
Rate Derivation and Its Applications to Reactive, Real-time Embedded Systems

Ali Dasdan Dinesh Ramanathan Rajesh K. Gupta

Dept. of Comp. Sci. Advanced Technology Group Dept. of Info. & Comp. Sci.

University of Illinois Synopsys, Inc. University of California

Urbana, IL 61801 Mountain View, CA 94043 Irvine, CA 92697

dasdan@cs.uiuc.edu dinesh@synopsys.com rgupta@ics.uci.edu

Abstract

An embedded system (the system) continuously interacts
with its environment under strict timing constraints, called
the external constraints, and it is important to know how
these external constraints translate to time budgets, called
the internal constraints, on the tasks of the system. Know-
ing these time budgets reduces the complexity of the sys-
tem's design and validation problem and helps the design-
ers have a simultaneous control on the system's functional
as well as temporal correctness from the beginning of the
design ow. The translation is carried out by �rst deriving
the rate of each task in the system, hence the term \rate
derivation", using the system's task structure and the rates
of the input stimuli coming into the system from its envi-
ronment. The derived task rates are later used to derive
and validate the rest of the internal as well as external con-
straints. This paper proposes a general task graph model
to represent the system's task structure, techniques for de-
riving and validating the system's timing constraints, and a
hardware/software codesign methodology that puts every-
thing together.1

1 Introduction

An embedded system is typically reactive and real-time in
nature because it continuously has to react to the stimuli
coming from its environment and it also has to do this in-
teraction under strict timing constraints. As these timing
constraints de�ne the timing characteristics of the system's
interaction with its environment, i.e., those of the system's
external behavior, they are called external (timing) con-
straints.

A typical embedded design ow starts with the require-
ments speci�cation phase, which describes what the system's
external behavior must be without describing how the sys-
tem works internally. The latter is for the �rst time ex-
pressed at a high level in the architectural design phase by
means of a task structure diagram, which describes a decom-
position of the system into manageable components or tasks.

1This work is supported by an NSF Career Award MIP 95-01615.

Since the system has many activities occurring in parallel,
these tasks are usually concurrent tasks.

The problem of designing a functionally and temporally
correct system is a di�cult one. The current practice for
this problem is based on trial and error guided by engineer-
ing experience [7]. Despite the importance of the temporal
correctness, most design methods pay signi�cantly more at-
tention to structural and behavioral aspects of embedded
systems than to timing aspects [9]. The main concern in a
typical design ow is �rst to design a functionally correct
system and then to focus on its temporal correctness. For
example, a typical design ow proceeds in the following four
stages: (i) The system is structured into its tasks. (The
issues related to task structuring are explained in [9].) (ii)
Each task is designed one by one. (iii) The tasks are in-
tegrated together to make up the system. (iv) The system
is �rst checked for functional correctness. If it is function-
ally correct, its temporal correctness is checked. In case of
any timing violations, the designers will go back to �ne tune
or modify some tasks and/or the task structure of the sys-
tem until all the violations are eliminated or a compromise
between the designers and the customer is reached in case
some violations are too di�cult to eliminate.

However, the above design ow has many problems such
as: (i) The designers design the tasks without knowing their
time budgets. This seriously hinders the exploration of the
design space for better task implementations in terms of
performance, cost, and power. (ii) The integration stage
occurs very late in the design ow; Any problems detected
at this stage are very expensive to correct in terms of design
time and cost.

A solution to the above problems should provide the time
budgets on the system's tasks very early in the design ow
and help the designers keep the system's correctness under
control throughout the design ow. This paper o�ers such a
solution. The main idea is to derive the time budgets on the
system's tasks, called the internal (timing) constraints, from
the system's task structure and its external constraints, and
to use them to validate the design choices at every stage
of the design ow. This reduces the complexity of ensur-
ing temporal correctness from system level to task level and
enables the designers to have a simultaneous control on the
system's functional and temporal correctness from very early
stages in the design ow onwards.

Figure 1 illustrates the above discussion. In this �gure,
(a) shows the system and its environment. The system gets
the stimuli from the environment through its sensors and re-
sponds back to the environment through its actuators. This
interaction is constrained by the external constraints labeled

Sensors Actuators

(a)

Embedded System

Response time constraint on the system (1)

Response time constraint on the environment (6)

2

4

3

5

Output rateInput rate

Input jitter Output jitter

E
nv

ir
on

m
en

t
Sensors Actuators

(b)

7

9

Embedded System

Task

E
nv

ir
on

m
en

t

E
nv

ir
on

m
en

t

4 5

32 Latency (8)

Rate 10

Input
jitter

Output
jitter

Response time constraint on the environment (6)

Response time constraint on the system (1)

Figure 1: (a) An embedded system with its external constraints (labeled 1-6). (b) The same system with its task structure
and internal constraints (labeled 7-10).

1-6, which are the (worst-case) response time constraints on
the system (1) and on the environment (6), the input (2)
and output (3) jitter constraints, and the input (4) and out-
put (5) rate constraints. The jitter constraints de�ne the
time separation between two di�erent stimuli or two di�er-
ent responses, whereas rate constraints de�ne the time sep-
aration between two successive arrivals of the same stimulus
or two successive departure of the same response. Note that
the constraints 2, 4, and 6 are imposed on the environment,
which we assume are already satis�ed, and the constraints 1,
3, and 5 are imposed on the system, which we will validate.

In Figure 1, (b) shows the same system but this time
with its task structure and internal constraints. The task
structure is described using a task graph of tasks (circles)
and their interactions (arcs). The system's internal con-
straints, called bounds for easy reference, are labeled 7-10,
which are the latency bound (8), the input (7) and output (9)
jitter bounds, and rate bound (10). Note that these bounds
correspond to the time budgets on the tasks and are external
to the tasks.

In this paper, we derive the system's internal constraints
from its task structure, which is assumed to be given, and
its external constraints. However, we do not use all of the
external constraints for derivation; we use only the input
rate constraints. This means that we assume only that the
environment satis�es its timing constraints. We use the in-
put rate constraints to �rst derive the rate bound of each
task, hence the term \rate derivation", and then use them to
derive and/or validate the rest of the internal and external
constraints.

We perform the derivation under very general task inter-
action semantics, those that can be found in real-life embed-
ded systems. For this, we propose a task graph model, called
the generalized task graph model. This model is causality-
based and can handle all of the existing causality relations
as well as cyclic task dependencies.

The complexity of the internal constraint derivation prob-
lem is very high because (i) the external constraints are usu-
ally a few in number, (ii) they are de�ned on sets of tasks
rather than for individual tasks, and (iii) tasks can interact
in a rather complex manner. To reduce this complexity, this
paper assumes that we are given all of the system's input
rate constraints. Once we know all of them, we do not need
the rest of the system's external constraints for derivation;
instead, we will validate them. However, if we do not know
all of the input rate constraints, we can use some of the
system's external constraints as if they are already satis�ed.

We perform rate derivation in a hierarchical manner. We

�rst partition the system's task graph into its cyclic com-
ponents and represent each component using a \super task"
in the resulting component graph. We then perform rate
derivation in this acyclic component graph using a method
called RADHA (RAte Derivation and High-level Analysis).
After that, we perform rate derivation in each cyclic com-
ponent using a method called RATAN (RATe ANalysis).
Finally, the results of these two are combined. RADHA and
RATAN are also the names of the corresponding software
tools [5].

We will present the above methods in a hardware/software
codesign methodology. It starts with the system's task struc-
ture expressed in a generalized task graph and its exter-
nal constraints, and ends with its hardware, software, and
interface synthesis. This methodology is obtained by in-
corporating RADHA and RATAN into a standard hard-
ware/software codesign methodology, and gives an overall
view of our contributions and also of the organization of
this paper. In the rest of this paper, we will �rst present
this methodology (Section 2) and introduce our task graph
model (Section 3). After that, we explain RADHA (Sec-
tion 4.1) and RATAN (Section 4.2) and �nally give their
applications (Section 5).

2 Proposed Hardware/Software Codesign Methodology

The proposed codesign methodology is given using the ow
diagram in Figure 2. The steps in the methodology are
labeled by 1-5. The steps 2, 4, and 5 also exist in many
other codesign methodologies, e.g., POLIS [2]. The steps
1 and 4 correspond to RADHA and RATAN. RATAN can
also be used in step 1 [6]. As RADHA and RATAN will
be explained later, we will briey discuss the other steps
now. Step 2 has three substeps: (i) The tasks are written in
a hardware description language (HDL) or a programming
language at behavioral level. This is actually the �rst step
in the existing codesign methodologies. (ii) These tasks are
then partitioned into hardware and software tasks to de-
termine their implementation platforms, e.g., see [11]. (iii)
The latency of each task and the task communication de-
lays are estimated [16, 14]. Step 4 synthesizes all the tasks
on their respective platforms together with the interface be-
tween these platforms [2, 4, 14]. Step 5 performs modi�ca-
tions in the design, e.g., in case the �nal design does not
satisfy its functional and/or temporal correctness require-
ments. This step shows that the methodology is an iterative
one as it should be.

RADHA

R
ef

in
em

en
t a

nd
/o

r
re

de
si

gn
Generalized task graph &
external timing constraint

External timing constraint
derivation/validation

Internal timing constraint
derivation/validation

Rate/Period derivation

2

1

5

Task design in a HDL

HW/SW partitioning

HW/SW delay estimation

RATAN

Rate and satisfiability analysis

Determination of critical tasks

HW/SW/Interface synthesis
4

3

Figure 2: Hardware/software codesign methodology using
RADHA and RATAN.

3 Generalized Task Graph Model

We model an embedded system using a hierarchical directed
graph called a generalized task graph (the task graph for
short). This model builds upon the models in [3, 8, 10,
12, 13, 15, 17, 18, 20, 21], as discussed in [6]. Each node
corresponds to a task, and each arc corresponds to an asyn-
chronous, unidirectional communication channel between its
producer and consumer. This model actually represents the
system's data/control ow diagram where each node is ei-
ther a data or a control transformation, and each arc is
either a data or a control ow, as explained in [9]. The
sensors and actuators of the system are also included in its
task graph, in which they are referred to as input and output
tasks, respectively.

Each arc prescribes a dependence relation between its
end nodes. The hierarchy in the task graph has two levels,
the top and bottom levels, as depicted in Fig. 3. The bottom
level consists of strongly connected components (SCCs) of
the actual system graph (or the initial task graph) that have
at least one arc. The top level is the component graph of
the initial task graph such that every node with a self-loop,
called a super task, corresponds to a SCC at the bottom
level, and every node without a self-loop corresponds to the
same node in the initial task graph. The hierarchy is man-
dated by the fact that the rate derivation techniques for
acyclic and cyclic components are di�erent. In the sequel,
we will refer to each graph or SCC at any level of the hier-
archy as \the task graph" within its context. Note that any
directed graph can be represented using the above hierarchy.

We assume that each node represents a periodic or spo-
radic task, each of which has a rate interval bounded from
above and below. Recall that a task can have a latency
bound, a rate bound, and jitter bounds. The rate of a task
gives the number of its executions per unit time. Its recip-

Bottom level

Top level

Actual system graph

Task graph

Figure 3: Two-level task graph model.

rocal is equal to the task's period. We assume integer values
for periods.

Both data and control ows through a channel is mod-
eled using token ows. The granularity of every token is
channel-speci�c, and once the designers determine the to-
kens in each channel, they are indistinguishable within and
across channels for timing analysis purposes. The task be-
havior is causality-based such that it uses either AND-, OR-
, or AND/OR-causality. Note that each causality relation
also implies a timing relation. We say that a task is en-
abled when its predecessors have sent all the tokens that are
needed to make the task ready to run. We now classify the
tasks by asking three questions:
(i) How many predecessors are needed to enable a task?

1. an AND task needs all of its predecessors,

2. an OR task needs one of its predecessors, and

3. an AND/OR task needs some (more than one) of its
predecessors.

(ii) Does a task allow any loss of tokens coming from its
predecessors?

1. an AND/unskipped or OR/unskipped task does not
allow any loss of tokens.

2. an AND/skipped or OR/skipped task may allow an
intentional loss of tokens.

(iii) What happens to the tokens coming from the rest of
the predecessors of an OR task?

1. an OR/unskipped task uses all the tokens before it
completes.

2. an OR/skipped/joint task ignores the rest completely
for its current execution.

3. an OR/skipped/disjoint task uses every token to start
a new execution.

The above task types de�ne the input behavior of the
tasks. Their output behavior can be di�erent based on what
is required of them by their consumers. Moreover, no order
is imposed for reading the input channels although a partic-
ular order can be imposed using task partitioning. If inputs
arrive simultaneously for an OR task, only one of them en-
ables the task.

4 Rate Derivation

Rate derivation refers to deriving the task rates or rate
bounds (in terms of rate intervals) at the top and bottom
levels. We next use the task rates to derive the task peri-
ods because the task periods are actually the ones used for
further derivation and validation. As the rate of a task is
equal to the reciprocal of its period or vice versa, it is easy
to derive one from the other, and so we will use the terms
\rate derivation" and \period derivation" interchangeably.
We now discuss the rate derivation at the top level followed
by the one at the bottom level. We assume that every task
in the task graph is concurrent.

4.1 Rate Derivation for Acyclic Graphs

We now present the rate derivation algorithm to derive the
rate of each task at the top level. This algorithm is part of
RADHA. The algorithm assumes that a task graph and the
rate of every input task are given. The algorithm proceeds
in topological order of the nodes from the input tasks to-
wards the output tasks. The derivation is done using a rate
equation for each task type. This equation is then used to
derive period intervals. The running time of the algorithm
is polynomial in the size of the task graph; however, the
algorithm may use expensive operations such as computing
the least common multiple of two integer intervals.

a

#tokens
produced = P
#tokens

consumed = C

Input rate = ir = C * r aa a

a

a Output rate = or = P * r

Rate = r = 1/Period (T)a
Figure 4: Basic rate relationships.

Figure 4 depicts the de�nitions of the input and output
rates of a task in relation to its rate as well as the number
of tokens produced and consumed. If the period is in sec-
onds, the rate is in executions/seconds, and the input and
output rates are in tokens/seconds. We will use these in
the algorithm without further de�nition. The derivations
are always done to �nd the smallest rate and integer period
for the task in question and to ensure bounded channel ca-
pacities. In the following algorithm, knowing the number of
tokens produced/consumed for each channel improves the
accuracy of the derivation. Since the granularity of a token
is channel-speci�c, these numbers are relatively easy to ob-
tain from the data/control ow diagram of the system. In
case these numbers cannot be obtained, using value 1 for
each of them is a safe choice. More examples on how to
specify and use these numbers are given in [6].

a

b

c

P

P

Ta

Tb

C

Tc

irc

a

b

ora

orb

a b
CP

TbTa

irbora

(a) (b)
Figure 5: (a) One predecessor case. (b) Two predecessor
case.

The rate derivation algorithms is as follows. The rate
equations below directly follow from the de�nition of the
corresponding task.

One predecessor: Consider the task graph in Fig-
ure 5(a). We want to derive the rate of task b from that
of task a. The rate equation is ora = irb, which implies
that P=[Ta(l); Ta(u)] = C=[Tb(l); Tb(u)], where l and u cor-
respond to the lower and upper bound, respectively.

Two predecessors: Consider the task graph in Fig-
ure 5(b). We want to derive the rate of task c from those of
tasks a and b. The derivation is di�erent for each task type,
as explained below:

1. AND/skipped. The rate equation is rc = minfra; rbg,
which leads to Tc(l) = maxfTa(l); Tb(l)g and Tc(u) =
maxfTa(u); Tb(u)g.

2. AND/ and OR/skipped. The rate equation is irc =
ora+ orb; which leads to Tc(l) = minfLCM(i; j)g and
Tc(u) = maxfLCM(i; j)g, where LCM(i; j) denotes
the least common multiple of i and j such that i 2
[Ta(l); Ta(u)] and j 2 [Tb(l); Tb(u)]. Here, LCM(i; j)
is computed by �rst enumerating the period intervals
for tasks a and b and then using the Euclid's algorithm
for the greatest common divisor (GCD), as GCD(i; j)�
LCM(i; j) = i � j.

3. OR/skipped/joint. At least one predecessor of an
OR/skipped/joint task generates tokens for it but it
is not required that every predecessor of the task will
do so. Thus, the rate equation is minfra; rbg � rc �
maxfra; rbg; which leads to Tc(l) = minfTa(l); Tb(l)g
and Tc(u) = maxfTa(u); Tb(u)g.

4. OR/skipped/disjoint. It is di�cult to write a rate
equation for this case. Instead, we will �nd the small-
est and the largest time separations between token ar-
rivals. A conservative period interval for task c is then
[1;minfTa; Tbg].

Three or more predecessors:

1. AND or OR tasks. This is a straightforward gener-
alization of the above derivations.

2. AND/OR tasks. This is similar to the AND/skipped
case where the \AND part" and the \OR part" behave
like tasks a and b. Hence, we derive the period equa-
tion directly, which is Tc = maxfTANDpart; TORpartg,
where AND and OR parts should be replaced by the
actual predecessors.

Note that as the rate equations imply, the above deriva-
tions still hold for all the task types except for the case (iv)
even if we assume di�erent initial start times for tasks a and
b. For that case, the time separation between the initial start
times should also be taken into account. Also note that the
above derivations also hold when periods are real numbers
except for the AND/unskipped case, for which LCM(i; j)
should be replaced by i � j.

Related Work. Most of the previous works assume
that the internal constraints of the system are known in ad-
vance [19], and there are surprisingly few works on their
derivation [1, 7, 19]. Amongst them, [7] is the most com-
prehensive one. This work introduces the problem for real-
time systems; however, its task semantics is restrictive. Fur-
thermore, due to its assumptions, it is not useful at the
level where RADHA is used; [7] can instead be used before
scheduling analysis within software synthesis (in step 4) of
the codesign methodology in Figure 2.

4.2 Rate Derivation for Cyclic Graphs

We now briey describe the rate derivation algorithm to
derive the rate of each task at the bottom level. This al-
gorithm is part of RATAN, and is explained in detail in
[17]. This algorithm assumes that the tasks in a given each
SCC at the bottom level are either all AND tasks or all
OR/skipped/joint tasks; the case with a combination of
tasks is still an open problem [10]. It also assumes that
each task starts its very �rst execution independently. Con-
sider a SCC with only AND tasks. The algorithm uses the
fact that the rate of each task in the SCC is the same and
is equal to reciprocal of the maximum cycle mean of the
SCC [17]. The maximum cycle mean of a graph is equal to
the maximum of the cycle means over all the cycles. The
mean of a cycle is de�ned as the average weight of any arc
in the cycle. The weight of an arc is in turn equal to the
sum of the latency of its producer and its channel delay. Arc
weights are intervals, so are the task rates and periods. A
cycle that determines the maximum cycle mean of the graph
is called a critical cycle. Similarly, the tasks on this cycle
are critical tasks. Since there are e�cient algorithms to �nd
the maximum cycle mean of a SCC [17], we can derive the
rate of every task in the SCC. The above de�nitions are
analogous for the OR/skipped/joint case.

5 Applications of Rate Derivation

We now consider the use of the task periods to derive latency
bounds and validate response time constraints at the top
level, and validate rate constraints at both top and bottom
levels. More about the derivation and validation of the other
internal and external constraints can be found in [6].

5.1 Deriving Latency Bounds

As a task executes once in its period, the lower bound of
its period imposes an upper bound on its latency. Since
the period is now derived, the designers know an upper
bound on the time budget of the task. We need to derive
a lower bound for OR/unskipped tasks because such tasks
have to wait until they read all the tokens generated for
their current execution. Consider Figure 5(b), if task c is
an OR/unskipped task, its latency should be greater than
(Tc(u) �minfTa(l); Tb(l)g). Note that a self-loop on a task
can be used to ensure that the task waits on itself.

5.2 Validating Response Time Constraints

The worst-case response time of the system is at least as
large as the longest path delay through the system. Here,
the longest path delay is denoted by D, and is obtained us-
ing the derived task periods. If the response time constraint
is speci�ed a priori, it must be greater than D. This com-
parison amounts to validating the speci�ed response time
constraint.

The algorithm to �nd L is a modi�cation of the standard
longest path algorithm. The modi�cation arises because of
the following reason: The delay of a path of tasks in the
task graph is not always equal to the sum of the upper
bounds of their periods. For example, consider task c in
Figure 5(b). Suppose Ta = 2 and Tb = 3, and that task c is
an AND/unskipped task. Then, Tc = LCM(2; 3) = 6. The
delay of the path with tasks a and c seems to be equal to
Ta + Tc = 2 + 6 = 8; however, task a has to execute three
times for one execution of task c. making the path delay

equal to 3 � Ta + Tc = 3 � 2 + 6 = 12. This reasoning also
holds for the other task types.

5.3 Validating Rate Constraints

Recall that the rate derivation algorithms at the top and
bottom levels derive the rate of each task (including output
tasks). The validation of a rate constraint that is speci�ed
a priori on a task is performed by comparing it with the
derived rate of the task. If the speci�ed constraint subsumes
the derived one, the speci�ed one is said to be satis�ed. If
not, it is said to be violated. Violations can be eliminated
by speeding up or slowing down the tasks involved. Note
that for the bottom level, violations can only occur for the
critical tasks.

So far, we have not mentioned the relationship between
the results of the rate derivation at the top level and those
at the bottom level. Recall that the top level has a su-
per task for each SCC at the bottom level. As explained
in Section 4.2, a SCC at the bottom level behaves like a
single task, justifying the use of super tasks. Consider a
super task and its corresponding SCC. The rate derivation
algorithm for the top level derives a period interval for the
super task. At the same time, the derivation algorithm for
the bottom level derives a period interval for the SCC. Now,
these two intervals should be the same; otherwise there is
a violation. Note that the rate derivation algorithm for the
bottom level assumes that the arc weights are known, which
is possible after step 2 in the codesign methodology. If they
are not known, we cannot derive a period interval for the
SCC. However, we can still use the relationship between the
super task and its SCC as follows: By the de�nition of the
maximum (minimum) cycle mean of a SCC with all AND
(OR/skipped/joint) tasks, the upper (lower) bound of the
period interval of the super task de�nes an upper (lower)
bound on the mean of every cycle in the SCC. This result
can be used to derive additional latency bounds on the tasks
at the bottom level.

6 Experimental Results

We have applied the rate derivation algorithms to two ex-
amples: the task graph in [7] and the dashboard controller
in [2]. The application to the task graph in [7] is discussed
in [6]. We now discuss the application to the dashboard con-
troller. The derivation for the dashboard controller will be
done using real numbers.

Wheel
Pulses Speed

Read
Speed
Filter Speedometer

Accumulate
Pulses

Compute
Partial km

Compute
Total km

LCD Display
Driver

Resettable Trip
Odometer

Lifetime
Odometer

a c

f

g j

i

he

b d

Figure 6: The task graph for the dashboard controller. It
consists of the tasks for the speedometer and two odometers.

Figure 6 gives the task graph for the dashboard con-
troller. The speedometer (task d) registers vehicle speed in
the range of 0-260 km/h where any speed value less than 5

km/h is regarded as zero. The odometers (tasks i and j)
register distance traveled at increments of 0.1 km starting
from 0 km. The dashboard controller gets four pulses from
task a for every rotation of the tire. The tire travels 0.66 m
per rotation.

In the above task graph, task h is an OR/skipped/disjoint
task, and the other tasks are all AND/unskipped tasks. As
we need the rate of the input coming into the system, we
will �rst derive the period interval for the input task, task
a. Task a generates one pulse or one token per one quar-
ter rotation of the tire. The vehicle travels this distance in
(0/66/4 m)/v seconds when it travels at a speed of v km/h.
As v 2 [5; 260] km/h, task a will have the following period in-
terval Ta = [(0:66m=4)=(260km=h); (0:66m=4)=(5km=h)] =
[2:28; 118:80] ms. Task b measures the instantaneous speed
by counting the tokens coming from task a. To compute a
speed value, task b needs at least two tokens. We know this
fact because of the functionality of task b although we do
not know how this task will be implemented. Hence, the
period interval for task b is Tb = 2 �Ta = 2 � [2:28; 118:80] =
[4:56; 237:60] ms. Tasks c and d take one speed value from
their respective predecessors, process it, and produce an-
other speed value. This means that they have the same
period interval as Tb.

The derivation for the odometers proceeds as follows:
From the functionality of task e, we know that it needs to ac-
cumulate enough tokens to compute an increment of 0.1 km.
Now, let us derive the number of tokens that task e needs.
As task a produces one token for every 1/4 rotation (0.66
m/4), task e needs to collect b0:1 km=(0:66m=4)c = 606 to-
kens. This amounts to a period interval of Te = 606 � Ta =
606 � [2:28; 118:80] ms = [1:38; 71:99] s. Tasks f and g have
the same period as task e because they need to use one to-
ken per execution, which we know from their functionalities.
Task h passes every token it gets from task f to task i and
every token from task g to task j. Also, it does this every
time it gets a token, regardless of the identity of its prede-
cessors. Hence, it is an OR/skipped/disjoint task. We do
not know the exact time separation between token arrivals
from tasks f and g, but from their period intervals, we know
that the smallest time separation can be some � > 0, and
that the largest time separation can be 71.99 s, which is the
upper bound of the period interval for tasks f and g; thus,
Th = [�;71:99] s. Finally, we know that tasks i and j con-
sume one token per execution, so they have the same period
interval as task h.

We can validate the above derivations by the implemen-
tation parameters given in [2]. One parameter is the period
value selected for task b. This value is chosen to be 250 ms in
[2]. As the derived period interval for Tb is [4:56; 237:60] ms,
we validate this choice. Another parameter is the response
time of the odometer. This value is measured to be at most
363 s. The response time that we derive is 5�71:99 = 359:95
s, which is satis�ed by the implementation. The advantage
of the rate derivation here is that it derives the time budgets
far before the implementation, aiding in the design explo-
ration.

7 Conclusions

This paper addresses the problem of deriving the system's
internal constraints from its task structure and external con-
straints so that the designers can keep the system's func-
tional as well as temporal correctness under control from
very early stages in the design ow onwards. This paper
proposes a generalized task graph model suitable for mod-

eling real-life embedded systems, timing constraint deriva-
tion and validation techniques, and a timing-driven hard-
ware/software codesign methodology. This methodology pro-
vides all the time budgets before the implementation of the
system.

References

[1] Audsley, N. C., et al. Data consistency in hard real-time sys-
tems. Tech. Rep. YCS 203, Univ. of York, England, June 1993.

[2] Balarin, F., et al. Hardware-Software Co-Design of Embed-
ded Systems: The POLIS Approach. Kluwer Academic Publ.,
Boston, MA, USA, 1997.

[3] Buck, J. T., and Lee, E. A. The token ow model. In Advanced
Topics in Dataow Computing and Multithreading, (1993),
L. Bic, G. Gao, and J. Gaudiot, Eds., IEEE.

[4] Chou, P., Walkup, E. A., and Borriello, G. Scheduling for
reactive real-time systems. IEEE Micro (Aug. 1994), 37{47.

[5] Dasdan, A., Mathur, A., and Gupta, R. K. RATAN: A tool
for rate analysis and rate constraint debugging for embedded
systems. In Proc. Euro. Design and Test Conf. (1997), IEEE,
pp. 2{6.

[6] Dasdan, A., Ramanathan, D., and Gupta, R. K. A methodol-
ogy for interactive design and validation of embedded real-time
systems. Submitted to the acm trans. on design automation of
electronic systems., 1998.

[7] Gerber, R., Hong, S., and Saksena, M. Guaranteeing real-time
requirements with resource-based calibration of periodic pro-
cesses. IEEE Trans. Software Eng. 21, 7 (July 1995), 579{92.

[8] Gillies, D. W., and Liu, J. W.-S. Scheduling tasks with AND/OR
precedence constraints. SIAM J. Comput. 24, 4 (Aug. 1995),
797{810.

[9] Gomaa, H. Software Design Methods for Concurrent and Real-
Time Systems. Addison-Wesley, Reading, MA, USA, 1993.

[10] Gunawardena, J. Periodic behavior in timed systems with
AND,OR causality. Tech. Rep. STAN-CS-93-1462, Stanford
Univ., 1993.

[11] Gupta, R. K. Special issue on partitioning methods for embedded
systems. Design Automation for Embedded Systems 2, 2 (Mar.
1997), 123{261.

[12] Jeffay, K. The real-time producer/consumer paradigm: A
paradigm for the construction of e�cient, predictable real-time
systems. In Proc. ACM/SIGAPP Symp. on Applied Computing
(Feb. 1993), pp. 796{804.

[13] Karp, R. M., and Miller, R. E. Properties of a model for parallel
computations: Determinacy, termination, and queueing. SIAM
J. Appl. Math. 14, 6 (Nov. 1966), 1390{1411.

[14] Ku, D., and Micheli, G. D. High Level Synthesis of ASICs
Under Timing and Synchronization Constraints. Kluwer Aca-
demic Publ., Boston, MA, USA, 1992.

[15] Lee, E. A., and Messerschmitt, D. G. Synchronous data ow.
Proc. IEEE 75, 9 (Sept. 1987), 1235{45.

[16] Malik, S., Martonosi, M., and Li, Y.-T. S. Static timing analysis
of embedded softare. In Proc. 34st Design Automation Conf.
(1997), ACM/IEEE, pp. 147{52.

[17] Mathur, A., Dasdan, A., and Gupta, R. K. Rate analysis of em-
bedded systems. ACM Trans. on Design Automation of Elec-
tronic Systems 4, 2 (Apr. 1999).

[18] Puchol, C., and Mok, A. K. The integration of control and
dataow structures in distributed hard real-time systems. In
Proc. 2nd Wrkshp on Parallel and Distributed Real-Time Syst.
(Apr. 1994), IEEE, pp. 104{7.

[19] Seto, D., et al. On task schedulability in real-time computer-
controlled systems. In Proc. 17th IEEE Real-Time Systems
Symp. (Dec. 1996), pp. 13{21.

[20] Yakovlev, A., et al. On the models for asynchronous circuit
behavior with OR causality. Formal methods in System Design
9, 3 (Nov. 1996), 189{233.

[21] Yen, T.-Y. Hardware-software co-synthesis of distributed em-
bedded systems. PhD thesis, Princeton Univ., 1996.

