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Knowledge of a person’s whereabouts in the home is key to context-aware applications, but many people do not want to

carry or wear a tag or mobile device in the home. Therefore, many tracking systems are now using so-called weak biometrics

such as height, weight, and width. In this paper, we propose to use body shape as a weak biometric, differentiating people

based on features such as head size, shoulder size, or torso size. The basic idea is to scan the body with a radar sensor and to

compute the reflection profile: the amount of energy that reflects back from each part of the body. Many people have different

body shapes even if they have the same height, weight, or width, which makes body shape a stronger biometric. We built a

proof-of-concept system called FormaTrack to test this approach, and evaluate using eight participants of varying height

and weight. We collected over 2800 observations while capturing a wide range of factors such as clothing, hats, shoes, and

backpacks. Results show that FormaTrack can achieve a precision, recall, direction and identity accuracy (over all possible

groups of 2 people) of 100%, 99.86%, 99.7% and 95.3% respectively. Results indicate that FormaTrack can achieve over 99%

tracking accuracy with 2 people in a home with 5 or more rooms.
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1 INTRODUCTION

Knowledge of a person’s whereabouts in the home is key to context-aware applications, such as personalized

heating and cooling, entertainment, task assistance, and behavioral or health analysis. Most tracking systems

today require people to wear tags, carry mobile devices, or have cameras or microphones but many people do not

accept these technologies in the home [30], and particularly not the aging population that needs in-home care

the most. As an alternative, many tracking systems are using so-called weak biometrics: physical characteristics

of the body that can differentiate people, but that do not necessarily uniquely identify them. For example, several

systems over the past several years have tracked people based on height [29, 63], weight [7, 58], and width [36].

Weak biometrics can be effective in a home environment because there are typically only a handful of residents

and they often have different biometric features due to age, gender, and/or family role. However, weak biometrics
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break down in environments with a large number of people (such as office buildings) or with people who have

similar biometric features by chance.

In this paper, we propose a new weak biometric feature called body shape that differentiates people based on

features such as head size, shoulder size, or torso size. The basic idea is to scan the body with a radar sensor and

to compute the reflection profile: the amount of energy that reflects back from each part of the body. These energy

levels are indicative of the relative size of each part of the body. Many people have different body shapes even if

they have the same height, weight, or width, which makes body shape a stronger biometric. Even twins often

have different body shapes. The most accurate body shape measurements would be achieved with sub-millimeter

wave radars, such as those used as airport scanners [13], but we hypothesize that simpler, lower-power, and more

compact radar sensors could adequately differentiate people in a home while still achieving higher accuracy than

existing weak biometric sensors.

To test this hypothesis, we built a proof-of-concept system called FormaTrack using a monostatic pulse radar

that measures total reflected energy at a given distance d , without collecting any information about angle of

arrival. Thus, it produces a single dimensional measurement vector, as illustrated in Figure 1, that does not at all

resemble the 3D imaging output produced by an airport scanner. We mounted the sensor at the top of a door

frame pointed downward so that it measures the distance to the ground. When a person walks through the door

frame, the sensor receives different levels of reflected energy from each part of their body. We use Doppler shift

to detect the exact moment when the person is in the door frame, and collect the reflection profile at that moment

to ensure the signature is repeatable. Then, we compare the signature to previous measurements in order to

recognize the occupant. Additionally, we tilt the sensor in order to create an asymmetric sensing region, similar

to prior work [29], in order to detect the walking direction. The identity and direction combined is sufficient for

room-level tracking of occupants in the home.

The sensor that we use has a maximum sensing range of 1m and therefore does not pick up most of the torso

size or any gait features observable in the arms and legs. It senses the person from above and therefore features

of the face and neck are also occluded. Nevertheless, this sensor demonstrates that body shape can be an effective

biometric feature. We evaluate FormaTrack using eight participants of varying height and weight who were

asked to walk through a doorway in different ways every day for seven days. This process generated over 2800

crossing events while capturing a wide range of factors such as clothing, hats, shoes, and backpacks. Results

show that FormaTrack can achieve a precision, recall, direction and identity accuracy (over all possible groups

of 2 people) of 100%, 99.86%, 99.7% and 95.3% respectively. Additionally, on testing FormaTrack for 36 hours

(over 12 days) when no one crossed the doorway, FormaTrack produced no false detections. To evaluate, how

FormaTrack translates to a whole-home tracking accuracy, we use the empirical data to emulate 15 different

floor plans varying from 3 to 9 rooms and test with data from 2 to 4 participants. We observe that FormaTrack

can achieve over 99% tracking accuracy with 2 people in a home with 5 or more rooms. Even with 4 people in a

home with only 3 rooms, room-level tracking accuracy is still above 92%. Finally, we demonstrate that simple

techniques can be used to reduce average power consumption by over 70% while missing fewer than 1% of all

doorway crossings.

2 RELATED WORK

Non-intrusive identification and tracking of people in the home environment has been an open problem for

several years. Early work used smart-floor based sensing systems [7, 42, 58] to track people based on their

weights. However, this approach would mis-identify somebody if they wear something heavy such as a backback.

Subsequent work tracked people based on height [29, 63], but this approach would mis-identify people if they wore

a hat or shoes. This approach was extended by complementing height with smartphone connectivity data [39],

infrared sensors [27], or person width measurements [36], but these approaches are subject to compliance
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issues or error based on body position, respectively. Another system attempts to identify people by sensing

their shadows [12, 40] but requires a dense deployment of photodiodes on the floor, which would be difficult

to install in homes. Several wireless-based device-free systems exist that attempt to identify people based on

their gait [26, 31, 33, 68]. These systems typically analyze the variation of the received wireless signal to infer

gait information (such as gait cycle time, walking speed, stride length, torso speed etc). However, these systems

require a person to walk in a straight line for about 5m [33, 68], in order to collect enough information about the

gait of the person, and gait can be affected by shoes, carried objects, the use of walking aids, and other factors.

Vision based systems [18, 19, 32, 44] can also identify and track a person. For example, vision systems capture a

facial image [44], the gait [18] or iris data [19] as biometrics. Other vision based systems [16, 22] try to extract

the silhouette of a person from the video frames and identify them based on their body shape. One limitation of

these techniques, however, is the need to deal with lighting issues such as darkness. Additionally, people often do

not accept video based systems into their homes, especially given the possibility that the device could be hacked.

FormaTrack avoids these problems by using wireless signals to sense the identity of people in a non-invasive way.

Other RF based sensors can perform much higher resolution imaging of humans to obtain their shape [13, 24].

These systems use sub-millimeter (for e.g. airport scanners) or millimeter waves, but are expensive and large in

size [13], making it currently unsuitable for people tracking in homes. RF-Capture [8] is a centimeter-wave system

similar to ours that senses the body shape of people in a room. However, it requires people to walk towards the

device for shape sensing, and also has a more complicated hardware than FormaTrack involving 4 transmitters

and 16 receivers. FormaTrack attempts to infer people’s identity at the doorway with a single transceiver. Finally,

depth imaging sensors such as the Microsoft Kinect can detect human body shape with high accuracy [47], but it

is not yet a low power device and therefore would be difficult to use for body scanning. However, future versions

of this sensor will be able to serve well for body shape sensing.

Aside from the systems described above, most indoor tracking systems either sense and track people but do not

infer their identities [9, 41, 61, 62, 66, 70], or they infer identities by requiring wearable tags or electronic devices.

So called device-based localization systems [45] include Cricket [52], Active Badges [69], RADAR [15], and Blue

Sentinel [23] that use ultrasound, infrared, wireless fingerprinting, and Bluetooth Low Energy, respectively. Some

other works have attempted to localize people based on FM-signal [21, 59], the powerline infrastructure [51] or

GSM signal fingerprinting [50]. More recently, several device-based sensing techniques using WiFi attempt to

localize the device (person) by measuring the angle-of-arrival or time of flight with respect to one or more access

points [37, 38, 65, 72]. In addition, there are motion-capture systems, such as Vicon, Xsens, Zebra etc [4–6], that

can capture the human figure and infer their identity, but requires the person to have several markers (sensors)

on their body. However, all these systems require a person to carry/wear a device (or at times even rotate the

device [38]) to be localized. While such systems may be practical in commercial settings, they are not accepted in

homes due to the so-called forget to wear, forget to charge problem [30]. We refer the reader to Xiao et al. [71] for

a more detailed survey of device-based and device-free localization systems.

Our system, FormaTrack is a radar-based system that leverages radar principles to perform identification

and room-level tracking of people. Far from its initial domains of aviation, navigation or weather forecasting,

radars have now entered into homes with applications such as non-intrusive vital signs measurement [10], gait

analysis [31], and fall detection [11]. Furthermore, with the advent of Google Soli [43], millimeter-wave based

radar systems have been designed for hand-gesture recognition [67], object and material identification [73], or

even to be a musical instrument interface [17]. However, FormaTrack is different from these systems in that it

uses a radar for identification and room-level tracking of people via body shape.

Finally, FormaTrack uses the Doppler principle to identify when the person walks from one side of the

doorway to the other. The principle of Doppler has been used for several applications such as inferring hand

gestures [28, 43, 53], sleep-sensing [54], connecting mobile devices [14], and tracking phone position [74]. They

all rely on the phenomenon that the frequency of the signal changes when the transmitter or receiver or a nearby
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reflecting object (virtual transmitter) moves. FormaTrack builds on the same principle but uses it in a different

context.

3 APPROACH

Any doorway tracking system should perform three main tasks : (i) detect when a person crosses through the

doorway, (ii) estimate their direction of movement, and (iii) infer the identity of the person who made the doorway

transition. Our system FormaTrack is a radar-based system mounted atop the doorway that analyzes the signals

reflected back from the environment to perform the aforementioned tasks. Since FormaTrack is radar-based, we

first provide a quick overview of key radar terminology and concepts.

A pulse radar is a device that emits a pulse of electromagnetic energy towards an expected target area, where

a portion of this radiated energy is reflected back by a target. The radar device analyzes this reflected signal to

obtain information about the target. For example, the amount of reflected energy indicates the target’s radar cross

section (size, curvature, reflectivity, etc) and the frequency of the reflected signal indicates the targets velocity, as

per the Doppler principle. A radar device is said to be monostatic when its transmitter and receiver are collocated.

In FormaTrack, a monostatic radar is mounted atop the doorway. The transmitter of our monostatic radar radiates

pulses towards the target area, while the receiver measures the reflected energy from the pulse interfering with

targets.

The output of a pulse radar is a radar frame that contains information about the total reflected power at

varying distances from the radar. These distances are quantized into bins called range bins, and the size of each

bin corresponds to the range resolution of the radar (i.e. the minimum distance between two distinguishable

targets). This range resolution of a radar depends on the sampling rate of the receiver. For example, a receiver

that samples at 40GS/s can provide a range resolution of about 4mm. The total number of bins in a radar frame

depends on the maximum detectable range of the radar (i.e. how far can a target be positioned to be detected by

the radar). Figure 1 shows an example of a radar frame with two dominant reflectors at about 0.4m and 0.6m

respectively. The size of each range bin in this frame is 4mm. There are a total of 256 range bins in this frame

resulting in a maximum detectable range of 1.024m.

Radars typically deal with two time dimensions - fast time and slow time [56]. Fast time refers to the time

between two pulses - i.e. it represents the range bins for a given pulse (frame), and is a function of the sampling

rate of the radar. On the other hand, slow time refers to the time dimension in the granularity of a pulse. It is a

function of the pulse repetition frequency (frame rate) of the radar. For a more detailed review of radar and its

principles, we point the readers to [56, 60]. The following sub-sections explain how we use the radar to detect

crossings, direction and body shape.

3.1 Crossing Detection:

Having seen the basic working of a radar system, we next explain how we use such a system to perform doorway

tracking. The first step in any doorway tracking system is to detect when a person actually walks through the

doorway. For this, we leverage the intuition that the total amount of energy reflected back on to the radar when

a person is crossing the doorway is much higher than when no one walks through.

To capture this intuition, we first pass the captured radar frame through a 3-frame moving target indication

(MTI) filter [56], to eliminate any unwanted static clutter. Next, we calculate the total power in each radar frame

as the sum of the absolute reflected power at each distance in the frame. More formally, the power of the ith

radar frame denoted as RFP(i) (read as the radar frame power of the ith frame) is given by:
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Fig. 1. An example of a radar frame: the radar measures

the reflected power at various distances.

Fig. 2. The total energy reflected back on to the radar

during a crossing (a peak in the figure) is much larger than

that in the absence of a crossing.

RFP(i) =
N−1∑
d=0

|Pd (i)| , (1)

where N is the total number of range bins, and Pd (i) is the reflected power at the dth bin, in the ith radar frame.

We next filter the radar frame power values via a two-stage discrete FIR filter [25] to eliminate any impulse

noise. Figure 2 shows the result of this filtering, for 10 doorway crossings. We can clearly see that the radar frame

power during a crossing is much larger than during a crossing absence. Consequently, we detect a crossing when

the total radar frame power exceeds a threshold Thcross (set as 4 times the noise floor). This technique of using

the radar frame power to detect a crossing is only the first step towards crossing detection. A second filtering

step is needed to eliminate false positives - i.e. to filter out those non-crossing events (events where no one is

crossing the doorway) that have a high radar frame power because of transient device noise.

We eliminate these false positive (FP) crossing events by leveraging on the intuition that since there is no one

crossing the doorway, the height estimates (or the lack of it) during a potential crossing event, can be used to

filter out FP events. We next explain how these height estimates are obtained. With FormaTrack mounted atop

the doorway, the head is the dominant reflector during a doorway crossing. Consequently, the distance to the

head at radar frame t corresponds to the range-bin with the maximum reflected power. Formally,

Distance to Head(t) = argmax
d

|Pd (t)|. (2)

Figure 3a shows the distance to the head from the radar during a crossing and non-crossing event (FP). We

observe that the distance to head follows the expected V-shaped pattern during a crossing, but occupies the noise

floor during a non-crossing. Hence by looking at the range of the distance to head estimates in a small window

(we use 100 frames) around the actual doorway crossing frame (obtained in Section 3.2), we can filter out false
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(a) The distance to the head from the radar follows a

V-shaped pattern during a crossing, but occupies the

noise-floor during a non-crossing event.

(b) The range of the distance to head estimates during

a crossing and non-crossing event are vastly different.

Fig. 3. The distance to head estimate from FormaTrack can be used to filter out false positives.

positives1. Figure 3b shows this range estimate calculated for 350 doorway crossing events of a person and for all

FP events detected in one of the days of our study (35 non crossing events passed the radar frame power test).

We can see a clear separation between true positive and false positive events. We consider an event to be a false

positive if it has a range estimate less than a threshold Thhead_ranдe (0.24m; determined to be 50% of the 1st

percentile of 900 crossing events collected during a testing period).

3.2 Direction Estimation

Having detected a crossing event, the next step of a doorway tracking system is to determine the direction of

target motion (i.e. from which room to which room did the person move). For this, we leverage two key factors: (i)

the principle of Doppler to identify when the person is exactly at the doorway, and (ii) tilting the radar towards

one of the rooms so that the total reflected power from one side of the doorway is greater than the other, during a

crossing. From classical physics, a target moving towards the receiver of a transmission causes a positive Doppler

shift at the receiver, while a target moving away from the receiver induces a negative Doppler shift. Consequently,

we determine the direction of motion by identifying the point of transition from positive to negative Doppler

shift, and then comparing the total radar frame power in a small window around this point of Doppler transition.

Since the radar is tilted towards one of the rooms, by comparing the reflected power on both sides of the Doppler

transition point, we can determine the direction of motion. Given this overview, we next describe the details of

our direction estimation - i.e. how we go from the radar frames described in Section 3.1 to a direction estimate.

Our first step in Doppler-based direction estimation is to convert a sequence of radar frames into a range-

Doppler matrix that shows the Doppler shift at varying distances from the radar. As shown in Figure 4, this is

done by horizontally stacking K(= 32) consecutive radar frames and performing a K-point FFT over each of the

N (= 256) range bins in a frame [56]. The outcome of this transformation is the range-Doppler matrix having N

1On looking at a sufficiently large window around the doorway crossing radar frame for a crossing event, the distance to head measure

actually takes an M-shape - i.e. rising from the noise floor when the person comes in the vicinity of the device, and dropping to the noise

floor when the person goes outside its vicinity. The noise floor is due to a low-power static path that remains after MTI filtering.
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Fig. 4. The range-Doppler matrix is formed by aggregating K radar frames, and then performing an FFT over each range-bin.

rows and K columns. Each row of the range-Doppler matrix corresponds to a range bin, while each column of

the range-Doppler matrix corresponds to a Doppler-shift bin. The size of each Doppler bin equals Radar Frame

Rate/K Hz [64], where Radar Frame Rate is the total number of emitted pulses (radar frames) per second. For

example, with a Radar Frame Rate of 170 Hz and a horizontal stacking of K = 32 radar frames, each Doppler bin

has a resolution of 5.31 Hz.

The left half of the range-Doppler matrix corresponds to negative Doppler frequencies, and the right half

corresponds to positive Doppler shifts. Each cell (i, j) in the matrix represents the Doppler power for the ith

range bin and jth frequency bin. Essentially, the range-Doppler matrix captures the amount of frequency shift at

each distance. Figure 5 shows an example of a range-Doppler matrix captured by FormaTrack when a person is

approaching the doorway. As the person approaches the doorway, she causes a positive Doppler shift, resulting

in higher power in the right half of the matrix.

The Doppler shift caused by a target moving at velocity v at an angle θ relative to the receiver, is given by [20]

Δf =
2 ∗ fc ∗v ∗ cosθ

c
(3)

where fc is the transmitter’s center frequency and c is the speed of light in the transmission medium.

With a radar frame rate of F frames per second, the X-dimension of the range-Doppler matrix spans from

-F /2 Hz to +F /2 Hz. In other words, we can measure Doppler shifts induced by targets up to F /2 Hz. At higher
speeds, the frequency "wraps around" the edge of the matrix, leading to Doppler aliasing [49]. Given our radar

center frequency of 7.2 GHz and a radar frame rate of 170 Hz, from Equation 3, we can measure targets moving

at speeds up to 1.77 ms−1. This is beyond the average human walking speed of 1.2 to 1.3 ms−1 [48].
For a crossing detection frame tcross , identified in Section 3.1, we compute RDcross , the set of range-Doppler

matrices for wrd frames around tcross . More formally,

RDcross = {RD(t ,d, f ) | tcross −wrd ≤ t ≤ tcross +wrd }. (4)

In our system, we usewrd = 200 frames (translating to around 1.2 s). To capture the intuition that a person

causes positive Doppler shift while approaching the doorway, and negative while exiting it, we transform RDcross

into the dominant Doppler matrix DD (t,d) - a matrix that contains the Doppler frequency with the highest

reflected power at every distance over time. We perform this transformation by calculating the dominant Doppler
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Fig. 5. Range Doppler Matrix: As the target moves towards

the radar, she induces a positive Doppler shift. This is seen

by higher power in the right half of the matrix.

Fig. 6. [Figure Best Viewed in Color] Doppler during a

doorway crossing: A person causes a positive Doppler

shiftwhile walking towards the doorway, and a negative

Doppler shift while walking away.

frequency for every range-bin, for each range-Doppler matrix in RDcross . Said more formally,

DD(t ,d) = argmax
f

RD(t ,d, f ), where RD(t ,d, f ) ∈ RDcross . (5)

In other words, the relationship between RD(t ,d, f ) and DD(t ,d) is as follows: the former captures at each

radar frame t , the amount of frequency shift at each distance, while the latter takes it one step further and gives

the frequency with the largest reflected power at each distance, over multiple radar frames. Figure 6 shows an

example of the dominant Doppler matrix DD (t,d) during a crossing. Here, we can clearly see positive Doppler

frequencies dominating when a person approaches the doorway, and negative frequencies dominating during

exit. Our next step is to identify the Doppler transition point, which corresponds to when the person is actually

at the doorway.

For this we define another term called the Approach Away Power (AA). This term weights the sign of the

dominant Doppler (+1 for positive Doppler and -1 for negative Doppler) by the corresponding Doppler Power, for

each range bin in the dominant Doppler Matrix. Formally,

AA(t) =
N−1∑
d=0

siдn(f ) ∗ RD(t ,d, f ), (6)

where f = DD (t ,d), siдn(f ) =
{
+1, f > 0 (Positive Doppler )
−1, f < 0 (Neдative Doppler ) . (7)

Intuitively, AA captures the cumulative dominant Doppler power over the covered range of radar, factoring in

the direction of movement. Via this measure, a person approaching the doorway causes positive Approach Away

Power, while a person exiting the doorway causes negative Approach Away Power. Hence, if we calculate AA (t)

over the entire crossing window, then capturing the zero-crossing would give us the Doppler transition point.

Figure 7 shows the normalized Approach Away Power during a doorway crossing. We can clearly see our zero
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Fig. 7. The Approach Away (AA) Power is used to iden-

tify the point of transition from positive Doppler to

negative Doppler. There is positive AA power when the

person approaches the doorway, and negative AA power

when the person leaves. Identifying the zero-crossing

tells us when the person crosses the sensor.

Fig. 8. Two people of similar height reflect very differently as

they walk through the doorway. The bigger person reflects back

a stronger signal to FormaTrack.

crossing of interest around frame 240. However, we also notice other zero-crossings due to noise cropping up (i.e.

the Approach Away Power oscillates about 0 during a non-crossing).

To identify the zero-crossing of interest, we use the observation that the zero-crossing during a doorway

crossing is much more widely spaced than during a non-crossing (i.e. the frequency of oscillations about 0

during a non-crossing is much higher than during a crossing). Hence to identify our zero-crossing of interest

(corresponding to the person being at the doorway), we first compute the widest zero-crossing interval (zc1, zc2).

In Figure 7, this could correspond to the (a,b) interval or (b,c) interval (i.e. the approach or the exit part of a

doorway crossing). For the chosen widest zero-crossing interval (zc1, zc2), we next check the Approach Away

Power values in the interval (zc1, zc2). If they are all positive then (zc1,zc2) corresponds to a doorway entry, and

we choose the right-end (zc2) as our zero-crossing of interest. On the other hand, if they are all negative, then

(zc1,zc2) corresponds to a doorway exit, and we choose the left-end (zc1) as our zero-crossing of interest. As

mentioned earlier, this computed zero-crossing of interest (referred to as ZCinterest ) corresponds to the person

actually being at the doorway.

Now that we know the exact point of doorway crossing, we can determine direction. As mentioned earlier,

FormaTrack is tilted towards one of the rooms adjoining the doorway. This tilt creates asymmetric reflected power

during a crossing; reflected power from one room is always greater than the other. As a result, by comparing

the total radar frame power in a small window of wdir (= 200) frames on either side of the ZCinterest , we can

determine direction. If we define motion from tilted side to the non-tilted side as being IN, and vice versa as being

OUT, then we can formally define our direction estimate as:
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Direction =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
IN, if

ZCinterest∑
t1=ZCinterest−wdir

RFP(t1) >
ZCinterest+wdir∑
t2=ZCinterest

RFP(t2)

OUT, otherwise

. (8)

3.3 Body Shape Sensing

The third piece of any doorway tracking system is to infer the identity of the crossing individual. For this,

FormaTrack uses knowledge of when the person is exactly at the doorway (Section 3.2), and the distance to head

estimate (Section 3.1), to sense the shape of the person.

According to the radar range equation [56], the total power reflected back on to the radar depends not just on

the distance to the target, but also the radar cross section. This radar cross section is a property of the target [43]

and is a measure of the target’s ability to reflect signals back on to the radar. In the case of a person walking

through a doorway, this becomes a function of the body shape of the person. Moreover, as a bigger person

occupies more area, he would also reflect power at more distances than the smaller person. Figure 8 shows an

example of two people of similar height but very different shapes as they cross the doorway. We see that the

bigger person (on the right) reflects back more energy towards the sensor than the smaller person (on the left).

FormaTrack leverages this intuition and computes a reflection profile (RP) to sense the body shape when the

person is at the doorway.

FormaTrack computes the reflection profile by capturing the intuition that two differently shaped people will

reflect different power at different distances while at the doorway. To compute the reflection profile, FormaTrack

first aggregates a small number of wid (= 50) frames around the doorway crossing point (ZCinterest ). Next for

each frame t, FormaTrack first computes the distance to the head dhead (Distance to Head (t) in Section 3.1). This

distance estimate, which corresponds to the start of the person’s body in a frame, is used as an anchor point. Next,

we collect the power values at the remaining distances relative to this anchor point, and integrate over the 2*wid

crossing frames to obtain the reflection profile as the following:

RP =

{
ZCinterest+wid∑

t=ZCinterest−wid

Pd (t)
}
, for d ∈ [dhead ,N − 1] . (9)

We then pass this computed reflection profile of the person (a measure of how the person’s body reflects while

at the doorway), which is a vector of aggregated reflected power at various distances, and the distance to head

estimate at ZCinterest , to a support vector machine classifier with the RBF kernel (C=0.5, gamma=100) to infer

the identity of the person.

4 EXPERIMENTAL SETUP

To test our hypothesis, we mounted the Salsa Ancho kit [3] atop the doorway of a home, as shown in Figure 9a.

The Salsa Ancho kit uses the Novelda Xethru X2 ultra-wideband impulse radar transceiver chip [2], which

operates at a center frequency of about 7.2 GHz, and provides a range resolution of 4mm (i.e. a sampling rate

of 39 GS/s). The kit outputs raw radar baseband frames as shown in Figure 1, which are then transferred via a

BeagleBone Black to a host computer for analysis. We used a 6dBi sinuous directional antenna on the kit which

provided a horizontal and vertical beamwidth of 85°and 65°respectively. We also modified the X2 radar registers

to output an average of 170 frames per second to prevent any Doppler aliasing. There are no health concerns
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(a) The Xethru radar is mounted atop the doorway

tilted towards one side.

(b) Participants were asked to walk through the instrumented door-

way in 5 different ways.

Fig. 9. Experimental Setup.

Participant # P1 P2 P3 P4 P5 P6 P7 P8

Height (cm) 161 165 167 169 170 172 175 183

Weight (kg) 60.8 58.1 73.5 77.1 78.0 56.7 97.9 68.0

Table 1. The height and weight of the 8 participants who walked through an instrumented doorway for 7 days generating

2800 doorway crossing events

associated with FormaTrack as the average transmit power from the Salsa Ancho kit is -13dBm (50μW) at 7GHz2.

This is over 450 times less than the regulations set by the International Commission on Non-Ionizing Radiation

Protection (ICNIRP)3[1]. For comparison, the maximum FCC permitted transmit power for an indoor 5GHz WiFi

access point is 1W4.

We asked 8 participants to walk for 7 days through the instrumented doorway (i.e. one session of 25 back and

forth crossings per day for 7 days to capture variations due to speed and clothing). The height and weight of

these participants are shown in Table 1. On each day, as shown in Figure 9b, they were asked to walk a total

of 25 times - 5 times back and forth through the doorway in each of the following ways : (i) straight from one

room to the other (henceforth referred to as room1 and room2 respectively), (ii) anywhere from the left-side

of room1 to the right-side of room2, (iii) anywhere from the left-side of room1 to the left-side of room2, (iv)

anywhere from the right-side of room1 to the right-side of room2, and (v) anywhere from the right-side of room1

to the left-side of room2. No restrictions were imposed on the type of clothing the participants wore, or the time

of experiment. Our study had participants walking shortly after waking up, after a gym workout, on the way

to/from work, during an illness etc. The crossings of the participants were recorded by a video camera, which

were then manually analyzed. In all, we collected a total of 2800 doorway crossings.

We evaluate FormaTrack via four metrics:

• Recall: The fraction of actual doorway crossings that were correctly detected by FormaTrack.

2https://www.xethru.com/chips-salsa-uwb-radar-development-kit.html/
3http://www.icnirp.org/
4https://www.ecfr.gov/cgi-bin/text-idx?SID=eed706a2c49fd9271106c3228b0615f3&mc=true&node=pt47.1.15&rgn=div5

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 3, Article 61. Publication date:

September 2017.



61:12 • A. Kalyanaraman et al.

Metric Accuracy (%)

Precision 100

Recall 99.86

Direction Accuracy 99.17

Identity Accuracy 90.3 (95.3)

Table 2. FormaTrack achieves over 90% accuracy in all metrics of interest for 2800 doorway crossings. The identity accuracy

increases from 90.3% with 1 day of training to 95.3% with 6 days of training.

Recall =
# Correctly detected crossings by FormaTrack

# Ground truth crossings
(10)

• Precision: Amongst the doorway crossings detected by FormaTrack, the fraction that actually occurred.

Precision =
# Correctly detected crossings by FormaTrack

Total # crossings detected by FormaTrack
(11)

• Direction Accuracy: The fraction of correctly detected doorway crossings having the correct direction.

Direction Accuracy =
# Correct direction crossings by FormaTrack

# Correct crossings detected by FormaTrack
(12)

• Identity Accuracy: The fraction of correctly detected doorway crossings classified to be the right person.

Identity Accuracy =
# Correctly classified crossing person’s identity by FormaTrack

# Correct crossings detected by FormaTrack
(13)

In this study, we did not ask multiple people to walk through the doorway one behind the other in a platoon

fashion. This is because such platooning is not a common scenario in homes (for e.g., in a study, the median

time difference between two different people walking through the same doorway in an 8-room home was 10

minutes [27]).

5 EVALUATION

5.1 System Accuracy

Of the 2800 crossings collected, only 4 of them were missed due to the conservative threshold ( Thcross ), and

there were no spurious crossings detected. Among the 2796 crossings correctly detected, 8 of them had an

incorrect direction. We evaluated the identity accuracy by testing all possible combinations of 2 people from the

8 participants (8 choose 2), for a total of 28 combinations. For each combination, each person is trained on all

crossings collected from a day (one day at a time), and tested on the remaining 6 days. This gives us an overall

precision, recall, direction and identity accuracy of 100%, 99.86%, 99.7%, 90.3% respectively. Table 2 shows the

average accuracy of FormaTrack. Using more training data through 7-fold cross validation (i.e. training on 6 days

and testing on 1) would give 95.3% identification accuracy, as illustrated in Figure 15. The identity accuracy of

FormaTrack increases with the number of days used for training, and we evaluate this in Section 5.6.

5.2 Effect of False Positives

We next test FormaTrack for false positives. We do this by collecting 36 hours of data (3 hours for 12 days) from

the instrumented doorway on an empty room, where no person crossed the doorway. We compare our distance
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Fig. 10. FormaTrack‘s reflection-profile based technique consistently out-performs the height biometric baseline. FormaTrack

is also more robust - i.e. accuracy decreases more slowly with people. FormaTrack achieves nearly 80% identity accuracy even

while sensing a group size of 4.

filter algorithm against the no filtering technique (i.e. simply relying on radar frame power alone to detect a

crossing). In the absence of any filtering, 152 energy peaks were observed over the 36-hour period. This is due to

transient noises on the radar device, as mentioned earlier. However, our distance filter technique filtered them all

out, resulting in 0 false positives over the study period.

5.3 Effect of Number of People

We next evaluate how FormaTrack’s reflection profile technique performs as we start increasing the number of

people being tracked. For an N -person group, we calculate the average identity accuracy by generating all possible

N -person combinations from the 8 participants. Each combination is trained on a day (one day at a time), and

tested on the remaining 6 days. We compare our approach of using reflection profile against a baseline algorithm

that used heights alone. The height estimate is obtained as the distance to the dominant reflector (i.e. the head),

as explained in Section 3.1, when the person is at the doorway (i.e. the radar frame corresponding to the Doppler

sign change).

From Figure 10, we notice that FormaTrack not just consistently out-performs the height alone approach, but

is also more robust, i.e. the accuracy drops more slowly as more people are added to the system. We see that

for 2, 4 and 8 people, the reflection profile technique is 7%, 14% and 18% better than the height-alone approach.

As expected, as the number of people being sensed increases, the identity accuracy starts to drop. However,

FormaTrack still manages to achieve nearly 80% accuracy while sensing a 4-person group.

5.4 System-level Tracking Accuracy

Individual doorway accuracy numbers do not directly translate to a room-level tracking accuracy of occupants [29,

34]. This is because errors made on a single doorway can typically be corrected by subsequent observations

made on other doorways of a home. However, for cost reasons, we were unable to measure room-level tracking

accuracy via a full-home deployment. As an alternative, we perform a tracking simulation by considering 15

different floor plans (obtained from Google Images) of homes varying from 3 to 9 rooms. For each home under test,

we consider 2 to 4 inhabitants (limited by the computational complexity of the tracking algorithm [34, 35, 55]).
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Fig. 11. Whole home tracking simulation of FormaTrack with 15 different floorplans obtained from Google Images and

various number of people: FormaTrack can achieve an average room-level tracking accuracy of over 99%, 98% and 91% for 2, 3

and 4 people respectively.

These inhabitants were chosen at random from our pool of 8 participants. For each person we model their room

transitions via a uniform distribution, and model their dwell time (in a room) based on 6 days of in-situ data [34].

For each simulated crossing of a person, we pick a random crossing event performed by the corresponding

participant on our instrumented doorway. We repeat the entire process 10 times, and obtain a total of 223,982

simulated crossings. We pass these crossings through TransTrack [34], a multiple-hypothesis tracking (MHT) [55]

algorithm for doorways, and measure the transition accuracy [34] (F-score of precision and recall of crossings).

Figure 11 shows the average transition accuracy for different number of rooms and people. We see that even

though the individual identity accuracies for 2, 3 and 4 person groups (from Figure 10) are 90%, 84% and 79%

respectively, they translate to an average of over 99%, 98% and 91% of transition accuracy, respectively. This

increase is because the tracking algorithm leverages future doorway crossing events to help rectify mistakes in

prior crossing events.

5.5 Energy Analysis

We next explore the potential of a low-power variant of FormaTrack. In particular, we explore the following

options to save energy:

• Using a motion sensor to duty-cycle the radar

• Lowering the frame rate of the radar (down-sampling in Slow Time)

• Lowering the sampling rate of the radar (down-sampling in Fast Time)

5.5.1 Duty-cycling via motion sensor: There are many hours in the day when no occupant of a home makes

any doorway transition (for e.g. when the residents are asleep or out at work). Similarly, there are many rooms in

the home which are very infrequently visited (for e.g. the bathroom is occupied for around 6% of the day [27]).

Under these circumstances, the FormaTrack device(s) can effectively be turned off for long periods of time to save

energy. In order to perform such duty-cycling, we explore the possibility of using low-power motion sensors on

the doorway to trigger the radar on.

For this, we analyze the data from one of our prior in situ studies [34]. The 6-day study contained 1756 doorway

crossing events from 8 doors in a home. Each doorway was equipped with two PIR motion sensors facing each

of the adjoining rooms. Figure 12 shows the recall (i.e. the fraction of crossings detectable by a system like

FormaTrack that would be triggered by a motion sensor) compared against the fraction of time a system like
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Fig. 12. By augmenting FormaTrack with a motion sensor, FormaTrack can achieve 99% recall by remaining ON for less than

30% of the time.

FormaTrack would be ON. We see that we can achieve 99% recall by keeping FormaTrack ON for just 30% of the

day. (i.e. FormaTrack can be turned OFF for 70% off the time). In other words, if the FormaTrack system is turned off

when nobody is moving in an adjacent room, its average energy consumption can be reduced by 70%. The typical

power consumption of the Xethru X2 radar which FormaTrack uses is about 120mW5. This is comparable to the

power consumption of the ultrasonic sensors used in Doorjamb (150mW) [29] or a thermal camera (150mW)6,

and far less than other alternatives such as a LIDAR (8-60W)7 or a Kinect (15W) [29, 47]. Mohammadmoradi et

al. [46] used an infrared array sensor that consumed an average power of just 15mW. However, unlike other

aforementioned systems, they do not have a notion of identity (i.e. person-counting application). Furthermore, by

being ON for just 30% of the time, the average power consumption of FormaTrack drops to just 46.6mW (36mW

from duty-cycled radar and 10.6mW8 from two PIR motion sensors). This saving can be further increased by

using motion sensors with only a limited view (e.g. 1m) on either side of the doorway.

5.5.2 Down sampling in Slow Time: We next explore the possibility of lowering the frame rate of the radar to

save energy (i.e. the radar can start to sleep between every pulse transmission). We do this by considering every

N th radar frame, and measuring our metrics of interest. As before, for identity accuracy, we consider all possible

2 person groups. Every group is trained one day at a time, and tested on the remaining 6 days. Figure 13 shows

that we can down-sample by a factor of 2, and still achieve comparable performance to the non down-sampled

case. At greater down-sampling factors, Doppler aliasing dominates, affecting the calculation of our zero-crossing

of interest, resulting in direction and identity performance loss.

5.5.3 Down sampling in Fast Time: A third approach to save energy in FormaTrack is by lowering the sampling

rate of the radar (resulting in lesser stress on the samplers of the radar). This effectively translates to a decrease

in the range resolution of the radar. We simulate a fast-time down sampling rate of N , by averaging every N
range bins of a radar frame. Figure 14 shows that similar to the slow-time case, we can down-sample by a factor

5https://www.xethru.com/community/resources/x2-datasheet.24/
6https://cdn.sparkfun.com/datasheets/Sensors/Infrared/FLIR_Lepton_Data_Brief.pdf
7http://velodynelidar.com/docs/datasheet/LiDAR%20Comparison%20chart_Rev-A_Web.pdf
8https://www.sparkfun.com/products/13285
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Fig. 13. Down sampling in slow time (ST) for energy sav-

ings: The performance of FormaTrack remains comparable

even after lowering the frame rate by a factor of 2. At even

lower frame rates, Doppler aliasing impacts accuracy.

Fig. 14. Down sampling in fast time (FT) for energy savings:

FormaTrack’s performance remains unaffected even after

lowering the sampling rate of the radar by a factor of 2.

of 2 with no performance loss. Even at greater down sampling rates (up to a factor of 16), the precision and recall

remains over 98%. However, the direction and identity accuracies start to suffer. This is because the range-Doppler

matrix, as seen in Figure 5 is not smooth (as the target is moving). An aggregation of range bins means we no

longer see a clear transition from approach to away, thus affecting the determination of our desired zero-crossing.

As a result, both direction and identity accuracies suffer.

We conclude that the greatest amount of energy savings can be observed by duty-cycling FormaTrack with an

augmented motion sensor. Furthermore, even while ON, we see that lowering the frame rate and the sampling

rate of the sensor by a factor of 2 does not cause any significant performance degradation. In the future, we plan

to explore the option of building an energy-harvesting FormaTrack that stores energy for most of the day, and

uses them during the active times of the day.

5.6 Effect of Training Size

Figure 15 shows the effect of the number of training samples (back and forth doorway crossings) on identity

accuracy for all combinations of two people. We see that the identity accuracy increases as we increase the

number of training samples with nearly 85% accuracy from just 10 training samples. This shows that FormaTrack’s

training would not be very cumbersome to the users. These training samples can potentially be collected without

controlled walk-throughs, by using any events when the person is known to be home alone.

5.7 Effect of Objects

We next analyze the effect of carried objects on FormaTrack’s reflection profile technique. For this, we asked five

of the participants (P1, P2, P5, P6 and P7), to walk through the instrumented doorway, 25 times as mentioned in

Section 4, but under different scenarios - (i) with a mobile phone near the ear (simulating talking on the phone),

(ii) with a baseball cap, (iii) wearing a backpack with a laptop inside, (iv) carrying a 5lb dumbbell in each hand, (v)

wearing flip-flops.

We calculate the identity accuracy for each scenario, by considering all possible 2-person groups involving the

participant. For every group, we train the two people on each day (one day at a time). We test the object mounted
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Fig. 15. Effect of training size on identity accuracy: the

identity accuracy increases with the number of training

samples. With just 10 back and forth crossings for training,

FormaTrack can achieve an identity accuracy of over 85%.

Fig. 16. The identity accuracy of FormaTrack remains com-

parable even in the presence of some commonly used

objects.

person, with the object mounted walk, and test the non-object mounted participant with each of the remaining 6

days (one at a time).

From Figure 16, we see that the identity accuracy is not affected greatly by objects such as mobile phone, cap,

backpack and dumbbells, because these objects only occupy a small additional area on the body, and hence do

not affect the reflection profile greatly. We also noticed that in the presence of heels, for participants P1 and

P7 (two participants comfortable with heels), the identity accuracy was 66% and 89% respectively. We believe

this accuracy drop is because heels not just translate the height significantly but also changes the posture of the

person while underneath the sensor. This issue can potentially be fixed via more training data.

6 LIMITATIONS AND FUTURE WORK

6.1 In-situ study

FormaTrack is tested on over 2800 crossings in different crossing angles, and a handful of scenarios in Section 5.7

to provide a proof-of-concept of sensing the shape of the person when the person is at the doorway. As a

future work, we plan to do a more long-term in-situ study after establishing a feasible ground-truth collection

method [27, 29].

6.2 Effect of Doors

While we do not explicitly consider door interactions in this paper, we hypothesize that FormaTrack can be made

to handle these interactions by filtering out the effect of doors. For direction and identity estimation, since the

door is taller than an average human, we can filter the door by only considering the dominant Doppler shifts and

radar frame power at distances corresponding to the average human height range. An alternate way to address

doors would be a data-driven approach that is trained on the door actions. We leave it as a future work to test

FormaTrack in the presence of door movements.
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6.3 Effect of walking up to the doorway and turning back

One potential limitation of FormaTrack is the case of a person walking all the way to the threshold of the door,

turning around and walking back. This motion shows all signs of a crossing event - the radar frame power (RFP )
would cross Thcross , there would be positive and negative Doppler, and the distance to head filter would see

the expected V-shaped pattern. We believe this can be filtered by measuring the total RFP before and after the

Doppler crossing, and observing them to be similar. An alternate solution is to place a small antenna array that is

triggered during a crossing. This array which measures the angle of arrival (-90°to +90°) of incident paths [57],

can filter out such events by observing the angle of the reflected path to be on one-side of 0°.

6.4 Effect of running through the doorway

With drastic speed changes such as running through the doorway, FormaTrack’s direction estimation algorithm

can obtain the correct direction so long as the person’s velocity is less than 1.77ms−1 cos θ (Section 3.2). However,

the identity algorithm could be impacted as a clear shape signature might not be obtainable. This can potentially

be handled by deriving the velocity from the Doppler shift, and using it as a feature or falling back to using

height when the speed of the target is significantly different from what was trained. Since this is not a common

occurrence, we leave the velocity incorporation as a future work.

7 CONCLUSION

In this paper, we present FormaTrack, a privacy-preserving radar-based doorway tracking system that estimates

the room-location of people in a home. FormaTrack determines the direction of room transition of people via

the Doppler effect, and infers the identity of people by sensing their shape. We evaluate the system on an

instrumented doorway in a home using 2800 doorway crossings. Our results indicate that FormaTrack can achieve

over 90% tracking accuracy even while tracking 4 people. We also show that by simply augmenting FormaTrack

with a low-power motion sensor, FormaTrack can be heavily duty-cycled. Our analyses indicate that FormaTrack

can then achieve nearly 99% recall by staying ON for just 30% of the day, showing positive signs for a future

low-power energy harvesting FormaTrack.
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