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Abstract

The context about trips and users from mobility
data is valuable for mobile service providers to
understand their customers and improve their ser-
vices. Existing inference methods require a large
number of labels for training, which is hard to meet
in practice. In this paper, we study a more practical
yet challenging setting—contextual inference using
mobility data with minimal supervision (i.e., a few
labels per class and massive unlabeled data). A
typical solution is to apply semi-supervised meth-
ods that follow a self-training framework to boot-
strap a model based on all features. However, us-
ing a limited labeled set brings high risk of overfit-
ting to self-training, leading to unsatisfactory per-
formance. We propose a novel collaborative distil-
lation framework STCOLAB. It sequentially trains
spatial and temporal modules at each iteration fol-
lowing the supervision of ground-truth labels. In
addition, it distills knowledge to the module be-
ing trained using the logits produced by the latest
trained module of the other modality, thereby mutu-
ally calibrating the two modules and combining the
knowledge from both modalities. Extensive exper-
iments on two real-world datasets show STCOLAB
achieves significantly more accurate contextual in-
ference than various baselines.

1 Introduction
The prevalence of location-based mobile services offers new
opportunities for businesses to better understand the context
of trips (e.g., transportation mode and purpose) and their
customers (e.g., ethnicity, disability, and socioeconomic sta-
tus). Such information can facilitate a wide spectrum of mo-
bile applications, including human mobility recovery [Fang
et al., 2021], urban planning [Liu et al., 2017], and person-
alized location recommendation [Wang et al., 2020b]. In
practice, given the sensitive nature, very few users would
share the contextual information, especially at the beginning
of the business [Schein et al., 2002; Quercia et al., 2010;
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Shen et al., 2018]. As such, we study the problem of contex-
tual inference from mobility data under minimal supervision,
which is an extreme case of semi-supervised learning when
using a few labels (e.g., 10) per class. Specifically, we study
the inference of people’s demographic attributes.

Related work on demographics inference from human mo-
bility [Wang et al., 2017; Zhong et al., 2015; Xu et al., 2020;
Wang et al., 2020a] requires a large number (e.g., tens of
thousands) of users to share labels for training and is prone to
overfitting in the minimally-supervised setting. To mitigate
the label scarcity problem, existing semi-supervised meth-
ods [Cascante-Bonilla et al., 2021; Lee and others, 2013;
Li et al., 2019] typically follow a self-training framework that
bootstraps a single model using all features at once. However,
for mobility data, simple concatenation of spatial and tempo-
ral features does not always guarantee improvement in pre-
dictions. Due to different network sizes for different modal-
ities, the model inference might lean heavily on one of the
modalities [Gat et al., 2020]. Especially when training data is
limited, the model does not have enough supervision to find
the optimal combination of different modalities, leading to
unsatisfactory performance and poor generalization.

To better learn with limited supervision, we propose to al-
ternatingly train two separate modules—one for spatial and
one for temporal information—and then let them iteratively
distill knowledge from each other following a novel collabo-
rative distillation framework STCOLAB1 (see Figure 1).

Instead of building one large model that fuses the spatial
and temporal modules, we separate the training of the two
modules to sufficiently learn features of both modalities with
supervision and avoid one modality dominating the learning.
Both modules in STCOLAB are supervised by the limited la-
beled data for contextual inference in an alternating manner—
the spatial module first learns geographic features from maps
describing where a user has visited; the temporal module then
utilizes the features extracted by the trained spatial module
and learns cyclic temporal patterns.

In addition to training each module using labeled data,
we propose a novel collaborative distillation framework that
combines the knowledge of spatial and temporal modules to
improve model generalization in an iterative manner. We use
the latest trained spatial and temporal modules as the teacher

1Code is available at https://github.com/jiayunz/STColab

https://github.com/jiayunz/STColab
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Figure 1: An overview of STCOLAB. It consists of two modules: the
spatial module takes a map and learns spatial features; the temporal
module then utilizes the spatial features and learns temporal patterns
in trajectories to make predictions. A collaborative distillation pro-
cess distills knowledge from the latest trained modules to guide the
training of both. The process iterates in self-training cycles.

model to guide the training of the current spatial/temporal
module. Specifically, we construct guidance based on the un-
labeled data for which the latest trained modules have consis-
tent and confident predictions. We regulate the learning of the
module being trained at each iteration by forcing it to approx-
imate the logits produced by the teacher model on such se-
lected unlabeled data. The two modules give complementary
supervision from different views to each other and calibrate
the predictions. This way, we combine spatial and temporal
information to improve model generalization.

We conduct extensive experiments on two real-world mo-
bility datasets collected from two metropolitan cities in dif-
ferent countries: Chicago in the United States and Brasilia in
Brazil. We show that with a small number of labeled sam-
ples per class (e.g., 10), STCOLAB can infer important de-
mographic attributes about users with reasonable accuracy,
significantly outperforming the state-of-the-art methods. To
the best of our knowledge, we are the first to address the con-
textual inference problem using mobility data with minimal
supervision. We make the following contributions:
• We study the problem of contextual inference from mo-

bility data under the challenging yet practically important
minimally supervised setting, where only a few annotated
samples are available per class.

• We propose a novel framework called STCOLAB, which
learns from spatial and temporal modalities iteratively and
distills knowledge from both modalities collaboratively to
improve generalization using unlabeled data.

• We conduct extensive experiments on two real-world mo-
bility datasets to predict demographic attributes. Results
show STCOLAB can predict such information with reason-
able accuracy, improving upon state-of-the-art methods.

2 Preliminaries
2.1 Concepts
Definition 2.1 (Region). A region is a geographic unit with a
corresponding polygon in the coordinates, denoted as l.
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Figure 2: Examples of mobility records and visualized maps: (a)
mobility records of three random people in Chicago; (b) visualized
hour maps and day map generated from a person’s mobility records.

The two datasets we used in the experiments divide cities
into regions according to certain criteria. In the Chicago
dataset, the city is divided into 866 census tracts, each of
which is defined for the purpose of taking a census. In the
Brasilia dataset, the city is divided into 233 micro zones,
which is defined by the government for statistical purposes.
The divisions are shown as grey grids in Figure 2(a). Note
that STCOLAB can also deal with location data of other forms
such as fine-grained GPS coordinates. The format of location
data is flexible and driven by the available dataset.
Definition 2.2 (Daily Mobility Record). An entry of mobility
records is a triplet (u, l, t), which denotes user u visits region
l during time period t in the day. By sorting the records of
user u by time, we get a sequence of time-location pairs:

Su = [(l0, t0), (l1, t1), . . . , (lQ, tQ)],

where Q is the total number of records of user u and lq and
tq are the region and time period of the q-th record. The time
range of each mobility record from a user is one day.

Figure 2(a) shows the daily mobility records of three ran-
dom users from the Chicago dataset in different colors. For
example, the yellow trajectory shows the user stays at l1 dur-
ing t1 (9:45 a.m. - 11:10 a.m.) and stays at l2 during t2 (12:35
p.m. - 8:50 a.m.).

2.2 Problem Definition
We aim to predict demographic attributes from people’s mo-
bile data under minimal supervision. This is an extreme case
of semi-supervised learning, where the number of labeled
data is very limited. For each class of a demographic attribute,
only a few (e.g. 10) ground truth labels are available.

The number of samples known in each class is denoted as
k. The training datasetD consists of two parts: the labeled set
Dlb = {(x, y)|x ∈ X , y ∈ C} and the unlabeled set Dul =
{x|x ∈ X}, where x and y denote the input features and
the label of a sample, X is the set of mobility data and C
is the set of classes. The total number of labeled samples
|Dlb| = k ∗ |C|. |Dul| � |Dlb|. We aim to learn a model for
each prediction task to assign an attribute class label a to each
person u given the daily mobility records.

3 Our STCOLAB Framework
As shown in Figure 1, STCOLAB consists of two modules—a
spatial module and a temporal module—to learn from differ-



Algorithm 1: Iterative Collaborative Distillation
Require: labeled set Dlb, unlabeled set Dul

1 Initialize iteration t← 1;
2 while t ≤ MaxIteration do
3 Train spatial model f (t)

S according to Eq. 3;
4 if t > 1 then
5 Construct distillation dataset D̃(t)

S using f
(t−1)
S

and f
(t−1)
T based on voting ensemble;

6 Distill knowledge to f
(t)
S using f

(t−1)
T as

teacher according to Eq. 2.
7 end
8 Train temporal model f (t)

T according to Eq. 4;
9 if t > 1 then

10 Construct distillation dataset D̃(t)
T using f

(t)
S

and f
(t−1)
T based on voting ensemble;

11 Distill knowledge to f
(t)
T using f

(t)
S as teacher

according to Eq. 2.
12 end
13 t← t+ 1;
14 end

ent modalities. We design a collaborative distillation process
to combine knowledge from both modules in a self-training
manner. The pseudo code is presented in Algorithm 1.

3.1 Iterative Collaborative Distillation
Conventional methods for integrating spatial and temporal in-
formation involve fusing features from two sources within
one large model, or ensembling the predictions of the spatial
and temporal modules. However, training a model with data
from spatial and temporal sources in a single pass is likely
to bias the model to one modality [Gat et al., 2020]. To suf-
ficiently learn features from both modalities, we propose an
iterative learning process that alternates the training of the
spatial and temporal modules in several iterations.

The small training set shows very limited information
about the data distribution so the model is prone to overfitting.
While labels are hard to collect, the unlabeled data itself pro-
vides valuable information for model generalization. More-
over, the spatial and temporal modules learn from two differ-
ent views of the data. By utilizing the knowledge learned by
both modules, they can reduce confirmation bias [Arazo et
al., 2020] and mutually calibrate each other. Thus, we design
a novel collaborative distillation process to distill knowledge
between the two modules by using unlabeled samples.

In the conventional form of knowledge distillation, knowl-
edge is distilled to the new model by training it to ap-
proximate the output of a teacher model on a distillation
dataset [Hinton et al., 2015]. However, the model trained
on a very small training set is likely to make random predic-
tions on unseen data, which causes knowledge given by the
teacher model to be noisy. Iterative learning from such noisy
knowledge can act like a negative feedback loop and degrade
performance [Arazo et al., 2020]. To increase the chance that
the teacher model gives correct predictions, we design a vot-
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Figure 3: Collaborative distillation in a self-training cycle. At itera-
tion t (t ≥ 2), 1© for spatial module f

(t)
S , we use f

(t−1)
S and f

(t−1)
T

to form distillation dataset via voting ensemble and use f
(t−1)
T as

teacher for distillation. Then, 2© for temporal module f
(t)
T , we use

f
(t−1)
T and f

(t)
S for voting ensemble and use f

(t)
S as teacher.

ing ensemble method by evaluating the consistency and con-
fidence of its predictions to select samples.

Figure 3 explains the iterative collaborative distillation pro-
cess. In the first iteration, both modules are trained using
only the labeled training data. Starting from the second itera-
tion, in addition to training with ground-truth data, we further
use the latest trained models from both modalities to conduct
a voting ensemble for constructing a distillation dataset and
use the latest trained model as the teacher model for distilling
knowledge to the current module. Denote the spatial model
and temporal model at iteration t as f (t)

S and f
(t)
T respectively.

Without loss of generality, we illustrate the process of distil-
lation for the temporal model f (t)

T .
Voting Ensemble. There is a higher chance that the mod-
ules give a correct prediction if both modules give the same
prediction to one sample, compared to the case when the two
modules disagree on the prediction. Thus, we use f

(t−1)
T and

f
(t)
S to make predictions on all unlabeled samples and only

select those for which the two modules give the same predic-
tions. In addition, the predicted probability can be regarded
as the prediction confidence which indicates how certain the
model thinks the prediction is correct. We further use per-
centile scores and choose a subset of the unlabeled samples
whose prediction probabilities given by f

(t)
S are above the r-

th percentile. The threshold of the prediction confidence of
class a is T(t)

a = percentile(f (t)
S,a(∗), r), where f (t)

S,a(∗) are the
prediction confidence of all unlabeled samples with respect
to class a given by f

(t)
S . Combined with the voting condition,

the selected unlabeled set at the t-th iteration is:

D̃(t)
Tul
← {xi|f (t)

S,a(ui) ≥ T(t)
a and ŷSi,a = ŷTi,a = 1}a∈C , (1)

where xi is the input of user ui. We do upsampling to get a
balanced distillation dataset. Denote the number of samples
in D̃(t)

Tul
that are predicted to be class a (i.e., ŷSi,a = 1) as N̂a.

For each class a, we randomly sample max{N̂m}m∈C − N̂a

samples from the original training set, making all classes have
the same amount of samples. Denoted the labeled dataset
sampled from the original training set as D̃(t)

Tlb
. The resulting



balanced distillation dataset D̃(t)
T = D̃(t)

Tul
∪ D̃(t)

Tlb
.

Knowledge Distillation. We use the latest trained model
f
(t)
S as the teacher to make predictions on the unlabeled set
D̃(t)

Tul
. Denote f

(t)
S (ui) as the predicted probability of user ui

given by f
(t)
S . We let f (t)

T approximate the predicted proba-
bilities of samples in D̃(t)

Tul
and the ground-truth of samples in

D̃(t)
Tlb

. The distillation loss is:

L̃(t)
T = − 1

|D̃(t)
Tul
|

∑
i

f
(t)
S (ui) log p(t)i − 1

|D̃(t)
Tlb
|

∑
j

yj log p(t)j , (2)

where p
(t)
i is the predicted probability of user ui given by

f
(t)
T . In this way, the knowledge from the latest spatial model
f
(t)
S is distilled to the temporal model f (t)

T . A similar process
applies to the distillation for spatial model f (t+1)

S , which uses
f
(t)
T and f

(t)
S for voting ensemble and f

(t)
T as the teacher for

distilling knowledge.

3.2 Spatial Module
To utilize spatial information, we visualize the mobility
records as visualized maps. The maps contain rich informa-
tion about the spatial structure. Even with minimal supervi-
sion, locations that are not present in the labeled set may still
have a similar geographical distribution on a map. This en-
ables the model to better generalize to unseen locations. A
visualized map is a one-channel image M showing the re-
gions that the user has been to during a time period. Given
the set of regions L that a user has been to during time period
t, we visualize the regions on the map of the city by highlight-
ing the regions in L in white and marking the others in black.
The images are rendered using the GeoPandas Library [Jor-
dahl et al., 2020]. The maps of two time periods t1 and t2
can be aggregated by taking the maximum in each entry of
the two maps, describing the regions that the user has been
to during t1 and t2. In STCOLAB, we leverage maps of two
different temporal granularities: hour map and day map. The
hour map includes the locations visited in each hour and the
day map is the aggregated map of the 24 hours. Figure 2(b)
gives examples of the visualized maps generated from a ran-
dom person’s daily mobility records in the Brasilia dataset.

The spatial module learns spatial features, such as the ge-
ographic location and distance of people’s daily trajectories,
from the visualized map M . The spatial module performs
convolution operation upon M as c = conv(Wc,M) + bc,
where Wc is the weight matrix and bc is the bias term. We use
Parametric ReLU (PReLU) as the activation function and use
max pooling after the convolution operations. Then, a Fully-
Connected (FC) Layer is applied to generate vector z ∈ Rd

representing the spatial features learned from the map image.
To train the spatial module, we aggregate the visualized

maps of each hour to get the day map M day
i . The spatial mod-

ule extracts spatial features zday
i from M day

i and applies an
FC layer to make predictions. We denote pspatial

i as the spa-
tial module’s predicted probability and yi as the ground truth.
The learning objective is to minimize the cross entropy loss:

LS = −1/|Dlb|
∑

i
yi log pspatial

i . (3)
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Figure 4: Illustration of periodic convolution

3.3 Temporal Module
The temporal module takes the sequence of spatial features in
each hour of the day as inputs and is equipped with convolu-
tion layers with different filters sliding over the sequence to
extract temporal features within different time periods.

Let zji ∈ Rd be the spatial representation vector corre-
sponding to the j-th hour of user ui. The input to the tempo-
ral module is a sequence of the spatial features of each hour.
We denote the concatenation of the spatial features from the
j-th to the (j + h)-th hours of user ui as zj:j+h

i . A convo-
lution filter of size h × d moves along the time dimension
and is applied to a window of h hours to produce a new fea-
ture ej:j+h each time. For example, a feature ej is gener-
ated from a window (of size h) of spatial features zj:j+h

i by
ej = We ·zj:j+h

i +be, where We is the weight matrix of filter
kernel and be ∈ R is the bias term. This filter is applied to
each possible window of spatial features in the sequence.

A person’s temporal mobile pattern can be represented as
a cyclic ring, where the beginning and the end of a day are
continuous and connected to each other. To capture the cyclic
patterns, we employ periodic convolution operations through
circular padding. Specifically, the start of the sequence is
padded with features from the end of the sequence, and vice
versa. Figure 4 illustrates how periodic convolution works.

We use PReLU as the activation function and apply a max-
pooling operation over the spatial features to get the features
corresponding to a particular filter. The module uses Nf fil-
ters (with varying window sizes) to obtain multiple features
and then concatenates them together to get the temporal fea-
tures. An FC Layer is applied to make predictions. We denote
ptemporal
i as the temporal module’s predicted probability. The

learning objective is to minimize the cross-entropy loss:

LT = −1/|Dlb|
∑

i
yi log ptemporal

i . (4)

4 Experiments
4.1 Experimental Setup
Datasets and prediction tasks. We conduct experiments
on Chicago Dataset2 and Brasilia Dataset3. They collect
mobility data in two cities in the United States and Brazil.
We remove visits outside of the designated city and filter out
users whose mobility records span less than 12 hours. For

2https://datahub.cmap.illinois.gov/dataset/traveltracker0708
3https://metro.df.gov.br/?page id=47685

https://datahub.cmap.illinois.gov/dataset/traveltracker0708
https://metro.df.gov.br/?page_id=47685


the Chicago dataset, we predict employment status (i.e., em-
ployed or not) and ethnicity (i.e., Caucasian, African Ameri-
can, or others). For the Brasilia dataset, we predict employ-
ment status, education level (i.e., whether the person has a
college degree), and age group (i.e., ≤ 17, 18-59, or ≥ 60).

Implementation details. The dimension of spatial features
d = 64. The filter sizes in the temporal module are [3, 5, 12].
The convolution layers in the spatial module output 32 chan-
nels. The maximum number of iterations is 5. All experi-
ments are repeated 5 times with a fixed set of random seeds.

Metrics. Due to label imbalance, we adopt macro- and
micro-F1 scores to evaluate the performance. For all com-
pared methods, we rank the prediction probabilities of the test
data and assign classes according to label distribution [Meng
et al., 2017; Yuan et al., 2018]. The label distributions are
estimated by randomly sampling Nest = 100 pieces of data
from the training set and calculating the ratio of each class.
We show STCOLAB is robust to Nest via sensitivity analysis.

4.2 Compared Methods
We compare STCOLAB with the state-of-the-art methods de-
signed for demographic inference from mobility data and for
general-purpose spatio-temporal tasks.
• L2P [Zhong et al., 2015] is a tensor factorization-based

method for demographic inference from location check-ins.
It extracts spatial and temporal semantics from check-ins
and mines location knowledge from social networks and
customer reviews. User representations are obtained by
tensor factorization and are used to train classifiers.

• SUME [Xu et al., 2020] is an embedding-based method
that learns mobility patterns by modeling a heterogeneous
network that describes relations among users and locations.
SVM is adopted for classification with learned embeddings.

• Transformer [Vaswani et al., 2017] is a neural network
model which learns temporal patterns from sequential data
and utilizes multi-head attention mechanism to select im-
portant inputs. We organize the data of each user into a se-
quence of location IDs, showing the main locations where
the person stays during each hour of the day.

• ConvLSTM [Shi et al., 2015] is a recurrent neural network
for spatio-temporal prediction. It receives a sequence of
visualized maps as input, uses the convolutional networks
to extract features from the maps, and feeds the features
into the LSTM networks in chronological order.

We also craft two strong baselines by using some modules
in STCOLAB. For a fair comparison with the state-of-the-art
methods, the modules in both baselines are combined through
late fusion by taking the average of the outputs as the final
prediction and are updated together in back-propagation.
• CNN+Transformer uses convolutional networks for the

spatial module (same as STCOLAB) and Transformer for
the temporal module to learn patterns from location IDs.

• CNN+PeriodicCNN (our ablation) is equipped with the
same spatial and temporal modules in STCOLAB.

Additionally, we use the same spatial and temporal modules
in STCOLAB and compare different ways to combine them.
• STFC adopts intermediate fusion: the last hidden outputs

of the two modules are concatenated and an FC layer is ap-
plied toward the concatenated features to make predictions.

• S+T adopts the late fusion which takes the average of the
outputs given by the two modules as the final prediction.

• ST (our ablation) follows the alternating training in
STCOLAB and is trained for only one iteration.

We denote our proposed method as STCOLAB. We com-
pare STCOLAB with a state-of-the-art self-training method
by pairing it with the same base model as in STCOLAB.
• ST w/ CL adopts curriculum labeling (CL) [Cascante-

Bonilla et al., 2021]. It uses a self-paced curriculum and
re-initializes the model at each round to avoid concept drift.

4.3 Main Experimental Results and Analysis
The results are shown in Table 1. Overall, STCOLAB per-
forms the best compared to all the baseline models. The
existing methods for demographic inference from mobility
data and for general-purpose spatial-temporal tasks show in-
ferior performance in the minimally-supervised setting. The
performance of L2P, SUME, and Transformer indicates the
limitation of these methods in capturing the geographic dis-
tribution. By comparison, the models which learn from
visualized maps (i.e., ConvLSTM, CNN+Transformer, and
CNN+PeriodicCNN) show better results.

The comparison among STFC, S+T and ST shows the ad-
vantage of alternating training over using conventional ways
of modal fusion. Simply combining the predictions or inter-
mediate hidden features of the two modules together does not
fully leverage their respective strengths and may even yield
worse results than using either module alone.

Finally, the comparison among ST, ST w/ CL, and STCO-
LAB shows the effectiveness of iterative collaborative distil-
lation. Applying CL does not guarantee improvement and
even causes performance degradation on some tasks. This
suggests that, in the minimally-supervised setting, iteratively
guiding the model with pseudo labels generated by the same
model, hence the same view, may harm model performance.
By comparison, STCOLAB provides guidance from two dif-
ferent views, which lets the two modules give complementary
supervision for each other and mutually enhance themselves.

4.4 Ablation Studies and Sensitivity Analysis
More comparisons with state-of-the-art self-training
method. We further compare STCOLAB with ST w/ CL
by applying them to three different model architectures. (1)
CNN & Transformer uses convolutional networks as the
spatial module (same as STCOLAB) and uses Transformer
as the temporal module to learn temporal patterns from lo-
cation IDs. The average of the predictions given by the two
modules is taken as the final results. (2) CNN & LSTM uses
convolutional networks to process the visualized maps and
uses LSTM as the temporal module to process the spatial fea-
tures of each hour generated by the convolutional networks
in chronological order. (3) CNN & PeriodicCNN is the ar-
chitecture in STCOLAB. As shown in Figure 5, STCOLAB
is robust to different model architectures and always brings
improvement to the vanilla models, while applying CL to the
models may lead to worse performance.



Method Comment

Chicago Brasilia

Employment Ethnicity Employment Education Age

Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1

L2P [Zhong et al., 2015] baseline models
for demographic
inference and
general-purpose
spatio-temporal
tasks

49.70 61.40 25.80 54.50 49.70 69.10 49.20 50.30 31.12 55.54
SUME [Xu et al., 2020] 50.40 59.30 37.20 46.10 41.00 70.00 51.20 52.50 30.85 54.71
Transformer [Vaswani et al., 2017] 50.42 62.51 30.20 40.89 50.36 67.79 50.05 51.11 28.14 51.43
ConvLSTM [Shi et al., 2015] 53.10 64.10 48.37 59.54 52.87 69.45 50.72 52.16 29.06 53.55
CNN+Transformer 53.30 64.71 53.67 65.28 50.56 67.97 50.39 51.48 29.91 50.53
CNN+PeriodicCNN∗ 54.82 65.82 54.46 66.71 52.54 69.24 48.83 49.93 29.20 52.14

S+T late fusion 54.82 65.82 54.46 66.71 52.54 69.24 48.83 49.93 29.20 52.14
STFC intermediate fusion 53.34 64.67 54.06 65.93 51.76 68.73 51.48 52.54 30.48 52.10
ST∗ alternating training 55.68 65.61 56.08 68.97 52.43 69.13 52.97 54.06 30.75 54.52

ST w/ CL [Cascante-Bonilla et al., 2021]
w/ self-training 54.85 65.79 54.66 65.92 54.76 70.62 49.98 51.07 33.25 55.46

STCOLAB 56.47 67.02 58.87 75.27 54.77 70.67 59.34 60.21 35.64 59.37

Table 1: Experimental results averaged over 5 runs. The first section of the table compares different neural architectures. The second section
focuses on different fusion solutions. The third section shows different self-training methods. We use ∗ to mark the ablations of STCOLAB.
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Figure 5: Performance of STCOLAB and ST w/ CL applied to differ-
ent model architectures. Base models without applying self-training
strategies are denoted as vanilla. (CHI: Chicago, BR: Brasilia)

Key designs in iterative collaborative distillation. We ex-
amine three ablations of STCOLAB. (1) STCOLAB w/o vote
removes the voting ensemble strategy and uses all unlabeled
samples as the distillation set. (2) STCOLAB w/ union uses
the union of the prediction probabilities from both the latest
trained spatial and temporal models to distill knowledge at ev-
ery distillation process. (3) STCOLAB w/o balance removes
the upsampling for getting a balanced distillation dataset and
uses the dataset selected by the voting ensemble directly. The
results are shown in Table 2. We notice performance degrada-
tion after replacing the key designs with the ablations, which
indicates the importance of these designs. The voting ensem-
ble helps the model choose the appropriate distillation set,
giving better guidance during distillation. Moreover, by let-
ting two modules alternate as teachers, the student model
acquires complementary knowledge from the other modal-
ity and avoids confirmation bias. Furthermore, the balancing
strategy ensures the number of samples for each class is the
same and does not affect learning.

Contributions of spatial and temporal modules. We con-
duct experiments on the model with spatial module only (de-
noted as Spatial), and the model with temporal module only
which is trained from scratch including the spatial feature ex-
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Figure 6: Performance of ST, ST w/ CL and STCOLAB w.r.t the
number of labeled samples per class. (CHI: Chicago, BR: Brasilia)

tractor (denoted as Temporal). The models are trained for
only one pass without knowledge distillation. We also exam-
ine the single modules with knowledge distillation. We use
the latest trained model at the previous iteration to construct
the distillation dataset based on percentile score and to distill
knowledge at the current iteration. SCOLAB and TCOLAB
are the ablations of STCOLAB with only the temporal mod-
ule and only the spatial module respectively. As shown in Ta-
ble 2, removing either module will cause performance degra-
dation. The performance of ST is slightly better than that
of Temporal. This indicates the spatial features extracted by
the pretrained spatial model are label-indicative, which im-
proves the inference ability. By comparing SCOLAB, TCO-
LAB, and STCOLAB, we observe that knowledge distillation
with a single module does not guarantee better performance.
This again demonstrates the importance of the proposed col-
laborative distillation strategies for combining the modalities.

Number of labeled samples. We evaluate the system per-
formance with even less label information. To do so, we de-
crease the number of training samples per class k and com-
pare the performance of ST, ST w/ CL, and STCOLAB. The
results are shown in Figure 6. In general, STCOLAB outper-
forms the vanilla model and the model applying CL.

Robustness of class distribution estimation. The parame-
ter Nest is used when randomly selecting training samples for



Method

Chicago Brasilia

Employment Ethnicity Employment Education Age

Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1

Spatial 54.56 65.62 55.33 68.50 50.42 67.86 49.85 50.93 29.69 52.58
Temporal 53.00 64.51 53.03 64.92 51.64 68.76 52.95 53.98 30.13 53.03
ST 55.68 65.61 56.08 68.97 52.43 69.13 52.97 54.06 30.75 54.52

SCOLAB 54.10 65.31 56.28 70.47 50.57 67.92 56.39 57.32 33.63 56.43
TCOLAB 53.75 65.07 52.38 68.11 52.62 68.54 58.93 59.85 35.00 57.61

STColab w/o vote 56.08 66.77 57.35 70.21 51.67 68.63 59.18 60.05 32.99 55.02
STCOLAB w/ union 55.92 66.64 57.84 71.74 51.70 68.71 58.61 59.50 33.50 56.92
STCOLAB w/o balance 56.00 66.68 56.06 73.01 52.67 69.32 50.43 51.50 28.94 51.91
STCOLAB 56.47 67.02 58.87 75.27 54.77 70.67 59.34 60.21 35.64 59.37

Table 2: Ablation studies on the contributions of the key designs in iterative collaborative distillation and the spatial and temporal modules.
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Figure 7: Performance of STCOLAB w.r.t number of sampled data
Nest for class distribution estimation. (CHI: Chicago, BR: Brasilia)

estimating the class ratio. To test the robustness of STCOLAB
with respect to this parameter, we change Nest to different
values. As shown in Figure 7, the differences in performance
are small when increasing or decreasing Nest, which shows
that STCOLAB framework is robust to Nest.

5 Related Work
Contextual inference from human mobility. Our work
studies one of the important lines in contextual inference—
inferring the demographic attributes of mobile users. The de-
mographic inference problem has been studied with the sup-
port of abundant behavioral data from various fields, such as
web and social media activities [Bi et al., 2013; Culotta et
al., 2015; Wang et al., 2019], transactions [Wang et al., 2016;
Kim et al., 2019] and ratings [Shang et al., 2018]. Mobile
data, which is ubiquitous in life, has been proven to have
correlations with people’s demographics [Luo et al., 2016;
Zhang et al., 2016]. Several methods have been proposed
for demographic inference from human mobility including
tensor factorization-based methods, [Zhong et al., 2015;
Montasser and Kifer, 2017] and network embedding-based
method [Xu et al., 2020]. These studies typically require a
large number (e.g., thousands) of users to share labels for
model training. By contrast, we seek to develop a data-
efficient method that can achieve meaningful results with a
very small amount of annotated data. To the best of our
knowledge, we are the first to address the contextual infer-
ence problem using mobility data with minimal supervision.

Minimally supervised classification. Minimally super-
vised classification is an extreme case of semi-supervised
learning. It is a challenging problem due to the scarcity of la-

beled training data. The problem has recently received much
attention [Zhang et al., 2020; Zhang et al., 2021]. A sim-
ilar setting is few-shot learning which focuses on learning
from limited data samples. The key difference between the
two settings is that few-shot learning does not consider the
availability of unlabeled data. Common solutions for few-
shot classification such as metric learning [Koch et al., 2015]
and meta-learning [Finn et al., 2017] are not ideal for our sce-
nario, as they do not utilize underlying data distribution from
massive unlabeled data. Self-training is arguably the most
popular semi-supervised method for mitigating label scarcity.
Self-training strategies [Cascante-Bonilla et al., 2021; Li et
al., 2019; Shi et al., 2018] achieve remarkable results by iter-
atively utilizing the predictions of unlabeled data from previ-
ous rounds to augment the training set and support subsequent
rounds of training. Mobility data usually consists of informa-
tion from two different modalities. Traditional self-training
solutions that bootstrap a single model using all features at
once would incur a high risk of overfitting. Different from
traditional methods, we propose collaborative distillation be-
tween the spatial and temporal modules in self-training cy-
cles, which fuses information and improves generalization.

6 Conclusions and Future Work
We studied the problem of contextual inference in the con-
text of minimal supervision. We proposed STCOLAB frame-
work and demonstrated its capability in predicting demo-
graphic attributes from human mobility. STCOLAB learns
mobility features from spatial and temporal information al-
ternatingly and adopts iterative collaborative distillation to
enhance model generalization in self-training cycles. STCO-
LAB achieves reasonable accuracy with only a small amount
of annotated data (i.e., 10 samples per class), outperforming
the state-of-the-art methods. Our future work is on extend-
ing our framework to mobility data of different granularities,
such as fine-grained GPS trajectories, to support more appli-
cations. Specifically, we plan to incorporate additional spatial
features according to data specificities, such as points of inter-
est, to enrich the location contexts. Additionally, the network
architecture of each modality can be adapted accordingly to
accommodate different formats of mobility data.
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