566 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 4, APRIL 2010

Translation Validation of High-Level Synthesis

Sudipta Kundu, Sorin Lerner, and Rajesh K. Gupta, Fellow, IEEE

Abstract—The growing complexity of systems and their
implementation into silicon encourages designers to look for
ways to model designs at higher levels of abstraction and then
incrementally build portions of these designs—automatically or
manually—from these high-level specifications. Unfortunately,
this translation process itself can be buggy, which can create
a mismatch between what a designer intends and what is
actually implemented in the circuit. Therefore, checking if
the implementation is a refinement or equivalent to its initial
specification is of tremendous value. In this paper, we present
an approach to automatically validate the implementation
against its initial high-level specification using insights from
translation validation, automated theorem proving, and
relational approaches to reasoning about programs. In our
experiments, we first focus on concurrent systems modeled
as communicating sequential processes and show that their
refinements can be validated using our approach. Next, we
have applied our validation approach to a realistic scenario—a
parallelizing high-level synthesis framework called Spark. We
present the details of our algorithm and experimental results.

Index Terms—Communicating sequential processes, correct-
ness, equivalence checking, high-level synthesis, refinement
checking, translation validation.

1. INTRODUCTION

With the number of transistors on an integrated chip dou-
bling every 18 months for the last three decades, the quanti-
tative changes brought about by the increased chip capacities
affect not only the scale of chip designs, but also the scale
of the process to design and validate such chips. Despite im-
provements in the productivity of hardware designers, the rate
of improvement has not kept pace with chip capacity growth.

High-level synthesis (HLS) [17], [22], [23], [38], [40], [52]
is often seen as a solution to bridge the design-productivity-
gap. HLS is the process of generating register transfer level
(RTL) design from a high-level behavioral description of a
digital system. The synthesis process consists of several inter-
dependent manual or automatic subtasks such as: algorithmic
transformations, compilation, scheduling, allocation, binding,
and control generation. HLS has been widely explored and
relatively mature implementations of various HLS algorithms
have started to emerge [23], [38], [52]. HLS tools are large and
complex software systems, often with hundreds of thousands
of lines of code, and as with any software of this scale, they are
prone to logical and implementation errors. Apart from apply-
ing a monolithic tool, HLS process is characterized by signifi-
cant user intervention from recoding to directing the synthesis

Manuscript received July 22, 2009; revised December 31, 2009. Current
version published March 19, 2010. This work was supported in part by
National Science Foundation under, Grant No. 0702792. This paper was
recommended by Associate Editor, R. D. (Shawn) Blanton.

S. Kundu is with Synopsys, Inc., Hillsboro, OR 97124-6559 USA
(e-mail: sudipta.kundu@synopsys.com).

S. Lerner and R. K. Gupta are with the Department of Computer Science
and Engineering, University of California, San Diego, CA 92093-0404 USA
(e-mail: lerner@cs.ucsd.edu; gupta@cs.ucsd.edu).

Digital Object Identifier 10.1109/TCAD.2010.2042889

goals. Consequently, the HLS process, even with automated
HLS tools, is error prone and may lead to the synthesis of
RTL designs with bugs in them, which often have expensive
ramifications if they go undetected until after fabrication or
large-scale production. Hence, correctness of the HLS process
(manual or automatic) has always been an important concern.

Despite significant amount of work in the area of
verification we are still far from being able to prove
automatically that the HLS process always produces target
RTL designs that are semantically equivalent or refinement to
their source versions. However, even if one cannot prove an
HLS process correct once and for all, one can try to show, for
each translation that HLS performs, that the output program
produced by these steps has the same behavior as the original
program. Although this approach does not guarantee that the
HLS process is bug free, it does guarantee that any errors in
translation will be caught when the particular steps of HLS
are performed, preventing such errors from propagating any
further in the hardware fabrication process. This approach
to verification, called translation validation, has previously
been applied with success in the context of optimizing
compilers [19], [42], [46], [47], [53].

During the HLS process, an engineer starts with a high-
level description of the design, usually called a specification,
which is then refined into progressively more concrete
implementations. Checking correctness of these refinement
steps has many benefits, including finding bugs in the
translation process, while at the same time guaranteeing that
properties checked at higher levels in the design are preserved
through the refinement process, without having to recheck
them at lower levels. For example, if one checks that a given
specification satisfies a safety property, and that an imple-
mentation is a correct trace refinement of the specification,
then the implementation will also satisfy the safety property.
The main contribution of this paper is to show, using a
novel algorithm, how translation validation can effectively
be implemented in a previously unexplored setting, namely
HLS. The novelty of our approach comes from the fact that
it can account for concurrency which is inherent in hardware
design. Our algorithm deals with this concurrency using
standard techniques for computing weakest preconditions and
strongest postconditions of parallel programs [10].

This paper is an extended and generalized version of our
previous work published at ICCAD 2007 [33] and CAV
2008 [34]. This paper extends our previous work in the
following ways: 1) it presents a generalization of our previous
algorithms so that they support both synchronous and asyn-
chronous semantics of concurrency; 2) it shows the details
of our checking algorithm, which have not been previously
presented; 3) it presents more detailed experimental results;
and 4) it presents more detailed explanations throughout.

0278-0070/$26.00 (© 2010 IEEE

KUNDU et al.: TRANSLATION VALIDATION OF HIGH-LEVEL SYNTHESIS

Our translation validation algorithm uses a simulation rela-
tion approach to prove refinement. Our algorithm consists of
two components. The first component is given a relation, and
checks that this relation satisfies the properties required for
it to be a correct refinement simulation relation. The second
component automatically infers a correct simulation relation
just from the specification and the implementation programs.
In particular, our inference algorithm automatically establishes
a relation that states what points in the implementation pro-
gram are related to what points in the specification program.
This relation guarantees that for each execution sequence in
the implementation, an equivalent execution sequence exists
in the specification. Apart from refinement checking, we also
generalize both of our checking and inference algorithms to
prove equivalence between the specification and the imple-
mentation programs using a bisimulation relation approach.

To evaluate our approach, we used the Simplify theorem
prover [12] to implement our algorithms in a validating system
called SURYA. We then used SURYA to check the correctness
of a variety of refinements of infinite state concurrent systems
represented using communicating sequential processes
(CSP) [25] programs. Next, we used SURYA to validate
the results of the SPARK HLS tool [23] against the initial
behavioral description. Our choice of SPARK is motivated by
the fact that it is publicly available at the source code level,
and with over 100k lines of code, and over 4000 downloads,
represents a state-of-the-art HLS tool. Our validation tool take
on an average 6 s to run per procedure, making it possible
to do such checking in practical settings. Finally, in running
SURYA, two failed validation runs have lead us to discover
two previously unknown bugs in the SPARK tool. These bugs
cause SPARK to generate incorrect RTL for a given high-level
program. This demonstrates that translation validation of the
HLS process can catch bugs that even testing and long-term
use may not uncover.

The remainder of this paper is organized as follows. Sec-
tion II presents an overview of our approach, and shows how
our algorithm works on a simple example. Sections III and IV
then describes the meaning of refinement and simulation
relation respectively. Section V then provides the full details
of our algorithms—checking and inference. In particular, Sec-
tion V-A covers the checking algorithm, which verifies that a
given simulation relation is a correct refinement checking rela-
tion. Section V-B then presents our inference algorithm, which
automatically infers a simulation relation from a specification
program and an implementation program. In Section VI, we
describe how our algorithms for refinement can be generalized
to check for equivalence. Section VII describes our experi-
mental results, Section VIII describes related work, and finally
Section IX presents our conclusions and plans for future work.

II. OVERVIEW

At the heart of a HLS process is a model of a digital
system consisting of concurrent pieces of functionality, often
expressed as sequential program-like behavior, along with
synchronous or asynchronous interactions [37], [50]. CSP is
a calculus for describing such concurrent systems as a set
of processes that communicate synchronously over explicitly
named channels. In this paper, we describe our algorithm using

567

CSP-style concurrent programs. While CSP presents a good
model for a large number of hardware models described using
hardware description languages (HDLs), we note that the core
algorithms of our approach do not depend on the choice of
the input language. For example, in our experiments we have
used our approach for programs that may include arrays, and
function calls that are generally not part of CSP programs.

We start out by describing the salient features of CSP
required for understanding the examples in this paper. A CSP
program is a set of (possibly mutually recursive) process
definitions. An asynchronous parallel composition of two pro-
cesses P and Q is written as (P | | Q). Asynchronous parallel
processes in our version of CSP (and Hoare’s original ver-
sion [25]) can only communicate through messages on chan-
nels. Although there are no explicit shared variables, these can
easily be simulated using a process that stores the value of the
shared variable, and that services reads and writes to the vari-
able using messages. c?v denotes reading a value from a chan-
nel ¢ into a variable v and c!v denotes writing a variable v to a
channel c. Reads and writes are synchronous. Channels can be
visible or hidden. Visible channels are externally observable,
and these are the channels that we preserve the behavior of
when checking for correctness. We also allow simple C-style
control instructions and synchronous parallel composition.
By allowing both asynchronous (inherent in CSP) and syn-
chronous semantics of concurrency we support system designs
which are globally asynchronous and locally synchronous.

We now present a simple example that illustrates our ap-
proach (Fig. 1). For now, ignore the dashed lines in the figure.
The specification is a sequential process X shown in Fig. 1(a)
using our internal control flow graph (CFG) representation af-
ter tail recursion elimination has been performed. We omit the
details of the actual CSP code, because the CFG representation
is complete, and we believe the CSP code only makes the
example harder to follow. This process is continually reading
values from an input channel called inp into a variable p and
then computes the sum from (2 x p+ 1) to 10 using a loop.
Finally, it writes the sum out to a channel named outp. In
refinement-based hardware development, the designer often
starts with such a high-level description of a sequential design,
refining the details of the implementation later on.

An implementation [Fig. 1(b)] may use two separate parallel
processes (components) Y and Z, communicating via a hidden
channel mid and an acknowledgment channel ack as shown
in Fig. 2(b). Like its specification it also takes a value from
the inp channel into a variable p and outputs the sum from
2xp+1) to 10 in the outp channel. However, now it does
so in two steps, first the process Y multiplies p by 2 and
sends it to the component Z then process Z computes the
sum and writes it to the outp channel. One additional subtlety
of this example is that, in order for the refinement to be
correct, an additional channel needs to be added for sending
an acknowledgment token (in this case the value 1) back to the
process Y, so that a new value isn’t read from the inp channel
until the current value has been written out to the outp channel.
The value read from the ack channel is not used, and so we
use an “_” for the variable being read. Instructions on the
same transition edge are executed in parallel (synchronously).

568 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 4, APRIL 2010

Process X

I5: 3Um = sum + k i;: outp | sum

(a)

j5: sum = sum + t
jat=t+1

Process Z

j7: outp ! sum

jao: ack 11
(b)

TABLE I
SIMULATION RELATION FOR OUR RUNNING EXAMPLE

(gh1. g, §)

Fig. 1. CFGs of our running example along with a simulation relation. (a) Specification. (b) Implementation.
s T T {’-----------.d- --------- \I
inp ! loutp | inp . mi | outp
B x TR v :
Yo .\ ack yl
(a) : (b)

Fig. 2. Communication diagrams of our running example.

Apart from the architectural differences, the loop-structure
in the implementation is different from the one in the specifi-
cation in several ways. First, a loop-shifting transformation has
moved the operation iy from the beginning of the loop body
to the end of the loop body (j42), while also placing a copy of
the operation in the loop header (j4;) using the temporary vari-
able t. The effect of this loop-shifting transformation is a form
of software pipelining [36]. Note that without this pipelining
transformation it would not have been possible to schedule
the operation iy and is together due to the data dependence
between them. In addition to loop-shifting, a copy propagation
of instruction j4 to js and js is also performed. This ability
to make large scale code transformations via parallelizing
code transformations as shown here is an important aspect
of parallelizing HLS implemented in SPARK. Even without
HLS tools, similar source-level transformations are often done
manually by the designer to optimize the generated code as a
part of high-level design process.

A. Our Approach

Our approach to high-level validation consists of two parts,
which theoretically are independent, but for practical reasons,
we have made one part subsume the other as explained below.
The first part is a checking algorithm that, given a relation,
determines whether or not it satisfies the properties required
for it to be a valid simulation relation. The second part
is an inference algorithm that infers a relation given two
programs, one of which is a specification, and the other is

(ag, by, true)

(az, (by, bs), ps = pj)

(a4, (bg, b7), Ks = nj A sums = sum; A (Ks + 1) =)

oo |E |

(a7, (bg, bg), sumg = sum;)

an implementation. To check that one program is a refinement
to another, we apply the inference algorithm to infer a relation,
and then use the checking algorithm to verify that the resulting
relation is indeed the required relation. Because the inference
algorithm does a similar kind of exploration as the checking
algorithm, this leads to duplicate work. To reduce this work,
we have, therefore, made the inference algorithm also perform
checking, with only a small amount of additional work. This
avoids having the checking algorithm duplicate the exploration
work done by the inference algorithm. The checking algorithm
is nonetheless useful by itself, in case our inference algorithm
is not capable of finding an appropriate relation, and the
relation is manually provided by the system designer.

B. Simulation Relation

The goal of the simulation relation in our approach is to
guarantee that the specification and the implementation inter-
act in the same way with any surrounding environment that
they would be placed in. The simulation relation guarantees
that the set of execution sequences of visible instructions in the
implementation is a subset of the set of execution sequences
in the specification. In what follows, we consider visible
instructions to be read and write operations to visible channels.
However, in Section VII-B, we define visible instructions to
be function calls and return statements.

The simulation relation (defined formally in Section IV)
consists of a set of entries of the form (gl,, gl,, ¢), where

KUNDU et al.: TRANSLATION VALIDATION OF HIGH-LEVEL SYNTHESIS

gl, and gl, are program locations in the specification and im-
plementation respectively, and ¢ is a predicate over variables
of the specification and implementation. The pair (gl,, gl,)
captures how the control state of the specification is related
to the control state of the implementation, whereas ¢ captures
how the data is related. For our running example, the entries
in the simulation relation are labeled A-D in Fig. 1, and each
entry has a predicate associated with it as shown in Table I.

The first entry ‘A’ in the simulation relation relates the
start location of the specification and the implementation.
For this entry, the relevant data invariant is true, as we have
no information about the states of the programs in those
locations. The second entry ‘B’ shows the specification just
as it finishes reading a value from the inp channel. The
corresponding control state of the implementation has the Y
process in the same state, just as it finishes reading from the
inp channel and the other process Z is at the top of its loop.
We use subscript S to denote variables in the specification
and subscript i for variables in the implementation. For this
entry, the relevant data invariant is ps = p;, which states that
the value of p in the specification is equal to the value of p
in the implementation. This is because both the specification
and the implementation have stored in p the same value from
the surrounding environment. In Section II-D, we explain in
further detail how our algorithm models the environment as a
set of separate processes that are running in parallel with the
specification and the implementation. For now, we hide these
additional processes for clarity of exposition.

The next entry ‘C’ in the simulation relation relates the
loop head (a4) in the specification with the loop head (b7) of
the Z process in the implementation. This entry represents two
loops that run in synchrony, one loop being in the specification
and the other being in the implementation. The invariant can
be seen as a loop invariant across the specification and the
implementation, which guarantees that the two loops produce
the same effect on the visible instructions. The data part of this
entry guarantees that the two loops are in fact synchronized.
Nominally, we need at least one entry in the simulation that
“cuts through” every loop pair, in the same way that there must
be at least one invariant through each loop when reasoning
about a single sequential program.

The last entry ‘D’ in the simulation relation relates the
location a7 in the specification with the location (b4, bg) of the
implementation. The relevant invariant for this entry is sumg =
sum;, since the specification is about to write sum to the ex-
ternally visible outp channel and the implementation is about
to write sum to the same channel (our correctness criterion).

Simultaneous execution from the last entry ‘D’ can reach
back to ‘B’, establishing the invariant ps = pj, since by
the time execution reaches the second entry again, both the
specification and the implementation would have read the next
value from the environment (the details of how our algorithm
establishes that the two next values read from the environment
processes are equal is explained in Section II-D).

C. Checking Algorithm

The entries in the simulation relation must satisfy some
simple local requirements (which are made precise in Sec-

569
(a)B-C Ps:P.
hrk=2"p
i k=2"p j11& j12: 0 = K (midlk «» mid?n)
iz sum=0 jp: sum =0
jat=n+1

he-c ke =mA ko+ 1= A sum, = sum,
iy (k= 10) j3 (n<10)
igk=k+1 jan=t
™ — J5: sum = sum + t
is: sum = sum + k g t=t+1

ke =mA ko+ 1=tAsum, = sum,

Fig. 3. Checking the simulation relation. (a) Traces from B to C. (b) Traces
from C to C.

tion IV). Intuitively, for any entry (gl,, gl,, ¢) in the simulation
relation, if the specification and implementation start executing
in parallel at control locations g¢l;, and gl, in states where ¢
holds, and they reach another simulation entry (gl}, g5, ¢),
then ¢’ must hold in the resulting states.

Given a simulation relation, our checking algorithm checks
each entry in the relation individually. For each entry
(gly, gl,, @), it finds all other entries that are reachable from
(gly, gl,), without going through any intermediate entries. For
each such entry (gl}, g5, ¥), we check using a theorem prover
that if: 1) ¢ holds at gl, and gl,; 2) the specification executes
from gl, to gl}; and 3) the implementation executes from gl,
to gl5, then ¥ will hold at g/} and gl5.

For our example, the traces in the implementation and the
specification from B to C and the trace from C to itself are
shown in Fig. 3(a) and (b), respectively. The communication
instructions have been transformed into assignments and the
original communication instructions are in brackets.

For the B—C path shown in Fig. 3(a), our algorithm uses a
theorem prover to validate that if ps = p; holds before the two
traces, then Kg = nj A sumg = sum; A (Ks + 1) = 1;) holds after
the traces have been executed. Similarly, it checks the traces
from C to C shown in Fig. 3(b) as well as all the other entries
in the simulation relation. If there were multiple paths from
an entry, our algorithm checks all of them.

D. Inference Algorithm

Our inference algorithm starts by finding the pairs of
locations in the implementation and the specification that need
to be related in the simulation. In the given example, our
algorithm first adds (ag, bg) as a pair of interest, which is
the entry location of both programs. Then it moves forward
simultaneously in the implementation and the specification
until it reaches a branch or an operation (read or write) on
a visible channel. In the example from Fig. 1, our algorithm
finds that there is an input, a branch, and an output instruction
that must be matched (the specification instructions inp?p and
outp!sum should match, respectively, with the implementation
instructions inp?p and outp!sum). This amounts to computing

570

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 4, APRIL 2010

@jc.e

is: (k < 10)

ipk=k+1

js: (n < 10)

is: sum = sum + K

jan=t
j5: sum = sum + t
jazt=t+1

k.=nmA Kk +1=tAsum,=sum,

i-: output ! sum

Ps =P

i-: output ! sum

Jor &jeot _ =1

ot ig: input ? p
jnk=2*p jo: input ? p
ink=2"p Jndjizin=k o _______
in:sum=0 i sum=0 Ps=P
JastEnE] | R S SRR R R S R RS R R SRR S R
. (e)A-B

Fig. 4. Steps of the second iteration for computing the simulation relation. (a) C-C. (b) C-D. (c¢) B-C. (d) D-B. (e) A-B.

TABLE I

ITERATIONS FOR COMPUTING THE SIMULATION RELATION

(gly, glp) 1st Iteration 2nd Iteration 3rd Iteration (¢)

A. (ag, bp) true true true

B. (a3, (b3, bs)) Ps =Pi Ps =P Ps =pj

C. (a4, (bg, b7)) ks = n; ks = nj A sumg =sumj A (ks + 1) = 1) | ks = nj A sumg = sum;j A (ks + 1) = tj)
D. (a7, (bs, bg)) | sumg = sum; sumg = sum; sumsg = sum;

the first column of Table II. While finding these pairs of
locations, our algorithm also does two things. First, it cor-
relates the branch in the specification and the implementation
(details of how we establish branch correlations are explained
in Section V). Next, it finds the local conditions that must
hold for the visible instructions to match. For instructions
that output to externally visible channels, the local condition
states that the written values in the specification and the
implementation must be the same. For example, the local
condition for the output instruction is SUMg = SUM;.

For instructions that read from externally visible channels,
the local condition states that the specification and the imple-
mentation are reading from the same point in the conceptual
stream of input values. To achieve this, we use an environment
process that models each externally visible input channel C
as an unbounded array values of input values, with an index
variable i stating which value in the array should be read next.
This environment process runs an infinite loop that continually
outputs values[i] to ¢ and increments i. Assuming that i and
j are the index variables from the environment processes that
model an externally visible channel c in the specification
and the implementation, respectively, then the local condition
for matching instructions c¢?a (in the specification) and c?b

(in the implementation) would then be is = ji. The equality
between the index variables implies that the values being
read are the same, and since this fact is always true, we
directly add it to the generated local condition, producing
is=ji/\as=bi.

Once the related pairs of locations have been collected, we
define for each pair of locations (gl,, gl,), a constraint variable
Yi(gl,,g1,) tO represent the state-relating formula that will be
computed in the simulation relation for that pair. We then
define a set of constraints over these variables to ensure that
the would-be simulation relation is a simulation.

There are two kinds of constraints. First, for each pair of
locations (gl;, gl,) that are related, we want (g, 41,y to imply
that the local condition at those locations hold. For example,
W(ay,(bs,bey) Should imply sumg = sum;, so that the output val-
ues are the same. Such constraints guarantee that the computed
simulation relation is strong enough to show that the visible
instructions behave the same way in the specification and the
implementation. A second kind of constraint is used to state
the relationship between one pair of related locations and other
pairs of related locations. For example, if starting at (gl,, gl,)
in states satisfying ¥4, 41,), the specification and implemen-
tation can execute in parallel to reach another related pair of

KUNDU et al.: TRANSLATION VALIDATION OF HIGH-LEVEL SYNTHESIS

locations (gl}, gl5), then ¥4y o) must hold in the resulting
states. As shown in Section V, such constraints can be stated
over the variables Yigi, g1,y and Yy g1,y using the weakest
precondition operator (Wp). These constraints guarantee that
the computed simulation relation is in fact a simulation.

Once the constraints are generated, we solve them using an
iterative algorithm that starts with all constraint variables set
to true and then iteratively strengthens the constraint variables
until a theorem prover is able to show that all constraints are
satisfied. Although in general this constraint-solving algorithm
is not guaranteed to terminate, in practice it can quickly find
the required simulation relation.

The constraint solving for our example is shown in Table II.
Our algorithm first initializes the constraint variables with the
local conditions that are required for the visible instructions
to be equivalent. Then it chooses any entry from the table,
say C, and finds the entries that can reach it (i.e., C and B).
Consider the synchronized loop from C to C shown in
Fig. 4(a). Our algorithm computes the weakest precondition
of the formula at the bottom (Ks = n;) over the instructions
in the implementation and in the specification, which happens
to be § = [(ks < 10) = (n; < 10) = (ks + 1) = t]. Next, it
asks a theorem prover if the condition at the top, i.e., kg = n;
implies &. Since it does not, our algorithm strengthens the
constraint variable at the top with (Ks + 1) = tj which is a
stronger condition than §. A similar pass through Fig. 4(b)
strengthens the constraint variable at C with (Sumg = sum).
For the other paths, B-C, D-B, and A-B shown in Fig. 4, the
theorem prover is able to validate the implication, and as such
we do not need to strengthen. Our constraint solving continues
in this manner until a fixpoint is reached.

III. DEFINITION OF REFINEMENT

We now present a formal description of our approach that
builds upon the illustration shown earlier. We assume that
the specification and the implementation are single-entry—
single-exit programs. We represent each process in the spec-
ification and the implementation using a transition diagram
that describes the control structure of the process in terms
of generalized program locations and program transitions.
A generalized program location represents a point of control
in the (possibly concurrent) program. A generalized program
location is either a node identifier, or a pair of two generalized
program locations, representing the state of two processes
running in parallel. A transition describes how the program
state changes from one program location to another. We
represent these transitions by instructions.

More formally, we define a program state to be a function
VAR — VAL assigning values to variables, where VAR
denotes the set of variables and VAL denotes the domain of
values. We denote by X the set of all program states. We
define an instruction to be a pair (c, f) where ¢ : ¥ — B is
a predicate and f : ¥ — X is a state transformation function.
The predicate c is the condition under which the state trans-
formation function f can happen. For instance, in Fig. 1 the
instruction i3z has c(o) = (o(k) < 10) and f(o) = o, whereas
the instruction i, has c¢(o) = true and f(o) = o[sum > 0].

Finally, a transition diagram is defined as follows.

571

Definition 1 (Transition Diagram): A transition diagram
wis a tuple (L,Z,—,t), where L is a finite set of
generalized program locations, L is a finite set of instructions,
— C L xTI x L is a finite set of triples (gl,1i, gl") called
transitions, and « € L is the entry location. We write
gl — gl' to denote (gl,i,gl') € —. We use ¢ € L to
represent the exit location of .

Definition 2 (Configuration): Given a transition diagram
w=(L,Z,—,1), wedefine a configuration to be a pair (gl, o),
where gl € L and o € X.

Definition 3 (Semantic Step): Given a transition diagram
7 =(L,I,—,1), two configurations (gl, o) and {(gl', '), and
an instruction i € I, the semantic step relation is defined as

follows:

(gl, o)~ (gl', o)y iff gl — gl andi=(c, f) and
c(o) = true and o' = f(0).

Definition 4 (Execution Sequence): For a given transition
diagram w = (L,T, —,), an execution sequence 1 starting
in configuration (gl,, 0o) is a sequence of configurations such
that - {gly, a0) % (gl 01) B - (gl).

We denote by N the set of all execution sequences. We use
the shorthand notation n(m, gl,, 0o) to represent an execution
sequence 1 starting in configuration (gly, op) in 7.

We define ¢ to be the set of visible instructions. These
are the instructions whose semantics we would like preserved
between the specification and implementation. Because our
framework is parameterized by the set ¢ of visible instructions,
we can apply our framework to various settings. For example,
in this discussion we consider visible instructions to be input
and output to visible channels. In Section VII-B, however we
define visible instructions to be function calls and return state-
ments. For vy, v, € ¢, we write (v;, 01) = (v, 02) to represent
that v, in program state o; is equivalent to v, in program
state o0,. In the case of channels, two visible instructions are
equivalent if they both are inputs, or both outputs on the same
channel and their values are the same. In the case of function
calls and returns, we say that two function calls are equivalent
if the state of globals, the arguments and the address of the
called function are the same. Furthermore, we say that two
returns are equivalent if the returned value and the state of the
globals are the same. This concept of equivalence for visible
instruction can be extended to execution sequences as follows.

Definition 5 (Equivalence of Execution Sequences): Two
execution sequences 1, € N and n, € N are said to be
equivalent, written 1y = n, if the two sequences contain
visible instructions that are pairwise equivalent.

Definition 6 (Refinement of Transition Diagrams): Given
two transition diagrams w; = (L1,Z;,—>1,4) and mp, =
(L2, Th, =2, 1), we define 1 to be a refinement of wwy (written
1 £ my) iff for every o1 € ¥ and ny(my, 11,01) € N there
exists 0y € ¥ and 0y (ma, tn, 02) € N such that n; = n».

IV. SIMULATION RELATION

A verification relation between two transition diagrams
m and m; is a set of triples (gl, gl,, ¢), where gl; € Ly,
gl, € L and ¢ is a predicate over the variables live at
locations ¢l; and gl,. Let the set of such predicates be

572

denoted by & o Y x X — B. We write ¢(oy, 03) = true to
indicate that ¢ is satisfied in (o7, 07) € ¥ X X.

Simulation relations are verification relations with a few
additional properties. To define these properties, we make use
of a cumulative semantic step relation ~~*, which works
like ~-, except that it can take multiple steps at once, and
it accumulates the steps taken into an execution sequence.

Definition 7 (Cumulative Semantic Step): Given configu-
rations {gly, oo) and (gl,, 0,), and an execution sequence n
that contains at least one transition, we define ~~* as follows:

n
(9lo, 90) ~* (gly on) iff
n = (glo, 00) ~ -+~ (glys 0n).-
Definition 8 (Simulation Relation): A simulation relation
R for two transition diagrams w; = (L1, 72y, =1, 1) and 7 =
(L2, T, =2, o) is a verification relation such that

R(11, 1z, true).
Valy, gls € Lo, gly € L1,01,00,0, €, p € ®,m € N.

n2
(g, 02) ~7 (gly, 03) A N
R(gllv ngs ¢) A ¢(011 02) = true
Hglll € ,C],O'i € E,(b/ S @,)71 GN.
m
(gl o1) ~T (gl}, o)A
R(gl}, gl5, ¢') A @/ (0}, 0b) = true Ay = m

Intuitively, these conditions respectively state that: 1) the
entry location of m; must be related to the entry location of
7,; and 2) if 7y and 7, are in a pair of related configurations,
and 7, can proceed one or more steps producing an execution
sequence 1, then 771 must also be able to proceed one or more
steps, producing a sequence n; that is equivalent to 17,, and
the two resulting configurations must be related.

The following lemma and theorem connect the above rela-
tion with our definition of refinement for transition diagrams
(Definition 6).

Lemma 1 (Refinement): If R is a simulation relation for
7y, o, then for each element (gl,, gl,, V) € R, 0, € X, and
(72, gly, 02) € N, there exists oy € %, and n1{r1, gl;, 01) €
N such that ny =2 A Y(oy, 02) = true.

Theorem 1 (Refinement): If there exists a simulation rela-
tion for my, my, then m, C my.

The conditions from Definition 8 are used as the base case
and the inductive case of a proof by induction showing that 7,
is a refinement of sr;. Thus, a simulation relation is a witness
that 7, is a refinement of ;.

V. TRANSLATION VALIDATION ALGORITHM

Our translation validation algorithms consists of two parts,
checking and inference. To show that a transition diagram is a
refinement of another transition diagram, we show there exists
a simulation relation. In the following sections, we describe
our algorithms for computing a simulation relation.

Given a transition diagram 7 and a set of locations S, we
define the skipping transition relation —, which is a version
of — that skips over all locations not in S. This transition

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 4, APRIL 2010

allows us to focus our attention on only those locations that
are in S.

Definition 9 (Skipping Transition): Let w = (L,Z, —,t)
be a transition diagram, gl, g' € S, and w € T*, where w =
io---i,. We define the skipping transition relation — for w
as follows:

(w,$)

gl—5gl'" if 3gly,---

gll> gly---gl, N gl'.

,9l, € (L —S) such that

Throughout the rest of this paper, we assume that m; =
(L1,Zy, —1, 11) represents the procedure in the specification,
and m, = (L5, I, —2, 1) represents the corresponding proce-
dure in the implementation. Thus, our goal is to show that m,
is a refinement of m; (i.e., m» C my).

A. Checking Algorithm

In this section, we present the details of our algorithm for
checking that a verification relation is indeed a correct simu-
lation relation. We let # C L x L, x ® to be the verification
relation that needs to be checked. We first define two sets of
locations P; and P,, which are of interest to our algorithm

Pr={gl, | 39y, . (91, gls, p) € R}

P2 =1{gly | 3gly, 6. (gl gla,) € R}
To focus our attention on only those locations in P; and P,

we use the skipping transition relation <. In this section,
. w (wi,P1)
we use the shorthand notation gl, <>, gl/ for gl S ,]T] gl’,
w) ’ (w2,P)
and gl, —, gl; for gl, —, gl;.

Given an entry in A, we then define the next transition
relation —>, which traverses the two transition diagrams
and m, simultaneously to the next entries reachable from it.

Definition 10 (Next Transition): Given (gl,, gl,, ¢) € R,
(g}, gly, ¥) € R, wy € IF and w, € I3, we define —>> as
follows:

(wi,wy)

(gllv gl29 ¢) — > (gl/) gl/) ’ﬁ) lff

gly 1 gly A gly —>5 glh.

For the verification relation 2 to be a simulation relation we
require it to satisfy certain conditions. In particular, we want
the conditions to make sure that the entry locations are related,
and the exit locations are related. Furthermore, the conditions
should make sure that for every path in the implementation
there is a corresponding path in the specification (our re-
finement criterion). These conditions are made precise by the
following definition of well-formed relation. If the relation A
is not well-formed, then our checking algorithm immediately
rejects the verification relation 4.

Definition 11 (Well-Formed Relation): We define the rela-
tion R to be well formed if the following holds:

) (11, 1o, true) € R.
2) d¢p € . (€1, €, ¢) €AR.
3) V(gly, gly, d) € R, gly € Pa,wy € I3
gly —>5 gl = 3gl, € Pr,y € ®. (gl gly. ¥) € A.

KUNDU et al.: TRANSLATION VALIDATION OF HIGH-LEVEL SYNTHESIS

1. function CheckRelation(#)
for each (gl,, gl,, @) € # do
wa)

(]

3 for each (gl,, gl,, ¢) et L (g1}, gl5,v) do

4 if —lsinfeasible(wy, w2, ¢) then

5 if ~WellPaired(w;, w2, ¢) then

6. Error(“Traces are not well formed™)

7 if ATP(¢ = wp(w1,wp(ws,v))) # Valid then
8 Error(“Cannot verify relation entry™)

9. function IsInfeasible(w, € I7, w2 € I3, ¢ € ®) : Bool
10. return ATP(—sp(wi,sp(ws, ¢))) = Valid

Fig. 5. Algorithm for checking a simulation relation.

The checking algorithm is shown in Fig. 5. The
CheckRelation procedure takes as input a well-formed re-
lation A, and verifies each entry in the verification relation
individually. For each possible entry (line 2), the algorithm
iterates through all the next transitions as shown in line 3.
In doing this search, infeasible paths are pruned out on
line 4.

The IsInfeasible function (lines 9 and 10), checks using an
automated theorem prover (ATP) whether or not it is in fact
feasible for the specification to follow trace w; and the imple-
mentation to follow w,. The trace combination is infeasible if
the strongest postconditions (computed using the Sp function)
with respect to w; and then with respect to w, is inconsistent.
This takes care of pruning within a single program, but also
across the specification and the implementation. For a given
formula ¢ and trace w, the strongest postcondition Sp(w, ¢)
is the strongest formula i such that if the instructions in
the trace w are executed in sequence starting in a program
state satisfying ¢, then ¥ will hold in the resulting program
state. The Sp computation itself is standard, except for the
handling of communication instructions, which are simulated
as assignments. When computing Sp with respect to one
sequence, we treat all variables from the other sequence as
constants. As a result, the order in which we process the two
sequences does not matter.

Once we have identified that the two sequences w; and w;
may be a feasible combination, we check that they are well
formed using the WellPaired predicate (lines 5 and 6). The
WellPaired predicate (not shown here) checks that there is at
most one visible instruction in the sequences w; and w,. It
also checks that the visible instructions are equivalent.

Next, for well formed sequences, we check that if we start
at states that satisfy the predicate ¢ and execute w; in m; and
wy in 7, then the resulting states should satisfy the predicate
Y. To do this, we first compute the weakest precondition of ¥
with respect to the two traces, and then ask an ATP to show
¢ implies it (line 7). We perform the weakest precondition
computation on one trace and then the other. For a given
formula ¢ and trace w, the weakest precondition wWp(w, ¥r)
is the weakest formula ¢ such that executing the trace w in
a state satisfying ¢ leads to a state satisfying 1. Here again,
the wp computation itself is standard, and the order in which
we process the two traces does not matter. If at the end of
the algorithm there is no error then the verification relation is
indeed a simulation relation.

573

There are additional optimizations we perform that are
not explicitly shown in the algorithm from Fig. 5. These
are however important in improving the efficiency of our
refinement checking process. When exploring the control state
(both in the checking and in the inference algorithm), we
perform a simple partial order reduction [45] that is very
effective in reducing the size of the control state space: if two
communication instructions happen in parallel, but they do
not depend on each other, and they do not involve externally
visible channels, then we only consider one ordering of the
two instructions.

B. Inference Algorithm

Since there can be many possible paths through a loop,
writing simulation relations by hand can be tedious, time
consuming and error prone. We therefore need methods for
generating these relations automatically, not just checking
them. This in turn also allow us to automate the validation
process entirely. Nevertheless, our checking algorithm is useful
by itself, in case our inference algorithm is not capable of
finding an appropriate relation, and a human wants to provide
the relation by hand.

Here again to focus our attention on only those locations
for which our approach infers the relation entries, we define
two sets of locations Q; and Q, for the transition diagrams 7
and m, respectively. These include all locations corresponding
to visible instructions and also all locations before branch
statements. In this section, we do notation abuse by reusing the
shorthand gl; —> gly for gl <(w—>lQ72 gly, and gl, <5, agls

(w2,Q2)
for gly —>, glb.

We now define a parallel transition relation << that
essentially traverses the two transition diagrams (specification
and implementation) in synchrony, while focusing on only
those locations for which our approach infers the relation
entries.

Definition 12 (Parallel Transition): Given (gl;, gl,) € Q1 x
9y, (gl gl5) € Q1 x Qy, wy € I} and w, € I5, we define
<> as follows:

(wy,w2) , , .
(gly, gly) == (gl}, gly) iff
wy , w2))
gly =1 gl N gly —>2 gl, A
Rel(wy, wa, gy, gl,) A WellMatched(w;, wy).

We now describe the two predicates Rel and WellMatched
used in the above definition. The predicate Rel : 7* x Z* x
Q1 x Q, — B is a heuristic that tries to estimate when a path
in the specification is related to a path in the implementation.
Consider, for example, the branch in the specification of Fig. 1
and the corresponding branch in the implementation. For any
two such branches, the Rel function uses heuristics to guess a
correlation between them: either they always go in the same
direction, or they always go in opposite direction. Using these
correlations, Rel(wy, w,, gl,, gl,) returns true only if the paths
w; and w, follow branches in a correlated way.

Our implementation of Rel correlates branches in two ways.
First, using the results of a strongest postcondition pre-pass
over the specification and the implementation, Rel tries to use

574

a theorem prover to prove that certain branches are correlated.
If the theorem prover is not able to determine a correlation,
Rel uses the structure of the branch predicate and the structure
of the instructions on each side of the branch to guess a
correlation. For instance, in the example of Fig. 1, since
the strongest postcondition involves the input parameter p,
the theorem prover is unable to reason about it. However,
because the structure of the branch predicate is not changed in
the implementation, Rel can conclude that the two branches
go in the same direction.

The other predicate WellMatched : Z* x 7* — B prunes
some of these pair of transitions if the sequence of instructions
are not similar (well-matched). We say two sequences (w;, w»)
of instructions are well-matched if neither of them contain
a visible instruction or they each contains a single visible
instruction of the same type; i.e., they are both input or both
output on the same channel. Although Rel and WellMatched
make guesses about the correlation of branches and visible
instructions, the later constraint solving phase of our approach
makes sure that these guesses are correct.

We now define the relation R € Q; x Q, of location pairs
that will form the entries of our simulation relation.

Definition 13 (Pairs of Interest): The relation R € Q1 x 9,
is defined to be the minimal relation that satisfies the following
three properties:

R(t]) L2)
Reer, €2)

(wy,wy) , ,
R(gli, gl) A (gly, gly) <25 (gl), glh)
= R(gl}, gly).

The set R defined above can easily be computed by start-
ing with the empty set, and applying the above three rules
exhaustively.

For our approach to successfully infer a simulation relation,
the computed set R must cover every path in the implementa-
tion (our refinement criterion). This condition is made precise
by the following definition of well-formed pairs of interest.
The well-formed condition here is similar to the one described
in Definition 11, except that now it is for the pairs of interest
relation R. We do not need the first two conditions here as they
are satisfied by construction. Here again if the computed set R
is not well-formed, then our validation approach immediately
rejects the translation from specification to implementation.

Definition 14 (Well-Formed Pairs of Interest): We define
the pairs of interest relation R to be well formed if the
following holds:

Y(gly, gly) € R, gly € Qo, wy € T}
gly <>, gly = 3gli € Q1. (g}, gl}) € R.

We now describe our inference algorithm in terms of
constraint solving. In particular, for each (g, gl,) € R we
define a constraint variable 4, 41,) representing the predicate
that we want to compute for the simulation entry (gl,, gl,). We
denote by W the set of all such constraint variables. Using

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 4, APRIL 2010

11. function SolveConstraints(C)
12. for each (gl,, gl,) € R do
13. Yigty .aly) = true

14. let worklist := C

15. while worklist not empty do

16. let (g1, g1,) = f(t-",-(_qpl_”;_rzj)] := worklist.Remove
17. if ATP(Y1,,910) = f(Veay,ai))) # Valid then
18. if (gl,,9l,) = (t1,12) then

19. Error(*Start Condition not strong enough™)

20. Viglyalz) = Vigly,aly) N f(!:;)[g}rl._r;{é))

21. worklist = worklist U

22, {(" €C| g .c= [‘l_.'f-‘ = 9(‘-";’[5}Il-_uaf-_>})]}

Fig. 6. Algorithm for solving constraints.

these constraint variables, the final simulation relation will
have the form

{(glla 9127 Iﬁ(gl,,glz)) | R(glla ng)}

To compute the predicates that the constraint variables
Yiql,.gl,) Stand for, we define a set of constraints on these
variables, and then solve the constraints. The constraints are
defined as follows.

Definition 15 (Constraint): A constraint is a formula of
the form ¥y = f(Y), where ¥y, Y, € \V, and f is a boolean
function.

Definition 16 (Set of Constraints): The set C of constraints
is defined by

For each (gl, gl,) Ly (gly, gly):
[W(g1,.91,) = CreateSeed(w;, w»)] € C
[Wigl, g1y = WP(w1, Wp(w3, 1ﬁ(gl’,,gz’2)))} eC.

The CreateSeed function above creates for each pair of
instruction sequences (wj, wy) a formula, which does not
refer to any constraint variables. There are two cases, either
they are well-matched or they are branches (Definition 12). If
the instructions are well-matched, then the formula returned
by CreateSeed states that the visible instructions in them
are equivalent as defined in Section III; and if they are
branches, then the formula states the two branches are corre-
lated (either they both go in the same direction, or in opposite
directions).

The other function wp used above computes the weakest
precondition with respect to w, and then with respect to wj.
The weakest precondition computation is the same as the one
described in Section V-A.

Having created a set of constraints C, our validation ap-
proach now solves these constraints using the algorithm in
Fig. 6. The algorithm starts by setting each constraint variable
to true (line 13) and initializing a worklist with the set of all
constraints (line 14). Next, while the worklist is not empty, it
removes a constraint from the worklist (line 16), and checks
using a theorem prover if it is Valid (line 17). If not, then
it appropriately strengthens the constraint variable in the left-
hand side of the implication for the given constraint (line 20)
and adds it to the worklist of all the constraints that have this
constraint variable in the right-hand side (lines 21-22).

KUNDU et al.: TRANSLATION VALIDATION OF HIGH-LEVEL SYNTHESIS

VI. EQUIVALENCE OF TRANSITION DIAGRAMS

Apart from checking refinements, we also sometimes want
to check equivalence between two transition diagrams. In this
section, we describe how we can generalize our algorithms to
check for equivalence. We first define two transition diagrams
to be equivalent as follows:

Definition 17 (Equivalence of Transition Diagrams): Two
transition diagrams mw and w, are said to be equivalent iff
m CE mp and 7y E 4.

We define a bisimulation relation using the definition of
simulation relation.

Definition 18 (Bisimulation Relation): A verification rela-
tion R is a bisimulation relation for my, 7, iff R is a simulation
relation for m\, w1, and R™" = {(gl,, gl, ¢) | R(gl,, gly,)} is
a simulation relation for m,, m;.

The following theorem connects the above relation with our
definition of equivalence for transition diagrams.

Theorem 2 (Equivalence): If there exists a bisimulation
relation for mw, m,, then m and m, are equivalent.

Like simulation relation, a bisimulation relation is a witness
that two transition diagrams are equivalent. Therefore, to check
if the specification is equivalent to the implementation our
algorithms now have to show that there exists a bisimulation
relation between them. We can use both our checking and
inference algorithms for this purpose with just slight modi-
fications.

For the checking algorithm, we only have to strengthen the
definition of well-formed relation (Definition 11) with this
fourth condition

Y(gly, glo, §) € R, gl € Pr,wy € I
gl <251 gl = 3gl, € Pa, yr € . (gl gl V) € A.

Similarly, for the inference algorithm, we only have to
strengthen the definition of well-formed pairs of interest
(Definition 14) with this condition

Y(gly, gly) € R, gl} € Q1, wy € I}
gl —>1 glt = 3gl, € Q. (gl gl)) € R.

VII. EVALUATION

We implemented our algorithms in a tool called SURYA
using the Simplify ATP [12]. We have used SURYA to validate
programs in two different settings. First, we used it to auto-
matically check refinements of various concurrent programs,
written in CSP. Next, we used SURYA to validate the result of
the HLS framework SPARK.

A. Automatic Refinement Checking of CSP Programs

For refinements our goal is to infer a simulation relation
(if possible). The visible instructions in this case are input
and output on visible channels. We wrote a variety of CSP
refinements, and checked them for correctness automatically.
The refinements that we checked are shown in Table III, along
with the number of parallel threads, the number of instructions,
the number of simulation relation entries, the number of calls

575

TABLE III
TIMINGS FOR THE REFINEMENT EXAMPLES CHECKED USING OUR TOOL

Description T 1 SRE TP Time

(mins)
1. Simple buffer 7 29 3 14 00.00
2. Simple vending machine 2 20 9 32 00.00
3. Cyclic scheduler 6 65 157 11082 00.49
4. Student tracking system 3 63 12 115 00.01
5.1 comm link 11 54 3 14 00.01
6. 2 parallel comm links 18 105 37 486 00.04
7. 3 parallel comm links 25 144 45 1861 00.21
8. 4 parallel comm links 32 186 124 7228 01.11
9. 5 parallel comm links 39 228 315 24348 02.32
10. 6 parallel comm links 46 270 762 74991 08.29
11. 7 parallel comm links 53 312 1785 217131 37.28
12. SystemC refinement 8 39 3 14 00.00
13. EP2 system 3 173 208 5648 01.47

T: number of parallel threads; I: number of instructions; SRE: number of simulation relation entries; TP:
Number of theorem prover calls.

to the theorem prover, and the time required to automatically
infer and check them. Apart from the theorem prover calls
discussed in this paper, we also use the theorem prover to
reduce the size of the formulas used in our algorithms. The
number of calls to the theorem prover mentioned in Table III
include all these calls.

The first 11 refinements were inspired from examples that
come with the failures-divergence refinement (FDR) tool [39].
FDR is a state-of-the-art tool to check CSP refinements. The
approach that FDR uses for checking refinement is to perform
an exhaustive search of the implementation-specification com-
bined state space. Although in its pure form this approach only
works for finite state systems, there is one way in which it can
be extended to infinite systems. In particular, if an infinite state
system treats all the data it manipulates as black boxes, then
one can use skolemization and simply check the refinement for
one possible value. Such systems are called data-independent,
and FDR can check the refinement of these systems using the
skolemization trick, even if they are infinite [48].

Unfortunately, for high-level programs, there are many
refinement examples that are not finite, because they do not
specify the bit-width of integers (in particular, we want the
refinement to work for any integer size). Nor are the processes
data-independent, as they manipulate the data during the
refinement process. In particular, our example from Fig. 1 is
neither finite nor data-independent, since both the specification
and the implementation are “inspecting” the variables when
manipulating them. Indeed, it would not at all be safe to
simply check the refinement for any one particular value,
since, if we happen to pick 0 for p, and the implementation
erroneously sets the output to four times the input (instead of
two times), we would not detect the error. FDR cannot check
the refinement of such infinite data-dependent CSP systems,
except by restricting them to a finite subset first, for example
by picking a bit-width for the integers, and then doing an
exhaustive search. Not only would such an approach not prove
the refinement for any bit-width, but furthermore, despite many
techniques that have been developed for checking larger and
larger finite state spaces [6], [11], [45], [49], the state space
can still grow to a point where automation is impossible. For
example, we tried checking the refinement example ‘2 parallel
comm links’ from Table IIT in FDR using 32-bit integers as

576 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 4, APRIL 2010

TABLE IV
SPARK BENCHMARKS SUCCESSFULLY CHECKED

Benchmarks No. of Bisimulation | No. of Calls to | Time
Relation Entries Theorem Prover (s)
1. Incrementer 6 9 00.52
2. Integer-sum 6 20 00.81
3. Array-sum 6 24 00.83
4. Diffeq 7 41 01.68
5. Waka 11 79 02.61
6. Pipelining 12 75 02.30
7. Rotor 14 71 02.57
8. Parker 26 281 05.23
9. S2r 27 570 26.73
10. Findmin8 29 787 14.86

values, and the tool had to be stopped because it ran out
of memory after several hours (our tool, in contrast, is able
to check this example for any sized integers, not just 32-bit
integers, in about 4 s).

We implemented generalizations of these 11 FDR exam-
ples to make them data-dependent and operate over infinite
domains. We were able to check these generalized refinements
that FDR would not be able to check.

The 12th refinement in the list is a hardware refinement
example taken from a SystemC book [21]. This example
models the refinement of an abstract first-in-first-out (FIFO)
communication channel to an implementation that uses a
standard FIFO hardware channel, along with logic to make
the hardware channel correctly implement the abstract com-
munication channel.

In the 13th refinement from Table III, we checked part of
the EP2 system [1], which is a new industrial standard for
electronic payments. We followed the implementation of the
data part of the EP2 system found in a recent paper on CSP-
PROVER [27]. The EP2 system states how various components,
including service centers, credit card holders, and terminals,
interact.

In all of the above examples, we check for trace subset
refinement (see Definition 6). Since trace subset refinement
preserves safety properties, we can also conclude that the im-
plementation has all the safety properties of the specification.

We also have a large test suite of hand-written incorrect
refinements that we run our tool on, to make sure that our
tool indeed detects these as incorrect refinements.

B. SPARK: HLS Framework

SPARK is a C-to-VHDL parallelizing HLS framework
that employs a set of compiler, parallelizing compiler, and
synthesis transformations to improve the quality of HLS
results. Fig. 7 shows an overview of the SPARK HLS
framework. What makes SPARK an excellent candidate for
experimenting is not only the easy availability of source code
but also the fact that it uses a single intermediate representation
(IR), called hierarchical task graphs [18]. SPARK starts with
a behavioral description in ANSI-C as input—currently with
the restrictions of no pointers, no recursion, and no irregular
control-flow jumps. It converts the input program into its
own IR, and then applies a set of code transformations,

including loop unrolling, loop fusion, common subexpression
elimination, copy propagation, dead code elimination,
loop-invariant code motion, induction variable analysis, and
operation strength reduction. Following these transformations,
SPARK performs a scheduling phase using resource allocation
information provided by the user. This scheduling phase also
performs a variety of transformations, including speculative
code motion, dynamic renaming of variables, dynamic branch
balancing, chaining of operations across conditional blocks,
and scheduling on multi-cycle operations. The scheduling
phase is followed by a resource binding phase and finally by
a back-end code generation pass that produces RTL VHDL.

Our tool SURYA takes as input the IR program that is
produced by the parser, and the IR program right before
resource binding (see Fig. 7), and verifies that the two are
equivalent by showing that there exist a bisimulation relation.
Our tool therefore validates the entire HLS process of SPARK,
except for parsing, resource binding and code generation.
Note that SURYA is around 7500 lines of C++ code, whereas
SPARKs implementation excluding the parser consists of over
125000 lines of C++ code. Thus, with around 15 times less
effort compared to SPARKs implementation we can build a
framework that validates its synthesis process.

We tested our tool on 12 benchmarks obtained from SPARKS
test suite. Of these benchmarks, ten passed and two failed.
The benchmarks that were successfully checked are shown
in Table IV, along with the number of bisimulation relation
entries, the number of calls to the theorem prover, and the
time required to check each benchmark. All these benchmarks
are single threaded. For the ones that passed, our tool was able
to quickly find the bisimulation relation, taking on average
around 6 s per procedure, and a maximum of 27 s for
the largest procedure (80 lines of code). Furthermore, the
computed bisimulation relations were small, ranging in size
from 6 to 29 entries, with an average of about 14. To infer
these bisimulation relations, our approach made an average
of 189 calls to the theorem prover per procedure (with a
minimum of 9 and a maximum of 797). Our approach is
compositional since it works on one procedure at a time,
and the above results show that our approach can handle
realistically size procedures.

As mentioned previously, two benchmarks failed our val-
idation test. Upon further analysis each of them lead us to
discover previously unknown bugs in SPARK. One bug occurs
in a particular corner case of copy propagation for array
elements. The other bug is in the implementation of the code
motion algorithm in the scheduler. We note that both the
bugs are, in retrospect, typical of the errors in such a code
consisting of complex compiler transformations. The fact that
these bugs were found in a well-used HLS framework indicates
the usefulness of our tool.

In general, our tool will perform well when the trans-
formations that are performed preserve most of the pro-
gram’s control flow structure. Such transformations are called
structure-preserving transformations [53]. The only non-
structure-preserving transformation that SPARK performs is
loop unrolling, but in our examples this transformation did
not trigger.

KUNDU et al.: TRANSLATION VALIDATION OF HIGH-LEVEL SYNTHESIS

577

C Intermediate
Program Representation (IR)
I
No Pointer
No Recursion = :
No Goto Pre-Synthesis | Aliocation | Scheduling

Optimization

Transformations: Code Motion, CSE, IVA, Copy
Propagation, Dead Code Elimination, Percolation,
Trailblazing, Chaining Across conditions, dynamic CSE.

Heuristics: HTG Scheduling Walker, Candidate Op
Walker, Get Available Ops, Loop Pipelining

SURYA
Validation

l

Scheduled IR

l

Binding

» RTL

Fig. 7. Overview of the SPARK framework along with SURYA.
VIII. RELATED WORK

Our work is related to translation validation [19], [33],
[42], [46], [47], [53], [54], relational approaches to reasoning
about programs [5], [7], [15], [28], [35], CSP refinement
checking [13], [27], [39], [51], and HLS verification [2], [14],
[31], [34], [41]. We now discuss each area in more detail.

A. Translation Validation

Our inference algorithm was inspired by Necula’s trans-
lation validation algorithm for inferring simulation relations
that prove equivalence of sequential programs [42]. Necula’s
approach collects a set of constraints in a forward scan of
the two programs, and then solves these constraints using a
specialized solver and expression simplifier. Unlike Necula’s
approach, our algorithm must take into account statements
running parallel, since hardware is inherently concurrent and
one of the main tasks that HLS tools perform is to schedule
statements for parallel execution. Furthermore our algorithm is
expressed in terms of calls to a general theorem prover, rather
than using specialized solvers and simplifiers. In this sense, our
algorithm is more modular, since the theorem proving part of
the algorithm has been modularized into a component with a
very simple interface (it takes a formula and returns Valid or
Invalid). This allows us to easily substitute the current Simplify
theorem prover with another one.

B. Relational Approaches

Relational approaches are a common tool for reasoning
about programs, and they have been used for a variety of
verification tasks, including model checking [7], [15], transla-
tion validation [42], [46], and reasoning about optimizations
once and for all [5], [35]. In this context, our work is inspired
by Josephs’s approach [28] for proving refinements. However,
Josephs proved refinements by hand, whereas our tool is fully
automated.

i Engine

C. CSP Refinement Checking

There has been a long line of work on reasoning about
refinement of CSP programs. Our searching algorithm through
the control state of the program is similar to FDRs searching
technique [39], which exhaustively explores the state space.
However, as mentioned previously, our tool can handle infinite
state spaces that do not trivially reduce using skolemization
to finite state spaces. We achieve this by capturing the pos-
sibly infinite state space of data using formulas and using
a theorem prover to reason about these formulas. Although,
this technique is well known and has been used in dataflow
analysis [16], [20], model checking [4], [8], [9], [24], and
translation validation [42], [46]. The use of this technique in
the context of checking CSP refinements appears to be novel.

Various interactive theorem provers have been extended
with the ability to reason about CSP programs. As one
example, Dutertre and Schneider [13] reasoned about commu-
nication protocols expressed as CSP programs using the PVS
theorem prover [43]. As another example, Tej and Wolff [51]
have used the Isabelle theorem prover [44] to encode the
semantics of CSP programs. Isabelle has also been used
by Isobe and Roggenbach to develop a tool called CSP-
PROVER [27] for proving properties of CSP programs. All these
uses of interactive theorem provers follow a common high-
level approach: the semantics of CSP is usually encoded using
the native logic of the interactive theorem prover, and then a
set of tactics are defined for reasoning about this semantics.
Users of the system can then write proof scripts that use these
tactics, along with built-in tactics from the theorem prover, to
prove properties about particular CSP programs. Our approach
does not have the same level of formal underpinnings as
these interactive theorem proving approaches. However, our
approach is fully automated, whereas these interactive theo-
rem proving approaches all require some amount of human
intervention.

578 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 4, APRIL 2010

Our tool checks one particular property of CSP programs,
namely trace subset refinement. This kind of refinement only
preserves safety properties. Algorithms and tools exist for
checking other kinds of refinements. For example, CSP-
PROVER [27] can check refinements using a failures semantics
that preserves liveness properties and deadlock freedom (in
addition to safety properties). The FDR [39] tool can also
check refinements in a failures/divergence model, which can
also preserve livelock freedom.

D. HLS Verification

Techniques like correctness-preserving transformations [14],
formal assertions [41], symbolic simulation [3], and relational
approaches for functional equivalence of finite state machines
with datapaths [29]-[32] have been used to validate the
scheduling step of HLS. In contrast to these approaches our
algorithm can handle most of the transformations currently be-
ing used for HLS in an uniform and modular framework. Our
approach is also able to automatically infer the equivalence
between the specification and the implementation without
relying on any hints from the HLS tool. Moreover, most of
these techniques assume that the scheduler does not move code
across basic blocks and variable names do not change, which
would prevent them from validating SPARKs HLS process.
Also, in work that is complementary to ours, model checking
was used to validate the binding step of HLS [2], which is the
only internal step of SPARK that our tool does not validate.

IX. CONCLUSION AND FUTURE WORK

We have presented an automated algorithm for translation
validation of the HLS process. The proposed algorithm is
implemented in a validation system called SURYA and we
demonstrated its effectiveness through its application in two
different settings. The innovation in our work lies in showing
that translation validation approaches work well in the appli-
cation domain of HLS.

Our experiments with SPARK showed that with only a
fraction of the development cost of SPARK, our algorithm
can validate the translations performed by SPARK, and it also
uncovered bugs that eluded long-term use. Our work also
solves the critical problem of handling more sophisticated
datatypes than finite bit-width enumeration types associated
with typical RTL code and thus enables stepwise refinement
of system designs expressed using high-level languages. Mov-
ing forward, we plan to implement translation validation in
SPARK for the remaining phases: parsing, binding and code
generation. We also intend to adapt our translation validation
techniques to SystemC [26] programs.

ACKNOWLEDGMENT

The authors would like to thank A. Hu, F. Doucet, and the
anonymous reviewers for their invaluable feedback on earlier
drafts of this paper.

REFERENCES

[1]1 EP2: Electronic Payment 2 [Online]. Available: http://www.eftpos2000.
ch

[2] P. Ashar, S. Bhattacharya, A. Raghunathan, and A. Mukaiyama, “Ver-
ification of RTL generated from scheduled behavior in a high-level
synthesis flow,” in Proc. IEEE/Assoc. Comput. Machinery Int. Conf.
Comput.-Aided Design, 1998, pp. 517-524.

[3] P. Ashar, A. Raghunathan, A. Gupta, and S. Bhattacharya, “Veri-
fication of scheduling in the presence of loops using uninterpreted
symbolic simulation,” in Proc. IEEE Int. Conf. Comput. Design, 1999,
pp. 458-466.

[4] T. Ball, R. Majumdar, T. Millstein, and S. Rajamani, “Automatic
predicate abstraction of C programs,” in Proc. Assoc. Comput. Ma-
chinery Special Interest Group Programm. Languages (SIGPLAN) Conf.
Programm. Language Design Implement., Jun. 2001, pp. 203-213.

[5S] N. Benton, “Simple relational correctness proofs for static analyses
and program transformations,” in Proc. 31st Assoc. Comput. Machinery
Symp. Principles Programm. Languages, Jan. 2004, pp. 14-25.

[6] J.R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang,
“Symbolic model checking: 10% states and beyond,” in Proc. 5th Ann.
IEEE Symp. Logic Comput. Sci., 1990, pp. 1-33.

[7] D. Bustan and O. Grumberg, “Simulation-based minimization,” in Proc.
Int. Conf. Automated Deduction, LNCS 1831. 2000, pp. 255-270.

[8] S. Chaki, E. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha, “Con-
current software verification with states, events and deadlocks,” Formal
Aspects Comput. J., vol. 17, no. 4, pp. 461-483, Dec. 2005.

[9] S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith, “Modular

verification of software components in C,” IEEE Trans. Software Eng.,

vol. 30, no. 6, pp. 388-402, Jun. 2004.

K. M. Chandy, Parallel Program Design: A Foundation. Boston, MA:

Addison-Wesley Longman, 1988.

[11] C. N. Ip and D. L. Dill, “Better verification through symmetry,” in
Computer Hardware Description Languages and their Applications,
D. Agnew, L. Claesen, and R. Camposano, Eds. Amsterdam, The
Netherlands: Elsevier, 1993, pp. 87-100.

[12] D. Detlefs, G. Nelson, and J. B. Saxe, “Simplify: A theorem prover
for program checking,” J. Assoc. Comput. Machinery, vol. 52, no. 3,
pp. 365473, May 2005.

[13] B. Dutertre and S. Schneider, “Using a PVS embedding of CSP to verify
authentication protocols,” in Proc. 10th Int. Conf. Theorem Proving
Higher Order Logics, 1997, pp. 121-136.

[14] H. Eveking, H. Hinrichsen, and G. Ritter, “Automatic verification of

scheduling results in high-level synthesis,” in Proc. Conf. Design,

Automat. Test Eur., 1999, p. 12.

K. Fisler and M. Y. Vardi, “Bisimulation and model checking,” in

Proc. 10th Conf. Correct Hardware Design Verification Methods, Sep.

1999, pp. 338-341.

[16] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata, “Extended static checking for Java,” in Proc. Assoc.
Comput. Machinery Special Interest Group Programm. Languages (SIG-
PLAN) Conf. Programm. Language Design Implement., Jun. 2002,
pp. 234-245.

[17] D. D. Gajski, N. D. Dutt, A. C-H. Wu, and S. Y-L. Lin, High-Level
Synthesis: Introduction to Chip and System Design. Norwell, MA:
Kluwer, 1992.

[18] M. Girkar and C. D. Polychronopoulos, “Automatic extraction of func-
tional parallelism from ordinary programs,” IEEE Trans. Parallel Distrib.
Syst., vol. 3, no. 2, pp. 166-178, Mar. 1992.

[19] B. Goldberg, L. Zuck, and C. Barrett, “Into the loops: Practical issues in

translation validation for optimizing compilers,” Electron. Notes Theor.

Comput. Sci., vol. 132, no. 1, pp. 53-71, May 2005.

S. Graf and H. Saidi, “Construction of abstract state graphs of infinite

systems with PVS,” in Proc. Int. Conf. Comput. Aided Verif., Jun. 1997,

pp. 72-83

[21] T. Grotker, S. Liao, G. Martin, and S. Swan, System Design With
SystemC. Norwell, MA: Kluwer, 2002.

[22] R. Gupta and F. Brewer, “High-Level Synthesis: A Retrospective,”

in High-Level Synthesis from Algorithm to Digital Circuit. Berlin,

Germany: Springer, 2008, pp. 13-28.

S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “SPARK: A high-level syn-

thesis framework for applying parallelizing compiler transformations,”

in Proc. Int. Conf. Very-Large-Scale Integr. Design, 2003, p. 461.

[24] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. “Lazy ab-
straction,” in Proc. 29th Assoc. Comput. Machinery Symp. Principles
Programm. Languages, Jan. 2002, pp. 58-70.

[25] C. A.R.Hoare, Communicating Sequential Processes. Englewood Cliffs,
NIJ: Prentice Hall, 1985.

[26] IEEE Standard 1666 SystemC Language Reference Manual, Open Sys-
temC Initiative, 2005 [Online]. Available: http://www.systemc.org

[27] Y. Isobe and M. Roggenbach, “A generic theorem prover of CSP
refinement,” in Proc. 11th Int. Conf. Tools Algorithms Construct. Anal.
Syst., LNCS 1503. Apr. 2005, pp. 103-123.

[28] M. B. Josephs, “A state-based approach to communicating processes,”
Distrib. Comput., vol. 3, no. 1, pp. 9-18, Mar. 1988.

[10]

[15]

[20]

[23]

KUNDU et al.: TRANSLATION VALIDATION OF HIGH-LEVEL SYNTHESIS

[29] C. Karfa, C. Mandal, D. Sarkar, S. R. Pentakota, and C. Reade,
“A formal verification method of scheduling in high-level synthe-
sis,” in Proc. IEEE Int. Symp. Quality Electron. Design, 2006,
pp. 71-78.

C. Karfa, D. Sarkar, C. Mandal, and P. Kumar, “An equivalence-checking
method for scheduling verification in high-level synthesis,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 27, no. 3, pp. 556-569,
Mar. 2008.

Y. Kim, S. Kopuri, and N. Mansouri, “Automated formal verifica-
tion of scheduling process using finite state machines with datapath
(FSMD),” in Proc. 5th Int. Symp. Quality Electron. Design, 2004,
pp. 110-115.

Y. Kim and N. Mansouri, “Automated formal verification of scheduling
with speculative code motions,” in Proc. 18th Assoc. Comput. Machinery
Great Lakes Symp. Very-Large-Scale Integr., 2008, pp. 95-100.

S. Kundu, S. Lerner, and R. Gupta, “Automated refinement checking
of concurrent systems,” in Proc. 2007 IEEE/Assoc. Comput. Machinery
Int. Conf. Comput.-Aided Design, 2007, pp. 318-325.

[30]

(31]

[32]

[33]

[34] S. Kundu, S. Lerner, and R. Gupta, “Validating high-level synthesis,” in
Proc. 20th Int. Conf. Comput.-Aided Verificat., 2008, pp. 459-472.
[35] D. Lacey, N. D. Jones, E. Van Wyk, and C. C. Frederiksen, “Proving

correctness of compiler optimizations by temporal logic,” in Proc. 29th

Assoc. Comput. Machinery Symp. Principles Programm. Languages, Jan.

2002, pp. 283-294.

M. Lam, “Software pipelining: An effective scheduling technique

for VLIW machines,” in Proc. 1988 Assoc. Comput. Machin-

ery SIGPLAN Special Interest Group Programm. Languages (SIG-

PLAN) Conf. Programm. Language Design Implement., Jun. 1988,

pp. 318-328.

E. A. Lee and A. L. Sangiovanni-Vincentelli, “A framework for compar-

ing models of computation,” IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 17, no. 12, pp. 1217-1229, Dec. 1998.

Y.-L. Lin, “Recent developments in high-level synthesis,” Assoc. Com-

put. Machinery Trans. Design Automat. Electron. Syst., vol. 2, no. 1, pp.

2-21, 1997.

[39] Failures-Divergence Refinement: FDR2 User Manual, Formal Sys-

tems (Europe) Ltd., Oxford, U.K., Jun. 2005.

G. De Micheli, Synthesis and Optimization of Digital Circuits. New

York: McGraw-Hill, 1994.

N. Narasimhan, E. Teica, R. Radhakrishnan, S. Govindarajan, and R.

Vemuri, “Theorem proving guided development of formal assertions

in a resource-constrained scheduler for high-level synthesis,” Formal

Methods Syst. Design, vol. 19, no. 3, pp. 237-273, 2001.

G. C. Necula, “Translation validation for an optimizing compiler,” in

Proc. Assoc. Comput. Machinery Special Interest Group Programm.

Languages (SIGPLAN) Conf. Programm. Language Design Implement.,

Jun. 2000. pp. 83-94.

S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. K. Srivas.

“PVS: Combining specification, proof checking, and model checking,”

in Proc. Comput.-Aided Verificat. (CAV), LNCS 1102. Jul.—Aug. 1996,

pp. 411-414.

[44] L. C. Paulson. Isabelle: A Generic Theorem Prover, LNCS 828. Berlin,
Germany: Springer-Verlag, 1994.

[36]

[37]

[38]

[40]

[41]

[42]

[43]

[45] D. Peled, “Ten years of partial order reduction,” in Proc. Int. Conf.
Comput.-Aided Verificat., Jun. 1998, pp. 17-28.
[46] A. Pnueli, M. Siegel, and E. Singerman, “Translation validation,” in

Proc. 4th Int. Conf. Tools Algorithms Construct. Anal. Syst., LNCS 1384.
1998, pp. 151-166.

M. Rinard and D. Marinov, “Credible compilation,” in Proc. FLoC
Workshop Run-Time Result Verificat., Jul. 1999.

A. Robinson and A. Voronkov, Eds., Handbook of Automated Reasoning.
Amsterdam, The Netherlands: Elsevier, 2001.

A. W. Roscoe, P. H. B. Gardiner, M. H. Goldsmith, J. R. Hulance, D. M.
Jackson, and J. B. Scattergood, “Hierarchical compression for model-
checking CSP or how to check 1020 dining philosophers for deadlock,”
in Proc. 1st Int. Workshop Tools Algorithms Construct. Anal. Syst., 1995,
pp. 133-152.

I. Sander and A. Jantsch, “System modeling and transformational
design refinement in ForSyDe [formal system design],” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 23, no. 1, pp. 17-32,
Jan. 2004.

H. Tej and B. Wolff, “A corrected failure divergence model for CSP
in Isabelle/HOL,” in Proc. 4th Int. Symp. Formal Methods Eur. Ind.
Applicat. Strengthened Foundations Formal Methods, 1997, pp. 318—
337.

R. Walker and R. Camposano, A Survey of High-Level Synthesis
Systems. Boston, MA: Kluwer, 1991.

[47]
[48]

[49]

[50]

[51]

[52]

579

[53] L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg. “VOC: A methodology
for the translation validation of optimizing compilers,” J. Univ. Comput.
Sci., vol. 9, no. 3, pp. 223-247, Mar. 2003.

[54] L. Zuck, A. Pnueli, B. Goldberg, C. Barrett, Y. Fang, and Y. Hu.
“Translation and run-time validation of loop transformations,” Formal
Methods Syst. Design, vol. 27, no. 3, pp. 335-360, 2005.

Sudipta Kundu received the B.S. and M.S. degrees
in mathematics and computing from the Indian In-
stitute of Technology (IIT) Kharagpur, Kharagpur,
India, in 2002 and 2004, respectively, and the Ph.D.
degree in computer engineering from the University
of California (UC) San Diego, La Jolla, in 2009.

He is currently a Senior Research and Develop-
ment Engineer with Synopsys, Inc., Hillsboro, OR.
He worked on this project as a graduate student at
UC. His current research interests include high-level
verification, equivalence checking, automatic verifi-
cation of system-level designs, and compiler verification. Earlier he worked on
high-level synthesis, embedded operating systems, and heterogeneous home
networks.

Dr. Kundu received the prestigious silver medal for being ranked first in the
department at the IIT Kharagpur.

Sorin Lerner received the B.Eng. degree in com-
puter engineering from McGill University, Montreal,
Canada, the M.S. degree from the University of
Washington, Seattle, and the Ph.D. degree in com-
puter science from the University of Washington, in
1999, 2001, and 2006, respectively.

While in graduate school, he interned several times
at Microsoft Research. He is currently an Assistant
Professor with the Department of Computer Science
and Engineering, UC San Diego, San Diego. His
current research interests include programming lan-
guages and program analysis techniques for making software systems easier
to write, maintain and understand, including static program analysis, domain
specific languages, compilation, formal methods, and automated theorem
proving.

Rajesh K. Gupta (M’83-F’04) received the B.Tech.
degree in electrical engineering from the Indian
Institute of Technology Kanpur, Kanpur, India, in
1984, the M.S. degree in electrical engineering and
computer science from the UC Berkeley, Berkeley,
in 1986, and the Ph.D. degree in electrical engi-
neering from Stanford University, Palo Alto, CA, in
1994.

He was previously with Computer Science Faculty,
University of Illinois at Urbana-Champaign (UIUC),
Champaign, and UC Irvine, Irvine. Prior to UIUC,
he was with Intel Corporation, Santa Clara, CA, where he worked as a member
of design teams for three generations of microprocessor devices with design
experience from Bi/CMOS to high-speed GaAs devices. He is currently a
QUALCOMM Chair Professor with the Department of Computer Science
and Engineering, UC San Diego. His current research interests include the
energy and thermally efficient large-scale systems and distributed processing
in sensor networks. His recent contributions include SystemC modeling and
SPARK parallelizing high-level synthesis, both of which are publicly available
and have been incorporated into industrial practice.

Dr. Gupta lead the Defense Advanced Research Projects Agency-supported
Adaptive Memory Reconfiguration Management project which demonstrated
methods to optimize movement and placement of application data across
the memory hierarchy. His ongoing efforts include energy-efficient data-
centers (National Science Foundation (NSF)-supported Project GreenLight)
and large scale computing using memory-coherent algorithmic accelerators
and nonvolatile storage systems (Department of Defense-supported Project
NV-DISC). In recent years, he and his students received the Best Paper Award
at the 2008 IEEE/Association for Computing Machinery (ACM) Distributed
Computing in Sensor Systems, and the Best Demonstration Award at the 2005
IEEE/ACM Information Processing in Sensor Network Platforms and Tools
(SPOTS). He is a recipient of the NSF CAREER Award and the Achievement
Awards at Intel Corporation. He currently serves as the Editor-in-Chief of the
IEEE EMBEDDED SYSTEMS LETTERS.

