or prohibitively expensive. Non-preemptive schedul-
ing also has the advantages of accurate response time anal-
ysis, ease of implementation, no synchronization overhead
and reduced stack memory requirements. Non-preemptive
scheduling is used in light weight multi-tasking kernels and

has been shown to be beneficial in multimedia applications
[3]. This work focuses on energy efficient scheduling of
non-preemptive real-time tasks.

The two major techniques of minimizing the processor
energy consumption are:shutdownandslowdown. Slow-
down through dynamic voltage and frequency scaling (re-
ferred to as DVS) is known to be effective in energy mini-
mization [18, 1, 23]. A reduction in the supply voltage de-
creases the power consumption of the processor because of
the quadratic relationship between power and voltage. The
power consumption,P, is given by:

P=Ce f f �V
2
dd � f (1)

whereCe f f is the effective switching capacitance,Vdd is the
supply voltage andf is the operating frequency. However,
the transistor gate delay (and hence frequency) depends on
the voltage and a decrease in voltage has to be accompa-
nied by a decrease in processor frequency. There is a linear
dependence between frequency and voltage [20], resulting
in a linear increase in the execution time of a task. Thus
voltage scaling provides the ability to perform an energy-
delay tradeoff in the system. Real-time systems have strict
timing requirements and slowdown has to be performed ju-
diciously in achieving our goal of minimizing energy.

Previous works on energy aware scheduling have mainly
focussed on preemptive scheduling. Among the earliest
works, Yaoet al. [21] presented an optimal off-line al-
gorithm to schedule a given set of jobs with arrival times
and deadlines. For a similar task model, optimal algorithms
have been proposed for fixed priority scheduling [15, 22]
and scheduling over a fixed number of voltage levels [11],
[7]. Energy efficient scheduling of periodic real-time task
sets has also been addressed. Real-time feasibility analysis
has been used in previous works to compute static slow-
down factors for tasks [18], [4]. Aydinet al. [1] have
addressed the problem of energy minimization considering
the task power characteristics. When tasks complete ear-
lier than the worst case, there is opportunity for additional
(dynamic) slowdown which increases the energy savings

[14, 2, 10]. The problem of maximizing the system value
for a specified energy budget, as opposed to minimizing the
total energy, is addressed in [17, 16]. Note that these works
assume a preemptive task system. Non-preemptive schedul-
ing has been addressed primarily in the context of multi-
processor scheduling [5]. Zhanget al. [24] have given a
framework for non-preemptive task scheduling and voltage
assignment for dependent tasks on a multi-processor sys-
tem. They have formulated the voltage scheduling problem
as an integer programming problem. The problem of mini-
mizing the energy consumption by performing a slowdown
tradeoff in the computation and communication subsystems
is addressed in [12].

In this work, we address non-preemptive scheduling of
periodic tasks on a uni-processor system. Zhang and Chan-
son have addressed energy efficient scheduling for the same
model and have presented the dual speed (DS) algorithm
[23]. The DS algorithm computes two speeds, a low speed
L based on an analysis for an independent task set and a
high speedH taking into account the blocking time aris-
ing due to non-preemption. Note that the computation of
the high speed, based on a sufficient feasibility test, is not
optimal. This can result in using aH speed higher than re-
quired and consume more energy. Furthermore, the dual
speed algorithm switches to the high speed whenever any
task is blocked, which may not be needed during every
task blocking. We propose a novel algorithm (thestack
based slowdownalgorithm) that minimizes the transitions
to a higher speed by computing different slowdown fac-
tors based on the blocking task. The algorithm is based on
the optimal feasibility test under non-preemptive schedul-
ing [8]. We also enhance the stack based slowdown algo-
rithm with dynamic slack reclamation for additional energy
savings. While earlier works do not perform dynamic slow-
down when tasks are blocking high priority tasks, we over-
come this limitation in this work.

The rest of the paper is organized as follows: Sect. 2
describes the preliminaries and formulates the problem. In
Sect. 3, we present the stack based slowdown algorithm for
non-preemptive task scheduling. A dynamic slack reclama-
tion algorithm follows in Sect. 4. The simulation results are
given in Sect. 5 and we conclude in Sect. 6.

2 Preliminaries

2.1 System Model

The system consists of a task set ofn periodic real time
tasks, denoted asΓ = fτ1; :::;τng. Each taskτi is a 3-tuple
fTi;Di;Cig, whereTi is the period of the task,Di is the rel-
ative deadline andCi is the worst case task execution time
(WCET) at the maximum processor speed. We assume the
relative task deadline is equal to the period (Di = Ti , for

each taskτi). Each invocation of the task is called ajob
and thekth invocation of taskτi is denoted asτi;k. Tasks
are non-preemptively scheduled on a single processor sys-
tem. A task set is said to befeasible if all tasks meet
the deadlines. The processor utilization for the task set,
U = ∑n

i=1Ci=Ti � 1 is a necessary condition for the feasi-
bility of any schedule [13]. We say that an executing task
is blockinganother task, if a higher priority task is waiting
in the ready-queue for the completion of current task exe-
cution. Equivalently, the higher priority task isblockedin
the system. Note that a blocking task would have been pre-
empted under a preemptive scheduling policy.

2.2 Processor Model

Recent processors such as the Intel XScale [6] and Trans-
meta Crusoe [19] support variable frequency and voltage
levels, that can be varied at run-time. We define aslowdown
factor as a normalized operating frequency. At a given in-
stance, it is the ratio of the current frequency to the max-
imum processor frequency. Note that the voltage and fre-
quency levels are tightly coupled, and affrequency, volt-
ageg pair is associated with each slowdown factor. We as-
sume that processing speed can be varied over a discrete
range, with fmin and fmax being the minimum and maxi-
mum operating frequency respectively. We normalize the
speed to the maximum frequency to have discrete points in
the interval[ηmin;1], whereηmin = fmin= fmax. The over-
head incurred in changing the processor speed is assumed
to be incorporated into the task execution time. Consider-
ing static and dynamic slowdown, a speed change can occur
only when a task begins execution or when a higher priority
task is blocked. This overhead is constant and can be incor-
porated in the worst case processing time of a task. Note
that the same assumption is made in prior works [1],[2],
[21],[23].

2.3 Motivating Example

Consider a real time system comprised of 3 periodic
tasks as described below,

τ1 = f4;4;1g;τ2= f6;6;2g;τ3= f10;10;2g

To generate a scenario where tasks are blocked, we assume
that taskτ2;1 (first instance of taskτ2) andτ3;1 arrive at time
t = 0 and taskτ1;1 arrives just after taskτ2;1 begins exe-
cution. Figure 1(a) shows the jobs for each task at their
arrival time and their workload at maximum speed. All
task deadlines are equal to task period (arrival time of the
next instance of the same task). The task schedule under
the Dual Speed (DS) algorithm is shown in Fig. 1(b). The
speeds computed by the DS algorithm [23] areH = 0:916
andL = 0:78. At timet = 0, the system begins execution

2

time

task

2

2

2

time

task

’t’ is execution time
at maximum speed

t

Task arrival

time

task

Dual Speed Schedule(b)

= 0.91H = 0.91H

Improved Schedule(c)

Task description: Task arrival times and WCET at maximum speeed(a)

2 3 4 5 6 7 8 9 10

τ1

2τ

τ3

= 0.78η

= 0.78η

= 0.83η

= 0.78η

1

0 1 2 3 4 5 6 7 8 9 10

τ1

2τ

τ3

1 1 1

0

0

η

= 0.91H

= 0.78L= 0.91H

= 0.91H

= 0.91H

= 0.78η

= 0.83

1 2 3 4 5 6 7 8 9 10

τ1

2τ

τ3

= 0.78L

= 0.78L

= 0.78η

Figure 1. (a) Task arrival times and deadlines (NOT a task
schedule), tasksτ2 andτ3 arrive att = 0 and taskτ1 arrives
slightly later thant = 0. (b) Task schedule based on the Dual
speed (DS) algorithm. (c) Improved energy efficiency task
schedule with fewer transitions to a higher speed.

at theL speed and schedules the highest priority ready task,
τ2;1. Taskτ1;1 arrives immediately and is blocked by task
τ2;1. The processor speed is increased toH on blocking
and jobsτ2;1 andτ1;1 execute at theH speed. We consider
an improvement to the DS algorithm, whereby the system
can switch back to theL speed, when a lower priority task
than the blocking task begins execution. Thus the system
changes to theL speed when taskτ3;1 is scheduled. Jobτ1;2
arrives during the execution ofτ3;1 and the processor speed
is again changed toH. The remaining portion of taskτ3;1

and taskτ1;2 are scheduled at theH speed. The complete
task schedule with the speed transitions is shown in Fig.
1(b).

Note that theH speed is computed using a simple feasi-
bility test in the DS algorithm. This can result in a higher
H speed - thereby consuming more energy. TheH speed
can be computed using the optimal feasibility test in [8]
(given by Theorem 1 in Section 3.1). For the given example,
the optimal feasibility test computes a speed ofη = 0:833
which suffices as theH speed. Furthermore, we show that
switching to theH speed is not always required when a task
is blocked. If a blocking task does not compromise the fea-

sibility of higher priority tasks, the system can continue ex-
ecution at theL speed even when tasks are blocked. An
analysis of the task set (described later in Section 3) con-
cludes that taskτ2 can execute at theL speed even when
tasks are blocked. When taskτ3;1 blocks a task, switch-
ing to a speed ofη3 = 0:833 ensures meeting all deadlines.
Based on this analysis, an improved schedule is shown in
Fig. 1(c). The system begins execution at the lower speed
L = 0:78. When taskτ2;1 blocks taskτ1;1 at system start,
the speed is unchanged and tasksτ2;1 andτ1;1 execute at the
L speed as opposed to theH speed under DS algorithm. At
t = 3:85, taskτ3;1 begins execution at theL speed and task
τ1;2 is blocked on arrival. The system switches to a speed of
η = 0:83 (as opposed to a speed ofH = 0:91) and all tasks
with a deadline less than or equal tot = 10 are executed at
this speed. All tasks meet the deadline and the schedule is
shown in Fig. 1(c).

3 Static Slowdown Factors

3.1 Constant Static Slowdown

Feasibility conditions for non-preemptive scheduling are
well studied [8]. Theoptimalfeasibility condition based on
the EDF scheduling policy (with no inserted idle intervals)
is stated below.

Theorem 1 [8] A periodic task set, sorted in non-
decreasing order of the task period, can be feasibly sched-
uled under a non-preemptive EDF scheduling policy iff,

n

∑
i=0

Ci

Ti
� 1 (2)

8i;1< i � n;8t;T1� t � Ti : Ci +
i�1

∑
k=1

b
t
Tk
cCk � t (3)

Note that it suffices to check the feasibility at time in-
stances corresponding to the deadline of higher and equal
priority tasks, called the scheduling points. The scheduling
points for each taskτi are given bySi = fkTjj j = 1; :::; i;k=
1; :::;bTi

Tj
cg. Theorem 1 leads to the computation of the op-

timal constant static slowdown factor, as described next.

Corollary 2 : A periodic task set, sorted in non-decreasing
order of their period, can be feasibly scheduled under the
non-preemptive EDF scheduling policy, at a constant slow-
down ofη, iff

1
η

n

∑
i=0

Ci

Ti
� 1 (4)

8i;1< i � n;8t;T1� t � Ti :
1
η

Ci +

i�1

∑
k=1

b
t
Tk
cCk

!
� t

(5)

3

3.2 Stack Based Slowdown Algorithm

Though Corollary 2 can compute a constant slowdown,
the system can be under-utilized at this slowdown and result
in idle intervals. Similar to the dual speed algorithm[23],
we can execute tasks at a lower processor speedη̄, called
thebase speed, in the absence of task blocking. The base
speed is the same as theL speed under DS algorithm and
satisfies the following constraint:

1
η̄

n

∑
k=1

Ck

Tk
� 1 (6)

If a higher priority task is blocked due to the non-
preemptive nature of the system, the execution speed may
need to be increased to ensure all deadlines. The impact of
the blocking arising from the current task execution can be
computed. A slowdown factor ofηi , based on the blocking
taskτi , suffices if the following constraints are satisfied:

8t;T1� t � Ti :
1
ηi

Ci +

i�1

∑
k=1

b
t
Tk
cCk

!
� t (7)

The above constraints compute a slowdown factor that en-
sures meeting the deadlines of tasks with a priority higher
than the blocking task. Note that ifηi is lower than the cur-
rent processor speed, no change in speed is required. Ifηi is
greater than the current speed and taskτi blocks a task, then
the processor speed is increased toηi . The system switches
back to the original speed (that before the system speed was
increased toηi) on executing a task with lower priority than
that of taskτi or if the system becomes idle. Thus we en-
sure that all tasks with a priority greater than or equal to
that of taskτi execute at a speed of at leastηi . The speed
transitions resemble astackoperation and, indeed, we use
a stack to implement the algorithm. Hence the proposed al-
gorithm is referred to as the Stack Based Slowdown (SBS)
algorithm.

3.2.1 Slowdown Algorithm

Algorithm 1 describes the proposed Stack Based Slowdown
(SBS) algorithm. The algorithm maintains a stackS and
each stacknode,sn, has an associated slowdown (η) and a
priority(P), represented assn(η;P). We use the notation
η(sn) andP (sn) to represent the slowdown and priority of
a stack node (sn) respectively. The stack is initialized with
a slowdown factor equal to thebase speed(η̄) and a prior-
ity lower that the lowest priority that any job can achieve,
which is represented by�∞. This node is called thebase
nodeand is represented assn(η̄;�∞) (lines 4-5). At all
times, letsnt represent the node at the top of the stack and
let Jc (an instance of taskτc) be the current job executing in

the system. The processor speed is always set to the slow-
down factor at the top of the stack (η(snt)) and the system
execution begins at the base speed (similar to the dual speed
algorithm). While jobJc is executing, if jobJi with a pri-
ority higher than that of jobJc arrives, the higher priority
job Ji is blocked due to non-preemption. If the current job
is blocking a higher priority job and the slowdown factor
ηc (of job Jc) is greater than the stack top slowdown fac-
tor η(snt), then a new node is pushed on the stack with a
slowdown and priority that of jobJc. In that case, a node
sn(ηc;P (Jc)) is pushed on the stack (lines 6-12). A stack
top node (snt) is popped off the stack when a job with a
priority lower than the stack top priority (P (snt)) is exe-
cuted (lines 13-17). This ensures that all jobs with priority
higher than that of the blocking task (Jc) are executed at a
slowdown of at leastηc, which guarantees all higher prior-
ity task deadlines. Since the stack is initialized with a base
node with priority�∞ (equivalent to an infinitely large task
deadline), the base node is never popped off the stack. If
the system becomes idle, all nodes except the base node are
popped from the stack (line 19). We prove that the SBS
algorithm guarantees the feasibility of the system.

Algorithm 1 Stack Based Slowdown (SBS) Algorithm
1: Notation :
2: Jc : the current job (instance ofτc) executing in the

system
3: snt : the node at the top of the stack

4: Stack Initialization :
5: Push base nodesn(η̄;�∞) on the (empty) stack;

6: On arrival of job Ji in the system:
7: if (processor IDLE before task arrival)then
8: SetSpeed(η(snt));
9: else if(P (Ji)> P (Jc) and ηc > η(snt)) then

10: Pushsn(ηc;P (Jc)) on the stack;
11: SetSpeed(ηc);
12: end if

13: On execution of each jobJi :
14: while (P (Ji)< P (snt)) do
15: Popsnt from the stack;fPop the stack top nodeg
16: end while
17: SetSpeed(η(snt));

18: On system idle:
19: Pop all nodes from stack,exceptthe base node;

Theorem 3 A task set, sorted in non-decreasing order of
the relative task period, can be feasibly scheduled by the
stack based slowdown algorithm at a base speedη̄ and a

4

slowdown factorsηi for taskτi if,

1
η̄

n

∑
k=1

Ck

Tk

!
� 1 (8)

8i;1< i � n; 8t;T1� t � Ti :
1
ηi

Ci +

i�1

∑
k=1

b
t
Tk
cCk

!
� t

(9)

Proof: Suppose the claim is false and lett be the first
time that a task instance misses its deadline. Lett 0 be the
the latest time beforet such that there are no pending jobs
with arrival times beforet 0 and deadlines less than or equal
to t. Since no requests can arrive before system start time
(t ime= 0), t 0 is well defined. LetA be the set of jobs that
arrive no earlier thant 0 and have deadlines at or beforet. By
choice oft 0, the system is either idle beforet 0 or executing
a job with a deadline greater thant. We consider both these
cases separately. Note that by the EDF priority assignment,
only jobs inA are allowed tostart execution in[t 0; t]. Also,
there are pending requests of jobs inA at all times during
the interval[t 0; t] and the system is never idle in the interval.

Case I: If the system were idle at timet 0, then only the
jobs inA execute in the interval[t 0; t]. Let X = t� t 0. Since
all the jobs are periodic in nature and the jobs inA arrive
no earlier thant 0, the number of executions of each taskτi

in A in the intervalX is bounded bybX
Ti
c. By the stack

based slowdown algorithm, the base node is never popped
during the entire execution. Nodes pushed on the stack have
a speed higher than the base speed, and all tasks execute at
a speed greater than or equal to the base speedη̄. Thus the
execution time of each job isbounded byCi=η̄. Since a task
misses its deadline at timet, the execution time for the jobs
in A exceeds the interval lengthX .
Therefore,

n

∑
i=1
b

X
Ti
cCi

1
η̄
> X

which implies
1
η̄

n

∑
i=1

Ci

Ti
> 1

which contradicts (8).
Case II: Let Jb be the job that blocks a job inA , exe-

cuting at timet 0 with a deadline greater thant. SinceJb is
executing at timet 0, with a deadline greater thatt, X < Tb

andA � fτ1; :::τkg, whereTk < X andk< b. Only the task
Jb and the tasks inA execute in the interval[t 0; t]. When
the taskτb blocks another task, if the stack top slowdown
is smaller thanηb, thenηb is pushed on the stack. Since
this stack node is not popped until all jobs with priority
greater thanτb execute, the speed of all jobs in this inter-
val is at leastηb (Note that blocking of other jobs in the
interval can only increase the speed to greater thanηb).

Thus, the total execution time of these jobs is bounded by
1

ηb
(Cb +∑b�1

i=1 b
X
Ti
cCi). Since a task misses its deadline at

time t, the execution time for the jobs inA and that of job
Jb exceedsX , the length of the interval. Therefore,

1
ηb

(Cb+
b�1

∑
i=1

b
X
Ti
cCi) > X

SinceX < Tb, this contradicts (9). Hence all tasks meet
the deadline when scheduled by the stack based slowdown
algorithm.

3.2.2 Computational Complexity

The computation of task slowdown factors depends on the
number of scheduling points for each task. The number
of scheduling points are determined by the maximum task
period and the computation of slowdown factors is fast in
practice. Theoretically, the number of scheduling points
can be pseudo polynomial in the problem size. Note that
the computation of slowdown factors is done off-line and
it is beneficial to compute them with the optimal feasibility
test.

4 Dynamic Slack Reclamation

Dynamic slack arises due to early task completions as
well as when tasks execute at a higher speed than the base
speed. This slack can be reclaimed to further reduce the
processor speed, resulting in increased energy savings.

4.1 Motivation

One of the limitations of prior works is that they do not
reclaim slack when task are blocked in the system (e.g.
DSDR [23]). This can severely limit slack reclamation un-
der non-preemptive scheduling and we overcome this lim-
itation in our work. When no higher priority tasks are
blocked, it is known that tasks can reclaim the higher prior-
ity (than the task priority) run-time while meeting all dead-
lines. However, these techniques cannot be directly applied
to blocking tasks. We show that reclaiming higher priority
run-time (slack) when (higher priority) tasks are blocked
can lead to tasks missing the deadline. We illustrate this
with an example, shown in Fig. 2. The task set is comprised
of three tasks with the following parameters:

τ1 = (5;5;2); τ2 = (10;10;3); τ3 = (10;10;3)

The arrival times are as shown in Fig 2(a) withτ1 arriving
at t = 1 and tasksτ2 andτ3 arriving att = 0. The system
is feasible withU = η̄ = 1:0 and the stack top slowdown
is always beη(snt) = 1:0. The task schedule, where tasks
reclaim higher priority run-time is shown in Fig. 2(b). Task

5

τ2 completes earlier at timet = 0:5, leaving an unused run-
time of 2:5 time units. This run-time has the same priority
as taskτ3 and can be reclaimed when no tasks are blocked.
Using the available free run-time taskτ3 computes a slow-
down factor to complete at timet = 6:0 (free run-time of
t = 2:5 and its own budget of 3 time units). Taskτ1 arrives
at timet = 1 and is blocked by taskτ3. If task τ3 contin-
ues execution at the same speed, we see that taskτ1 misses
its deadline oft = 6:0. It can be seen than the blocking
time for taskτ1 cannot exceed 3 time units, else it can miss
its deadline. Thus we need to limit the blocking time to
3 time units. This can require computing a different slow-
down factor when a task is blocked. When taskτ1 arrives at
time t = 1, a new slowdown factor is computed so that the
remaining portion of taskτ3 completes in 3 time units. This
bounds the blocking time of taskτ1 to meet its deadline as
shown in Fig. 2(c).

4.2 Computing Maximum Blocking Time (Bmax)

We compute the maximum blocking time (Bmax
i) permis-

sible to taskτi while guaranteeing all higher priority task
deadlines.Bmax

i is used to bound the blocking time under
slack reclamation. When taskτi blocks another task, the
stack top slowdown is at leastmax(ηi ; η̄) and higher prior-
ity tasks (than the blocking task) are executed at least at this
slowdown factor. Given tasks are sorted by their period, we
computeBmax

i for taskτi such that the following condition
is satisfied.

8t;T1� t � Ti : Bmax
i +

1
max(ηi ; η̄)

i�1

∑
k=1

b
t
Tk
cCk

!
� t

(10)

4.3 Slack Reclamation Preliminaries

Dynamic slack reclamation algorithms manage the allo-
cation of time budgets for tasks as well as the time budgets
that can be reclaimed during execution. We define therun
timeof a job as the time budget allocated to the job, based
on the task workload and the slowdown factor. The run-
time of a job with a workloadC (at maximum speed) and
slowdownη, is C=η. Each run time has a time budget and
a priority associated with it, and is represented by a pair
(t;P). The priority of a run time associated with a job is
the same as the job priority. A job consumes run time as
it executes. The unused run time of jobs is maintained in
a priority list called theFree Run Time list (FRT-list)[23].
A FRT-list is maintained sorted by priority of the run-time,
with the highest priority at the head of the list. Run-time
is always consumed from the head of the list. In addition
to the run-time of a task, ablocking run-timeis also main-
tained for each taskτi. When a instance of taskτi begins

Deadline met

3

2

3

2

(b) Incorrect salck reclamation and deadline miss

Correct Slack Reclamation under task blocking(b)

limiting the run-time usage when blocking

blocked

blocked

t worst case execution time

actual execution timet

run-time usage

Task set description: Task arrival times and WCET(a)

task

time

task

time

task

Deadline miss

time

4 5 6 7 8 9 10

τ1

2τ

τ3

0 1 2 3 4 5

3

0 1 2 3 4 5 6 7 8 9 10

τ1

2τ

τ3

0 1 2

6 7 8 9 10

τ1

2τ

τ3

Task arrival

Task deadline

Figure 2. Dynamic slack reclamation of blocking tasks: (a)
Task arrival times and deadlines (NOT a task schedule). (b)
Reclaiming higher priority run-time by a blocking task (τ3)
and taskτ1 missing the deadline. (c) Limiting the slack
reclamation by the maximum blocking time for taskτ3 and
all tasks meet the deadline.

execution, the blocking run-time for the job is initialized to
Bmax

i . The blocking run-time is used to limit the blocking
time under slack reclamation.

Under the SBS algorithm, the stack top node,snt , is cru-
cial and determines the time budget foreach job execution.
We say a stack nodesni dominatessnj if η(sni) > η(snj)
or equivalentlysnj is dominated bysni . Since only higher
slowdown factors than the stack top slowdown factor are
pushed on the stack, a node dominates all nodes below it in
the stack. We use similar notation and definitions used in
[23] to explain our algorithm.

� Ji : the current job of taskτi .

� Rr
i (t) : the available run time of jobJi at timet.

� Br
i (t) : the blocking run-time available toJi at timet.

6

� RF
i (t) : the free run time available for JobJi - the run

time from the FRT-list with priority� P (Ji)

� Cr
i (t) : the residual workload of jobJi .

� RM
i (D) : The difference between the run-time com-

putation based on the slowdown of nodesnD and that
of its immediately dominatednode (adjacentnode be-
low nodesnD in the stack),snd, on a stack. IfηD and
ηd be the slowdown of nodessnD andsnd respectively
(ηD > ηd), thenRM

i (D) = (Ci
ηd
� Ci

ηD
), is the difference

in run time at the two speeds.

Algorithm 2 Dynamic Slack Reclamation Algorithm
1: Stack Initialization:
2: Initialize stack with a base node (η̄;�∞)
3: FRT-list is initially empty.

4: On arrival of job Ji in the system:
5: if (Jc is runningand P (Ji)> P (Jc)) then
6: if (ηc > η(snt)) then
7: Push sn(ηc;P (Jc)) on the stack;
8: end if

9: setSpeed

�
Cr

c(t)
minf(Rr

c(t)+RF
c (t));B

r
i (t)g

�
;

10: end if

11: On execution of each jobJi :
12: while (P (Ji)< P (snt)) do
13: Pop the stack top node;
14: end while
15: Rr

i (t) = Ci=η(snt);
16: Br

i (t) = Bmax
i ;

17: for (each stacknodesnD dominating the base node)do
18: Add (RM

i (D);P (snD)) to FRT-list;
19: end for
20: setSpeed(

Cr
i (t)

Rr
i (t)+RF

i (t)
);

21: On Completion of job Ji :
22: Add run-time(Rr

i (t);P (Ji)) to FRT-list;

23: On System Idle:
24: Pop all nodes except base node

4.4 Slack Reclamation Algorithm

We propose a slack reclamation scheme that works with
the SBS algorithm and is called the Stack Based Slowdown
with Dynamic Reclamation (SBS-DR) algorithm. The SBS-
DR policy is described in Algorithm 2. The system initial-
izes the stack with a base node and an empty FRT-list (line
2). The conditions under which stack nodes are pushed and
popped are the same as the SBS algorithm (shown in lines
6-8 and lines 12-14 of Algorithm 2). The two sources of

slack reclamation are (1) early completion of tasks and (2)
execution at speed greater than the base speed (η̄). Before
the execution of each job, the algorithm reserves a run-time
for the job based on the slowdown factor of the stack top
node,snt . As shown in line 15, jobJi (an instance of task
τi) is assigned a run-time ofCi=η(snt). The blocking run-
time of jobJi is initialized toBmax

i . If nodesnt is not the base
node then tasks are executed faster than the base speed. The
extra time budget that would be available if the task were ex-
ecuted at the base speed, is the slack in the system. For each
stack nodesnD dominating the base node, the difference in
the budget arising from a slowdown ofη(snD) and the slow-
down factor of the (adjacent)immediate dominatednode
η(snd), is added to the FRT-list with a priority ofP (snD)
as shown in line 18 of the algorithm. The other source of
dynamic slack is when a task completes before consuming
its allocated time budget. On job completion, the unused
run time is added to FRT-list with the same priority as the
job priority. When no tasks are blocked, a jobJi can use its
own run time as well higher priority run-time from FRT-list
(i.e. RF

i (t). The task slowdown factor is computed to uti-
lize the maximum time budget available (line 20). The dy-
namic slowdown factor is the ratio of the residual workload
to the available runtime, as described in line 20 of Algo-
rithm 2. When tasks are blocked, the algorithm ensures that
the blocking task (τc) completes by its maximum blocking
taskBmax

c . This is achieved by limiting the run-time avail-
able for taskτc to minf(RF

i (t)+Rr
i (t));B

r
i (t)g. The slow-

down computation on blocking is shown in line 9 of Algo-
rithm 2. Note that it suffices to recompute the slowdown
when the first task is blocked during the execution of the
blocking task (no re-computation is required for subsequent
blocking by the same job (Jc)).

The following rules are used by the slack reclamation
algorithm. Note that the rules need to be applied only on
the arrival and completion of a task in the system.

� As job Ji executes, it consumes run time at the same
speed as the wall clock (physical time) [23]. IfRF

i (t)>
0, the run time is used from the FRT-list, elseRr

i (t) is
used.

� When the system is idle, it uses the run time from the
FRT-list if the list is non-empty.

� When a (high priority) task is blocked, the executing
task consumes the blocking run-time at the same speed
as the wall clock (physical time). If no task is blocked,
thenBr

i (t) is unchanged. Note that the blocking run-
time management is performed in addition to the above
mentioned run-time management.

We prove that tasks can reclaim the slack in this manner
while guaranteeing all deadlines.

7

Theorem 4 A task set, sorted in non-decreasing order of
the relative task period, can be feasibly scheduled by the
stack based slowdown with dynamic reclamation (SBS-DR)
algorithm (Algorithm 2) at a base speed̄η and slowdown
factorηi for taskτi if,

1
η̄
(

n

∑
k=1

Ck

Tk
)� 1 (11)

8t;T1� t � Ti :
1
ηi
(Ci +

i�1

∑
k=1

b
t
Tk
cCk)� t (12)

8t;T1� t � Ti : Bmax
i +

1
max(ηi ; η̄)

i�1

∑
k=1

b
t
Tk
cCk

!
� t

(13)

The details of the proof are present in [9].

5 Experimental Setup

To evaluate the effectiveness of our proposed tech-
niques, we perform simulations on randomly generated
task-sets each containing 10 to 15 tasks. A mixed work-
load is used with task periods uniformly distributed in the
following three ranges: [1000,4000], [5000,10000] and
[15000,20000]. An initial processor utilizationui of each
task was uniformly assigned in the range [0.05, 0.10]. The
worst case execution times (WCET) for each task was set
to ui �Ti, at the maximum processor speed. The task exe-
cution times are scaled to ensure the feasibility of the task
set under non-preemptive scheduling. The execution times
are further reduced (uniformly scaled) to vary the processor
utilization of the task set. We simulate several task sets in
our experimentation and the average results are presented in
the paper.

The processor power model is based on the dynamic
power consumption in CMOS circuits, as indicated by (1).
The operating voltage range for the processor is 0:6V to
1:8V, which is the trend in current embedded processors.
We normalize the operating speed and support discrete
slowdown factors in steps of 0:05 in the normalized range.

5.1 Slowdown with no slack reclamation

We compare the energy savings of the following tech-
niques based on statically computed slowdown factors (with
each task assumed to execute up to its WCET) :

� Optimal Constant Slowdown (OCS) algorithm (Corol-
lary 2)

� Dual Speed (DS) algorithm [23]

� Stack Based Slowdown (SBS) algorithm, proposed in
this paper.

Note that, with no dynamic slack reclamation, the base
speed (̄η = U) is the lower bound on the task slowdown
factor. However non-preemptive scheduling can demand a
a higher slowdown factor(ηmax) (as given by Corollary 2).
The DS and the SBS algorithms exploit opportunities to ex-
ecute at a speed lower thanηmax to result in energy savings.
The extent of energy savings are proportional to the differ-
ence in the slowdown factors given bȳη andηmax. The dif-
ference in the two speeds is captured by the gain factor (Gf),
which is defined asGf =

ηmax
η̄ � 1. For most of the gener-

ated task-sets, the gain factor was uniformly distributed in
the range of 0:0 - 0:5 (for a few tasks with lower utilization,
the gain factor was even larger). We have classified the task
sets into groups that have a gain factor within a range of
Gf �0:05 and the results for a gain factor ofGf = 0:1 and
Gf = 0:3 are shown in Figure 3.

Figure 3 compares the energy consumption of the DS
and the SBS algorithm normalized to the OCS algorithm.
The utilization of the task set is shown along the X-axis
and the normalized energy consumption along the Y-axis.
We show that the DS algorithm only perform marginally
better than the OCS method. This is due to the fact that
task blocking is frequent under non-preemptive scheduling,
which results in tasks executing at the high speedH for most
of the time. Note that the dual speed algorithm does not use
the optimal feasibility test to compute theH speed. This can
lead to a higherH speed than the OCS algorithm and result
in higher energy consumption than OCS method, as seen at
U = 90% (Gf = 0:1). On the other hand, the SBS algorithm
uses the optimal feasibility test and always consumes less
energy than the OCS algorithm. Furthermore, the system
only switches to higher speeds when needed, as opposed
to the DS algorithm which switches to the high speed (H)
whenever a task is blocked. Thus the system manages to
remain in the lower speed for a longer duration under the
SBS algorithm, which leads to higher energy savings.

With a decrease in the utilization, the energy savings are
seen to decrease with slight irregularities (rise and falls) in
the energy savings. Note that the relative difference in en-
ergy consumption at̄η andηmax is lower at smaller slow-
down factors (lower utilization). This is an inherent power
consumption characteristic and leads to a decrease in energy
savings at lower utilization. The irregularity arises from the
grouping of tasks with a gain factor within a range of�0:5.
Furthermore, the mapping of continuous slowdown factors
to discrete levels is also another cause. We show that the
SBS algorithm performs better than the DS algorithm and
results on an average 15% energy savings over the DS algo-
rithm. The energy savings are seen to increase with higher
gain factors as shown forGf = 0:1 andGf = 0:3. The
higher the gain factor, the higher is the difference in the base
speed (̄η) and the maximum speed, and the energy savings
of executing a task at the base speed are higher.

8

0.6

0.7

0.8

0.9

1

1.1

10 20 30 40 50 60 70 80 90

no
rm

al
iz

ed
 E

ne
rg

y

% processor utilization at maximum speed

 (a) Energy consumption normalized to OCS (gain factor, G_f = 0.1)

Optimal Constant Slowdown (OCS)
Dual Speed (DS)

Stack Based Slowdown (SBS)

0.6

0.7

0.8

0.9

1

1.1

10 20 30 40 50 60 70 80

no
rm

al
iz

ed
 E

ne
rg

y

% processor utilization at maximum speed

(b) Energy consumption normalized to OCS (gain factor, G_f = 0.3)

Optimal Constant Slowdown (OCS)
Dual Speed (DS)

Stack Based Slowdown (SBS)

Figure 3. Energy consumption based on static slowdown factors, for gain factors,Gf = 0:1 andGf = 0:3.

5.2 Dynamic slack reclamation

We now compare the additional energy gains achieved
through dynamic slack reclamation techniques. To generate
varying execution times, we vary thebest case execution
time (BCET)of a task as a percentage of its WCET. The ex-
ecution times are generated by a Gaussian distribution with
meanµ = (WCET+ BCET)=2 and a standard deviation,
σ = (WCET�BCET)=6. The BCET of the task is varied
from 100% to 10% in steps of 10%. Experiments were per-
formed on various task sets and Fig. 4 shows the energy
gains as BCET is varied at gain factors ofGf = 0:1 and
Gf = 0:2 (with a task utilization of 70% - 80%). The vari-
ation of BCET is shown along the X-axis and the energy
consumption is along the Y-axis. The energy consumption
is normalized to the SBS algorithm (no slack reclamation).
We compare the following schemes:

� Stack Based Slowdown (SBS) algorithm.

� Stack Based Slowdown with Dynamic Reclamation
(SBS-DR) algorithm.

� Dual Speed Dynamic Reclamation (DSDR) [23] algo-
rithm

Note that dynamic slack reclamation leads to energy sav-
ings even under worst case execution time, or BCET of
100%. This is because slack also arises from (1) executing
tasks at a speed higher than the base speed and (2) mapping
tasks to discrete voltage levels. A decrease in the BCET
increases the slack in the system and we see a steady de-
crease in the energy consumption. SBS-DR performs slack
reclamation (even under task blocking) to result on an aver-
age 20% energy gains over the SBS algorithm. On the other
hand, the DSDR algorithm results in significantly higher en-
ergy consumption (even higher than SBS scheme - no slack
reclamation). This is because of the frequent transitions to
the higher speed and also due to the fact that no slack recla-
mation is performed when tasks are blocked in the system.

Comparing the energy savings atGf = 0:1 andGf = 0:3,
we see that the relative energy savings reduce at higher
values of gain factor. Larger gain factors result in higher
ηmaxand executing tasks at higher speed results in relatively
higher energy consumption. Though dynamic slowdown re-
duces the energy consumption, it can increase the number
of transitions to higher speed and the relative energy sav-
ings are seen to reduce at higher values of gain factor (Fig.
4 (a) and 4 (b)).

6 Conclusions and Future Work

We have presented energy aware scheduling algorithms
for non-preemptive systems. The techniques are impor-
tant in systems where task preemption is impossible or pro-
hibitively expensive (such as ultra-low power sensor net-
work nodes). Compared to preemptive scheduling, a higher
speed may be necessary under non-preemptive scheduling.
Identifying the time intervals when a higher speed is nec-
essary is important to reduce the energy consumption. The
stack based slowdown (SBS) algorithm minimizes transi-
tions to a higher speed and increases the energy efficiency
of the system. Simulation results show on an average 15%
savings in energy consumption when scheduling with static
slowdown factors. Our dynamic slack reclamation tech-
nique enables slowdown of blocking tasks and result in an
additional 20% increase in energy efficiency. We plan to
apply these scheduling techniques to communication sub-
systems and extend it to a distributed scheduling policy.

Acknowledgments

We acknowledge support from National Science Foun-
dation (Award CCR-0098335)and from Semiconductor Re-
search Corporation (Contract 2001-HJ-899).

9

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

102030405060708090100

no
rm

al
iz

ed
 E

ne
rg

y

% variation of BCET

 (a) Energy consumption normalized to SBS (gain factor, G_f = 0.1)

Dual Speed Dynamic Reclamation (DSDR)
Stack Based Slowdown (SBS)

Stack Based Slowdown with Dynamic Reclamation (SBS-DR)

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

102030405060708090100

no
rm

al
iz

ed
 E

ne
rg

y

% variation of BCET

(b) Energy consumption normalized to SBS (gain factor, G_f = 0.3)

Dual Speed Dynamic Reclamation (DSDR)
Stack Based Slowdown (SBS)

Stack Based Slowdown with Dynamic Reclamation (SBS-DR)

Figure 4. Energy consumption with dynamic slack reclamation, for gain factors,Gf = 0:1 andGf = 0:3.

References

[1] H. Aydin, R. Melhem, D. Moss´e, and P. M. Alvarez. Deter-
mining optimal processor speeds for periodic real-time tasks
with different power characteristics. InProc. of EuroMicro
Conference on Real-Time Systems, Jun. 2001.

[2] H. Aydin, R. Melhem, D. Moss´e, and P. M. Alvarez. Dy-
namic and aggressive scheduling techniques for power-
aware real-time systems. InProceedings of IEEE Real-Time
Systems Symposium, pages 95–105, Dec. 2001.

[3] S. Dolev and A. Keizelman. Non-preemptive real-time
scheduling of multimedia tasks.Journal of Real-Time Sys-
tems, 17(1):23–39, 1999.

[4] F. Gruian. Hard real-time scheduling for low-energy using
stochastic data and dvs processors. InProceedings of Inter-
national Symposium on Low Power Electronics and Design,
pages 46–51, Aug. 2001.

[5] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. Srivas-
tava. Power optimization of variable-voltage core-based sys-
tems. IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, 18(12):1702–14, 1999.

[6] Intel XScale Processor. Intel Inc.
(http://developer.intel.com/design/intelxscale).

[7] T. Ishihara and H. Yasuura. Voltage scheduling problem
for dynamically variable voltage processor. InInternational
Symposium on Low Power Eletronics and Design, pages
197–202, Aug. 1998.

[8] K. Jeffay, D. F. Stanat, and C. U. Martel. On non-preemptive
scheduling of periodic and sporadic tasks. InProc. of IEEE
Real-Time Systems Symposium, pages 129–139, Dec. 1991.

[9] R. Jejurikar and R. Gupta. Energy aware non preemptive
scheduling in hard real-time systems. InCECS Technical
Report #05-xx, UC Irvine, Mar. 2005.

[10] W. Kim, J. Kim, and S. L. Min. A dynamic voltage scaling
algorithm for dynamic-priority hard real-time systems using
slack time analysis. InProceedings of Design Automation
and Test in Europe, pages 788–794, Mar. 2002.

[11] W. Kwon and T. Kim. Optimal voltage allocation techniques
for dynamically variable voltage processors. InProceedings
of the Design Automation Conference,pages 125–130, 2003.

[12] J. Liu, P. H. Chou, and N. Bagherzadeh. Communica-
tion speed selection for embedded systems with networked
voltage-scalable processors. InProceedings pf International
Symposium on Hardware/Software Codesign, Nov. 2002.

[13] J. W. S. Liu.Real-Time Systems. Prentice-Hall, 2000.
[14] P. Pillai and K. G. Shin. Real-timedynamic voltage scal-

ing for low-power embedded operating systems. InProc. of
Symposium on Operating Systems Principles, 2001.

[15] G. Quan and X. Hu. Minimum energy fixed-priority
scheduling for variable voltage processors. InProc. of De-
sign Automation and Test in Europe, pages 782–87, 2002.

[16] C. Rusu, R. Melhem, and D. Mosse. Maximizing rewards
for real-time applications with energy constraints.ACM
Transactions on Embedded Computer Systems, 2(4):537–
559, Nov. 2003.

[17] C. Rusu, R. Melhem, and D. Mosse. Multi-version schedul-
ing in rechargeable energy-aware real-time systems. InPro-
ceedings of EuroMicro Conference on Real-Time Systems,
pages 95–104, 2003.

[18] Y. Shin, K. Choi, and T. Sakurai. Power optimization of
real-time embedded systems on variable speed processors.
In Proceedings of International Conference on Computer
Aided Design, pages 365–368, Nov. 2000.

[19] Transmeta Crusoe Processor. Transmeta Inc.
(http://www.transmeta.com/technology).

[20] N. Weste and K. Eshraghian.Principles of CMOS VLSI De-
sign. Addison Wesley, 1993.

[21] F. Yao, A. J. Demers, and S. Shenker. A scheduling model
for reduced CPU energy. InProc. of IEEE Symposium on
Foundations of Computer Science, pages 374–382, 1995.

[22] H. Yun and J. Kim. On energy-optimal voltage scheduling
for fixed-priority hard real-time systems.Trans. on Embed-
ded Computing Sys., 2(3):393–430, 2003.

[23] F. Zhang and S. T. Chanson. Processor voltage schedul-
ing for real-time tasks with non-preemptible sections. In
Proceedings of IEEE Real-Time Systems Symposium, pages
235–245, Dec. 2002.

[24] Y. Zhang, X. S. Hu, and D. Z. Chen. Task scheduling and
voltage selection for energy minimization. InProceedingsof
the Design Automation Conference, pages 183–188, 2002.

10

