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Abstract

There has recently been much interest in stream process-
ing, both in industry (e.g., Cell, NVIDIA G80, ATI R580) and
academia (e.g., Stanford Merrimac, MIT RAW), with stream
programs becoming increasingly popular for both media and
more general-purpose computing. Although a special style of
programming called stream programming is needed to target
these stream architectures, huge performance benefits can be
achieved.

In this paper, we minimally add architectural features to
commodity general-purpose processors (e.g., Intel/AMD) to
efficiently support the stream execution model. We design
the extensions to reuse existing components of the general-
purpose processor hardware as much as possible by investi-
gating low-cost modifications to the CPU caches, hardware
prefetcher, and the execution core. With a less than 1% in-
crease in die area along with judicious use of a software run-
time system, we show that we can efficiently support stream
programming on traditional processor cores. We evaluate
our techniques by running scientific applications on a cycle-
level simulation system. The results show that our system
executes stream programs as efficiently as possible, limited
only by the ALU performance and the memory bandwidth
needed to feed the ALUS.

1 Introduction

Recently there has been much interest in both research and
the commercial marketplace for architectures that support a
stream-style of execution [15, 17,23, 2, 6]. Although initially
targeted at applications such as signal processing that oper-
ate on continuous streams of data, stream programming has
broadened to encompass general compute intensive applica-
tions. Research has shown that stream architectures such as
Stanford Merrimac [15], Cell Broadband Engine (Cell) [17],
and general-purpose computing on graphic processing units
(GP-GPUgs) [11] deliver superior performance for applica-
tions that can exploit the high bandwidth and large numbers
of functional units offered by these architectures.

Stream processors (SP) require a different program-
ming abstraction from traditional general-purpose processors
(GPPs). To get performance benefits, stream processors are
programmed in a style that involves bulk loading of data into
a local memory, operating on the data in parallel, and bulk

storing of the data back into memory. This style of program-
ming is key to the high efficiency demonstrated by SPs.

Although current multicore GPPs such as those from Intel
and AMD, lack the peak FLOPS and bandwidth of stream
processors, their likely ubiquitous deployment as part of in-
dustry standard computing platforms make them an attractive
target for stream programming. It is desirable to effectively
use these commodity general-purpose multicores rather than
targeting only special purpose stream-only processors such
as Cell or GP-GPUs.

One problem with this approach is that although peak
FLOPS and memory bandwidth of general-purpose proces-
sors are improving and narrowing the gap between them and
stream processors, GPPs lack some of the features that are
key to the high-efficiency of stream processors. In this pa-
per we examine these differences in detail, and propose and
evaluate extensions to a general-purpose core to allow it to
efficiently map the stream programming style. To simplify
our discussion we focus on single core behavior but operate
under the assumption that the core is part of a multicore sys-
tem used in a streaming style.

Our work shows that although stream cores and general-
purpose cores appear very different to the programmer, the
underlying implementations are similar enough that only rel-
atively minor architectural extensions are needed to map
stream programs efficiently. Our basic approach is to ex-
amine the key features of stream processors such as Cell
and Merrimac and determine how to best emulate them on
a general-purpose core. By using some architectural fea-
tures in an unintended way (e.g. treating a processor cache
as a software managed local memory) and judiciously us-
ing a software runtime, we found that the only required ar-
chitectural extension is a memory transfer engine to asyn-
chronously bulk load and store operand data to and from the
local memory.

In this paper we describe the design of the memory trans-
fer engine we call the stream load/store unit (SLS unit). The
SLS unit can be logically viewed as an extension and gen-
eralization of a traditional hardware memory prefetch and
writeback unit that is able to transfer large groups of po-
tentially non-contiguous memory locations to and from the
cache memory. We also show how the SLS unit aligns data
before being transferred to the cache so that it can directly
feed into short-vector SIMD units such as the SSE units of
an x86 processor. We claim that the SLS unit is a relatively



minor extension leveraging much of the existing functional-
ity and data-paths in a general-purpose core, requiring less
than 1% increase in die area.

We show that our extensions allow a traditional GPP core
to efficiently execute the stream programming model. This
means that performance will be limited by either the opera-
tion rate of the ALUs (peak FLOPS) or memory bandwidth
needed to fetch the operands depending on if the application
is compute or memory bound. We demonstrate this with four
real scientific applications that have been coded in a stream
style. We also show the potential improvement we get over
the same program written in a conventional style run on the
same GPP.

The paper is organized as follows. We start by comparing
and contrasting the architectures used for traditional GPPs
and the new breed of architectures for stream computing in
Section 2. In Section 3 we show how stream programs can be
mapped onto the GPP core by focusing on the SLS unit ex-
tension. In Section 4 we present the evaluation of our exten-
sions using simulation. We present additional related work
in Section 5, and conclude in Section 6.

2 General-Purpose and Stream Programming
and Architectures

In this section we compare and contrast the programming
model and micro-architecture of two different architecture
classes: a general-purpose processor (GPP) architecture and
a stream processor (SP) architecture. While the former is op-
timized to run applications written in conventional von Neu-
mann style where the parallelism and data locality is auto-
matically extracted from sequential code, the latter is op-
timized to run applications written in a stream-style where
both parallelism and data locality are explicitly expressed by
the programmer.

2.1 General-Purpose Programming and Architec-
ture

The programming model typically used for GPPs is ex-
hibited by the familiar sequential languages (e.g., C, FOR-
TRAN, Java). Conceptually, instructions execute sequen-
tially and in program order, often with frequent control trans-
fers. Requests to memory are performed on a per-use basis
resulting in memory accesses that are of single-word granu-
larity. This programming model is most suited for applica-
tions that have fine-grained control and uncertainty both in
control flow and data accesses.
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Figure 1. Sketch of canonical (a) GPP core (b) SP core
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Figure 1(a) depicts an abstraction of a GPP core and the
memory subsystem showing the key elements involved in
fetching and processing instructions/data. This abstraction is

useful in drawing parallels with a stream micro-architecture
(Figure 1(b)) to be discussed in the next section.

The controller is responsible for fetching instructions in
control-flow order and extracting parallelism from the in-
struction sequence. Because the GPP needs to support
arbitrary instruction sequences that potentially have little
explicit parallelism, it uses several speculative hardware
structures and static/dynamic scheduling to extract paral-
lelism and drive multiple functional units. Along with
conventional functional units such as ALUs/FPUs, modern
processors typically feature short-vector SIMD units (e.g.,
SSE/Altivec/VMX units), which substantially increase the
compute power of GPPs. However, the utilization of these
units is usually low because it is difficult to automatically
generate code to feed these units efficiently.

Global memory accesses can have immediate effect on
subsequent instructions in this programming model, so great
emphasis is placed on a storage hierarchy that minimizes data
access latencies rather than increasing data bandwidth. The
storage hierarchy is composed of the central register file at
the lowest level, followed by multiple levels of cache mem-
ories. Caches work well for most control intensive appli-
cations that access a limited working set of data, but com-
pute and data intensive applications need additional hardware
structures and software techniques. A hardware prefetcher
is one such structure which attempts to predict and prefetch
data using the data access pattern. If the prediction is both
timely and correct, the memory access latency is completely
hidden.

2.2 Stream Programming and Architecture

Stream programing, on the other hand, provides an effi-
cient style to represent compute or memory intensive applica-
tions that have large amounts of data-parallelism, that are less
control-intensive, and that have memory accesses that can be
determined well in advance of the data use. The computa-
tion is decoupled from memory accesses to enable efficient
utilization of computation units and memory bandwidth.

Although originally intended for applications that follow
restricted, synchronous data flow, stream programming has
recently been shown to work well for more general applica-
tions (e.g., irregular scientific applications) [32, 15]. Several
software systems have been created to support the develop-
ment and compilation of stream programs for stream proces-
sors. (e.g., Brook [11], Sequoia [18], StreamlIt [31]).

In the stream programming model complex kernel oper-
ations execute on collections of data elements referred to as
streams. Kernels are programmer defined procedures of arbi-
trary complexity (typically several hundred operations), and
stream elements are records with multiple data fields (typi-
cally tens of bytes/record).

The stream programming model advocates a gather—
compute—scatter style of programming'. Data is gathered in
bulk from arbitrary memory locations in main memory (MM)
into a local memory (LM). This involves an asynchronous

"Note that only the style of programming and execution changes. We
can continue to use existing sequential languages (e.g, C, Fortran) with a
few additional library calls for the bulk memory operations.



for: i = 0 .. numStrips - 1
{

a b streamGatherSeq (a,, a, hdl,, ..); // a,[j] € aljl

3 s

\ / streamGatherSeq (idxl,, idx1l, hdl,, ..); // idx1 [j] € idx1[j]
e streamGatherIdx (b,, b, idxl,, hdl,, .); // b,[j] € blidxl,[j]]

wait (hdl;, hdl,, hdl;); // synchronization routine
@ K, (a5, b c,);
K, (c5 2, dJ);
d, streamGatherSeq (idx2;, idx2, hdl,, ..);
streamScatterIdx (d,, d, idx2,, hdly, ..); //d[idx2[j]] € d4,[3j]

Figure 2. Example stream code after stream compilation.
Kernels K7 and K2 operate on gathered input stream data a s,
bs, and cs, and produce output ds scattered back to memory.

copy of data from the MM address space to the LM address
space. Computation kernels directly operate on the stream
data from LM and the produced results are stored back into
the LM. The consumer kernels use these results during exe-
cution and store their results back to LM, and so on. Finally,
only the live data from the LM is scattered back in bulk to
main memory. The data transfer between address spaces in-
volves explicit copying, and hence, in programming language
terms the parameters to the kernel are passed-by-value, as op-
posed to a pass-by-reference approach where pointers to the
scalar data would be passed. Passing parameters by value
eliminates aliasing between LM and MM data and enables
data arrangement in LM for feeding SP ALUs.

In order to map a stream program onto a stream proces-
sor several simple transformations are performed by a stream
compiler. Streams are broken down into strips, each typi-
cally several thousand bytes long, to insure that the working
set of strips fits in the LM. The strips are double buffered
so that when one buffer is being loaded from memory, the
other (already loaded) buffer can be operated upon in par-
allel by the computation kernels. The compiler also inserts
synchronization routines between asynchronous bulk mem-
ory operations/kernels (Figure 2). Finally, a run-time system
schedules these operations on the hardware. A more detailed
description is available in [22, 16].

The stream processor architecture is designed specifically
to exploit the stream execution model, and hence, is consid-
erably different from the canonical GPP architecture. Anal-
ogous to the GPP core in Figure 1(a), Figure 1(b) shows
an abstraction of a canonical SP core and the memory sub-
system hierarchy depicting the key structures involved in
data/instruction fetching and processing. The control struc-
ture, which is much simpler than that of the GPP, fetches stat-
ically scheduled instructions into the instruction store. The
SP decouples the non-deterministic off-chip accesses from
the execution pipeline by allowing the functional units to
only access explicitly software managed on-chip LM. This
LM (FIFO buffers in RAW [23], and more flexibly address-
able local memory in Cell and Merrimac [15]) serves as a
staging area for the bulk memory operations and has an ad-
dress space different from the MM address space, matching
the programming model. The functional units can directly
address the locations in the LM namespace, making mem-
ory reference latencies short and predictable. The functional
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Figure 3. GPP architecture with stream extensions

units also have a large number of local registers to store inter-
mediate values. External memory accesses are performed in
bulk by asynchronous SLS units. Thus, the memory latency
problem in GPPs is transformed into a memory bandwidth
problem in SPs.

3 Stream Extensions for General Purpose
Processors

As discussed in the previous section, SP and GPP archi-
tectures differ significantly in their implementation. How-
ever, as can be seen from Figure 1 the overall structure is
similar, with the major components serving equivalent pur-
poses in both architectural styles. In this section we show
how to exploit these similarities and extend the GPP archi-
tecture to support stream programs.

Our architecture is depicted in Figure 3 and described in
detail in the subsections below. Our overall strategy for map-
ping a SP onto a GPP is to either minimally extend the hard-
ware capabilities, or use software to emulate the stream func-
tionalities on the existing hardware structures. The resultant
mapping is as follows: part of the second-level (L2) cache
serves as the LM; the hardware prefetcher is extended to sup-
port (a) programmable asynchronous bulk memory transfers
of the SLS unit and (b) hardware packing of data for short
vector SIMD units (e.g., SSE units of Intel); the execution
pipeline with its short vector units and tightly integrated first-
level (1) cache supplies the parallel execution substrate; the
GPP instruction cache and controller serve as the stream in-
struction store and control; and the memory controller and
DRAM interfaces remain unmodified.

Our extensions are designed for a single core of a multi-
core GPP with private L1 caches sharing a common L2 cache
(other configurations are left for future work). A multicore
processor requires a run-time system to judiciously sched-
ule and partition work across the processor cores, similar to
hardware score-boarding used in SPs such as Merrimac [15].
We focus on optimizing the performance for a single core in
such an environment.



3.1 Software Managed Local Memory

Modern GPPs contain large on-chip memories in the
cache hierarchy, and these can be used as the stream LM as
shown in Figure 3. Our architecture uses an unmodified GPP
cache hierarchy, with a portion of the L2 cache acting as the
LM following the methodology of [16]. Relying on the large
capacity and high associativity of modern GPP L2 caches al-
lows us to map the LM to a portion of the MM address space
with little modification to the hardware structures, therefore
addressing the issue of having a separate address space for
the LM. Conceptually, most ways in each set of the L2 cache
are used for the LM, and the remaining ways are available
for non-LM data such as instructions, kernel local variables,
and global variables.

We prevent the automatic eviction of LM data in L2 cache
using the cache-control bits typically available in processor
caches (e.g., non-temporal bits set by prefetchnta/movntq in
x86, DLOCK bit set in PowerPCs). It is important to note
that even if LM data get evicted from the cache, correctness
is not affected.

We chose to use the L2 cache, rather than the L1 data
cache as the LM because the L1 is tightly integrated with
the execution pipeline and has a relatively small capacity and
associativity compared to the L2 cache.

Alternative design options require extensive modifications
to the cache structure, either by adding a dedicated soft-
ware controlled LM, or by using hybrid reconfigurable struc-
tures. Adding a separate LM reduces the effective die area
available for the cache, thus affecting the performance of
GPP codes which typically do not use the LM. Hybrid soft-
ware/hardware managed on-chip memory [24, 20] make the
cache design more complicated by adding new data paths and
control logic.

3.2 Asynchronous Bulk Memory Transfers

SPs feature asynchronous units (SLS units) to transfer
data in bulk between the main memory and the LM. Such
bulk transfers of data are essential to break the von Neumann
bottleneck of single word loads and stores. Bulk transfer
primitives such as stream gather and scatter are provided to
directly program these units. Hence, for GPPs to effectively
execute stream programs it is imperative to support a struc-
ture analogous to the SLS unit.

To accomplish this goal, our key insight is that the hard-
ware prefetcher in GPPs, like the SLS unit of a SP, asyn-
chronously transfers data in bulk between on-chip memory
and off-chip DRAM. However, the streaming SLS unit in SPs
can be explicitly programmed using predetermined access
modes, whereas the hardware prefetcher is speculation-based
and cannot be controlled by the programmer. Therefore, we
decided to augment the hardware structures of the prefetcher
to allow for explicit and programmable software control of
bulk memory transfers. This unit performs efficient transfer
of data to/from LM without affecting the execution core, op-
timizes for memory bus and DRAM bandwidth, and packs
data efficiently for short-vector SIMD units.

Figure 4 shows a diagram of our hybrid SLS/prefetcher
unit. Shaded components in the figure were added to sup-
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Figure 4. The SLS unit.
prefetcher are shaded, and the added datapaths appear as
solid lines. These include control and finite state machine
structures for generating accesses, stream buffers (SB) and
alignment buffers (ABs) for transferring data to/from the
LM, MSHRs (Miss Status Holding Registers for outstand-
ing misses) for communicating with MM, and a SLS TLB
for address translation.

Components augmenting the

port explicit asynchronous bulk transfers, and we estimate
their hardware cost to be 0.8mm? in a current 65nm process
based on the area models and physical implementation of the
Imagine Stream Processor [7]. This small area overhead is
less than a 1% increase in a 85mm? GPP core die area.

3.2.1 Communicating Control Information

The execution core and SLS unit communicate control in-
formation twice for each bulk stream memory transfer, once
to set up and launch the SLS operation and again to synchro-
nize with the execution core on SLS completion.

The execution core communicates with the SLS unit using
an optimized memory-mapped I/O interface. The arguments
corresponding to an SLS operation (e.g, stream start address,
numElmts, etc.) are transmitted using multiple store instruc-
tions to a special address. Once all the arguments arrive the
SLS unit enqueues the operation. The operation is launched
when there are no outstanding dependencies with other SLS
and kernel operations. When a SLS operation completes, the
SLS command queue is signalled so that a new SLS opera-
tion can be launched.

The execution of a kernel operation and/or SLS operation
may be dependent on each other. Therefore, upon comple-
tion the execution core and/or the SLS unit update hardware
status registers which are checked before executing.

3.2.2 Programmable Memory Access Generation

Our SLS architecture supports five memory access modes
useful for stream programming [11, 22]: strided gather,
strided scatter, indexed gather, indexed scatter, and scatter-
add. In addition, the SLS unit also supports a hardware
prefetch mode which is triggered based on the prefetcher
state and incoming cache misses.



A strided gather copies a stream of regularly spaced off-
chip memory locations to a contiguous block in the LM.
Our SLS implements a 1.5-dimensional access pattern that
expresses a sequence of fixed-size contiguous word blocks
(records) that are spaced at an interval of stride words. A
strided scatter performs the converse operation of copying a
contiguous block from the LM to a potentially sparse off-chip
memory range. Indexed gathers and scatters perform similar
operations except that the interval between records is vari-
able and is supplied as a stream of absolute indexes that are
read from the LM. Scatter-add [4] is an atomic read-modify-
write scatter that accelerates super-position type reductions
common to stream applications in the scientific domain.

The address generator (AG) in the SLS unit produces a
stream of single-word virtual addresses according to the ac-
cess mode. The AG can interleave accesses from multiple
consecutive records enabling the hardware to perform align-
ment for short-vector execution (see Section 3.3). The AG
generates as many memory addresses every cycle as required
to saturate the DRAM bandwidth — 2 addresses per cycle in
the case of a 2GHz processor with a 6.4GB/s DDR2 or a
10.6GB/s DDR3 interface. Each virtual address generated
must undergo physical address translation before being sent
to the memory system. Since the AG throughput must re-
main high, we provide a TLB unit within the SLS hardware.
This TLB operates on pages with very large granularity [30]
to allow for high throughput with inexpensive hardware. The
SLS TLB need not have the same entries as the execution
core TLB, and it can autonomously query the OS page table.

3.2.3 LM/SLS/Main Memory Data Transfer

We carefully manage the transfer of data between LM,
SLS, and MM to make the optimal use of each data-path and
handle any coherence issues that arise between the LM/MM
data. The data transferred between LM and MM is staged in
the SLS unit before copying to the destination memory. This
intermediate step provides several opportunities for collect-
ing, and possibly re-arranging data for maximum utilization
of both the datapath and the destination memory.

To understand the flow of data between SLS and the
memories, consider an indexed gather operation. The index
stream is first loaded from the LM to the index stream buffer
in the SLS unit. Using these indexes and the base address of
the data array (specified when programming the SLS call),
the AG generates a series of addresses and sends requests to
the MM. Once the responses arrive the data is collected in the
SLS before writing to the LM. Indexed scatter works simi-
larly except that the data is read from the LM and written
to the MM. Strided gathers/scatters also have a similar data
flow except that indexes are no longer required.

Transferring data between the SLS and LM requires three
logical ports to the LM: one port for writing data into the
LM, a second port for reading data from the LM, and a third
to read index values for gathers and scatters. Since the LM is
implemented within the L2 cache, we share the single phys-
ical port to L2 and time-multiplex it with dedicated buffers
for the three logical ports. Hence, whenever data is trans-

ferred to/from LM, the SLS performs an arbitration for the
L2 port. In addition, while transferring data to the LM the
SLS sets the cache-control bits of the corresponding cache
line to prevent the automatic eviction of LM data.

We perform several optimizations for efficient transfers
between SLS and LM. Using SLS buffers (stream/index SBs)
the data is transferred at the granularity of the L2 cache line
size (typically 64-128 bytes), ensuring that the full width of
the L2 physical port is used. We limit the number of requests
generated by the AG (2 words/cycle) such that the L2 port is
only accessed once every 4-8 cycles, which leaves sufficient
bandwidth in the L2 port for feeding the execution core. To
minimize core stalls on L1 cache misses, we give higher pri-
ority to demand fills from the core. The SLS overlaps the
address/request generation to the memory system with the
transfer of data from/to LM for the following cache line by
pipelining the SLS operations into stages. Finally, we use
alignment buffers (ABs) to pack the data into long words for
efficiently feeding the short-vector SIMD units of the execu-
tion core. This is key to achieving good performance and is
discussed in detail in the next section.

Transferring data between the SLS and main memory
provides several opportunities for optimizing memory band-
width. Since data for memory read operations are returned
from the memory system at a granularity of a DRAM burst,
we match the SLS request size to the DRAM burst size (e.g.,
32 Bytes for DDR2). We accomplish this using MSHRs
(Miss Status Holding Registers) which collate all requests
going to the same DRAM burst into one request to the
main memory. This operation is highly effective when there
is locality between requests and this is fairly common be-
cause each element of the stream is usually several bytes
long. We study the effects of burst-size in Section 4. Ad-
ditionally, the combination of MSHRs and alignment buffers
provides ample space for reordering memory operations to
maximize DRAM throughput [27]. The depth of the AB
and number of MSHRs can grow quite large since they
must hold enough accesses to saturate the DRAM bandwidth
(DRAMgtency X DRAMpandwiden) as well as extra buffer-
ing for reordering. In the case of a 2GHz processor core with
a 6.4GB/s DDR2 memory system we use a 512-byte AB and
256 MSHRs and estimate their area at 0.4mm? (0.5% of a
typical 85mm? GPP die).

Maintaining coherence and consistency between LM/MM
data is usually straightforward because of the stream pro-
gram semantics described in Section 2.2. As an artifact of
the stream programming model, data is copied between the
address spaces and the LM/MM data do not alias each other.
However, coherence could potentially be violated during SLS
transfers to/from LM if the main memory does not have the
most recent value for the MM data arrays. The SLS unit
maintains coherence by leveraging the coherence protocol
used by the hardware prefetcher for the underlying multi-
core GPP. It first checks for recent updates in the L2 tag
array and/or the L1 tag arrays (write-back)/L1 write buffers
(write-through) before requesting data from main memory.
However, this scenario is uncommon because the data-sets
are huge (much bigger than the L2 cache size) and most of



the cache is used for the LM.

An alternative to a hardware SLS unit is to emulate the
SLS functionality in software either using one thread of an
SMT capable GPP [16], or a processor core of a multi-core
GPP. The major disadvantage of this software approach is
that a full hardware execution context is dedicated to per-
forming SLS transfers and cannot be used for additional com-
putation. Also, software emulation requires sharing the in-
struction fetch and execution bandwidths between the actual
computation and the SLS, potentially reducing the perfor-
mance of compute-intensive stream applications.

3.3 Parallel Execution Using Short Vector SIMD
Units

The SLS unit ensures that all the data needed by a compu-
tation kernel is present in the LM prior to its execution. This
enables the kernels to execute at maximum rate, limited only
by the computation resources of the GPP core. In addition to
ALUs/FPUs, modern GPP cores feature short-vector SIMD
units (e.g, Intel SSE, AMD 3DNow!, IBM VMX) which con-
stitute the bulk of the compute power. To achieve the highest
performance on these SIMD units, we use the SLS unit to
also pack and align the data in memory so it can be directly
fetched into the SIMD registers. For modern SIMD units,
this involves placing 4 single-precision or 2 double-precision
floating-point words into a single 128-bit location of the LM.

To limit the need for software padding or packing instruc-
tions operating on the LM, the SLS unit’s address genera-
tor issues requests in an order that ensures that the align-
ment buffer collects the same field of two or four consecutive
records into a single 128-bit LM location. The result is that
fields from different records are packed together and can be
fetched into the SIMD unit using a single instruction such as
the movaps SSE instruction.

Arranging data to align to the SIMD boundaries is a sig-
nificant issue in the stream programming model because each
stream element is typically a record with multiple fields and
cannot be directly loaded into the SIMD unit. Figure 5 illus-
trates the packing and alignment problems normally solved
in software when using SSE instructions. When indirect
(gather) record accesses are performed, software must pad
the data in memory to allow 128-bit aligned accesses as well
as dynamically pack the gathered data into short-vector reg-
isters. In contrast, Figure 6 shows the stream implementation
of the same sample code using our SLS architecture. Our ar-
chitecture’s hardware support eliminates the need for special
padding or packing instructions. Even greater benefits could
be realized should wider SIMD units become available.

Note that applications expressed in the stream style make
it easy to exploit the SIMD units because memory accesses
and computation are decoupled. The bulk operations natu-
rally expose the parallelism to the SIMD units. Due to de-
pendencies across loop iterations, horizontal computations,
data-dependent control flow, and non-contiguous data layout,
compilers for GPPs often have difficulties using these units.
Most programs that use SIMD units are explicitly coded in
assembly language or use compiler intrinsics.
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Figure 6. Short vector packing and alignment using
streaming hardware SLS mechanism.

4 Evaluation

In this section we evaluate our proposed stream extensions
to the GPP architecture. We focus our evaluation on a single
core of a multicore GPP running stream programs. Our anal-
ysis shows that the stream processing extensions we propose
efficiently support the stream execution model by providing
high utilization of memory and compute resources similar to
canonical SPs. This results in optimal use of the short-vector
SIMD units, leading to significant speedups over the conven-
tional implementations.

4.1 Experimental Setup

We evaluate four scientific applications that feature reg-
ular and irregular mesh constructs and linear algebra opera-
tions, which are common in scientific applications. The ap-
plications were originally written by programmers special-
izing in their specific application domains (fluid dynamics
and solid mechanics). The four applications and character-
istics of the datasets are summarized in Table 1, and fur-
ther details are available in [16]. These applications display
several challenging characteristics including non-affine and
data-dependent array references, and a wide range of com-
pute to memory ratios.

The overall evaluation methodology is as follows. The
C/Fortran conventional implementations are first re-written
in a stream-programming style [11]. We transform the stream
program using standard stream compiler transformations dis-
cussed in Section 2.2 into stream code similar to Figure 2.
Both the conventional and stream codes are compiled us-
ing alpha-gcc 2.95.3 with -O3 level optimizations to gener-
ate optimized alpha binaries. These binaries are then run on
the simulation system described below to collect execution
statistics.

We modified the M5 simulator [10] to reflect our archi-
tectural modifications described in Section 3. M5 is a cycle-
accurate simulator of a modern GPP and was configured to



Application
FEM [8]

Description

2D Discontinuous Galerkin finite element method code
for fluid dynamics. It uses a 4816 element unstruc-
tured mesh, and solves for either the Euler or magne-
tohydrodynamics (MHD) equations. The code can also
be parametrized for linear (lin), quadratic (qd), or cubic
(cub) interpolation. FEM performs mostly gather and
scatter memory operations of records spanning 5 — 80
words and has three compute-intensive kernels.

3D large eddy fluid dynamic finite volume method sim-
ulation on an irregular mesh. The elmts_nb and finer_nb
datasets have a mix of tetrahedrons, prisms, pyramids,
and cubic elements with 3 800 and 29 095 total control
volumes. The amr_nb dataset has 5416 cubic elements
that have a connectivity of 2 — 8 due to adaptive mesh
refinement. CDP performs gather, scatter, and scatter-
add memory operations to records of 1 — 8 words and
has four kernels.

Part of a sparse algebra suite; computes a compressed
sparse row matrix vector multiplication on a 9978,
19094, 37918, or 73 053 row matrix. SPAS uses unit-
stride stream loads and stores and has one main kernel.
A neo-hookean solid mechanics code that models a fi-
nite elasticity compressible material. The application
uses a structured grid with 30 000, 50 000, 100 000, or
200000 elements. NEO uses unit-stride stream loads
and stores and has five kernels.

CDP [19]

SPAS [33]

NEO [9]

Table 1. Application and dataset description.

execute the Alpha instruction set in system-call emulation
(SE) mode. Additionally, since an accurate simulation of
the DRAM throughput is critical for stream programs, we
augmented M5 by integrating the DRAMsim DRAM sim-
ulator [34]. The baseline machine parameters reflecting a
modern GPP processor are detailed in Table 2. For both the
stream and conventional programs we prefetch subsequent
lines for an instruction miss in the L2 cache. In addition,
for the conventional programs we use an aggressive stream-
based hardware prefetcher which prefetches four subsequent
lines on every data miss in the L2 cache.

Parameter | Value Parameter | Value
Core frequency | 2GHz DRAM architecture | DDR2
Pipeline | OO0 DRAM bandwidth | 6.4GB/s
L2size | 1IMB DRAM burst | 32/64 bytes
L2 associativity | 8 SLS AG bandwidth | 2addr/cycle
L2 line size | 64 bytes SLS ABs | 8 (512 bytes)
FSB bandwidth | 6.4GB/s SLS MSHRs | 256

Table 2. Baseline machine parameters.

Since the M5 simulator and Alpha ISA do not support
short-vector SIMD execution, we measured the performance
and hardware alignment benefits using real Pentium 4 hard-
ware with SSE3 instructions within kernels. We also studied
the impact on overall performance by simulating the varying
degrees of SIMD unit utilization using the M5 simulator.

4.2 Stream Execution

In this section we show that our extensions enable the GPP
core to behave similar to a canonical SP core by efficiently
overlapping computation with memory accesses and achiev-
ing high memory throughput limited only by the DRAM ar-
chitecture.

Figure 7 shows the fraction of the total execution time
during which kernels are running on the execution pipeline

assuming full SIMD utilization (Section 4.3)(% Kernel) and
the fraction of time spent performing memory accesses for
the DDR2-based memory systems (% SLS). Either % Kernel
or % SLS should be 100% to indicate complete overlap. The
figure also shows the percentage of peak memory bandwidth
utilization, on average, in each of the benchmarks.

Overall, we see that similar to canonical SPs, there is al-
most full overlap of kernel computation and SLS memory
operations. When the applications are compute bound (FEM
and NEO), all the time is spent performing useful compu-
tation in the kernels, and the time spent in SLS operations
is completely hidden. Similarly, when the applications are
memory bound (CDP and SPAS), all the time is spent in SLS
memory operations fetching only non-speculative data, and
the computation time is completely overlapped. Also no-
tice that the memory bound applications achieve very high
fractions of peak memory bandwidth (CDP: 80% of peak
at 5.1GB/s, SPAS: 94% of peak at 6.1GB/s). Although the
overall memory throughput of compute bound applications
is much lower, high throughput is achieved while transfer-
ring the data (e.g, FEM: 4.6GB/s during data transfer which
occurs for 15% of total run-time).

B % Kernel B%SLS O% Mem BW
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Figure 7. Compute and memory resources utilization.

Although we achieve high memory bandwidth utilization
using a SLS unit, not all data transferred is useful data due
to the DRAM architecture and the data-access patterns. To
study these effects, we ran four different SLS calls corre-
sponding to different data access patterns — unit-stride load,
indexed gather, unit-stride store, and indexed scatter. While
the stream load and store requested consecutive 4-byte words
from memory, gather and scatter requested 12-byte (3-word)
records randomly from a large array.

Figure 8 shows the measured memory throughput for
DDR2-32, DDR2-64, and DDR3-64, where 32 and 64 re-
fer to the minimum DRAM transaction size (burst size). We
measured the throughput for different numbers of outstand-
ing requests to memory, which are controlled by varying the
number of alignment buffers.

We see that the memory bandwidth utilization for se-
quential memory accesses is much higher than that for ran-
dom memory accesses (Figure 8). In fact, using just 8 ABs
we achieve very close to the theoretical peak bandwidths of
6.4GB/s (DDR2) and 10.6GB/s (DDR3) for sequential reads.
When the memory accesses are non-sequential the memory
bandwidth utilization drops to about 1/6th to 1/8 the peak
bandwidth. This is primarily because modern DRAM sys-
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Figure 8. Sensitivity of memory bandwidth performance for stream memory operations to AB depth and DRAM architecture.

tems are optimized for sequential memory accesses, some-
times at the expense of random accesses. For example, the
minimum burst size in DDR3 is 64 bytes, indicating that at
least 64 bytes are transmitted even if the requested number
of bytes is much lower. These experiments with stream ap-
plications illustrate the need for efficient support for random
memory accesses in DRAM technologies [5] which is an is-
sue not specific to our proposed architecture. In a multicore
framework, these effects could be further exacerbated if mul-
tiple SLS units issue requests to the DRAM simultaneously.

4.3 Effects of SIMD Execution

The conventional codes we used in this study are unable to
benefit from the SIMD unit present on most GPPs. Both the
open-source and commercial compilers available to us were
unable to generate short-vector instructions for the loops in
our applications. A majority of our codes contain non-affine
accesses and data dependent gathers and scatters, thus mak-
ing it difficult to automatically generate short-vector SIMD
instructions.

To evaluate our claim that the gather/scatter style of
stream computation takes better advantage of short vector in-
structions, we performed two experiments. First, we studied
the benefits we could achieve using the current x86’s SSE3
extensions on several important kernels from our streamified
applications. Second, we studied the effects of a more capa-
ble execution substrate on overall performance by simulating
a system with varying degrees of SIMD unit utilization.

Table 3 lists the computation kernels from the stream code
we hand-converted to SIMD format for the Pentium 4 ar-
chitecture which supports SSE3. Our methodology involves
two steps. First, data is streamed and packed into the LM
such that it is aligned to the SIMD width. Second, we emu-
late a trivial compiler pass where loops are simply unrolled
four times to use 4-wide SIMD operations on the densely
packed stream data arrays. We measured the potential bene-
fits of hardware alignment by comparing the execution times
of two versions of the kernels — one version aligns data in-
side the kernel using SSE alignment instructions (software
alignment) and the second version aligns data prior to the
execution of the kernel, representative of using the SLS unit
(hardware alignment). Our converted routines were compiled
with Intel’s ICC compiler and the performance was measured
on a 3.4GHz Intel Prescott core.

Figure 9 shows the performance of five kernels using SSE
instructions, with both software and hardware alignment, rel-
ative to the baseline implementation with no SSE instruc-
tions. The results indicate that even with trivial compiler
support many kernels show significant speedups (~ 3.4x on

App | Kernel | Description

FEM | GatherCell | Computes on cells, gathering data from neighbors.
FEM | GatherFlux | Computes on faces, gathering data from neighbors.
CDP | InitRes Computes residuals based on neighbor information.
CDP | Face Updates faces using neighboring control volumes.
CDP | CompMax Reduces residuals at end of each iteration.

Table 3. Kernels evaluated on Pentium 4.

average) using SSE. The main causes of speedups lower than
the expected 4x were inefficient kernel code, and resource
restrictions in the Pentium 4 SSE hardware. For example,
GatherFlux and GatherCell contain several unaligned table
lookups even though the input data stream was aligned and
packed for the SIMD unit. It is possible to optimize these ker-
nels and attain significant performance improvements with
better compiler analyses than our evaluation methodology
assumed. In some cases, minor code modifications were re-
quired to use SSE. This was the case for InitRes and Com-
puteMax which indirectly improved speedup to over 4x.

Our hardware-assisted alignment and packing shows per-
formance improvements of 13% on average and up to 22%
over software alignment using packing instructions. Per-
forming alignment and packing in the SLS unit frees up
processor resources (SIMD registers, load/store unit, cache
space) and better utilizes functional units for increased per-
formance. This is because alignment in software requires
packing instructions which reduce the utilization of the
SIMD unit. The alignment using the SLS unit, on the other
hand, is performed while assembling the data in the align-
ment buffers and hence, has no additional overheads. Ker-
nels such as Face see a substantial benefit because they op-
erate on data elements across loop iterations and therefore
perform frequent vector gathers. Conversely, kernels that ac-
cess sequential aligned data, such as ComputeMax, see no
improvement from this hardware mechanism.

ESW Aligned SSE EHW Aligned SSE

Gather Cell Gather Flux  Init Res

Face Compute

Max

Figure 9. Speedups due to SSE instructions

To study the effects of a more capable execution sub-
strate on overall performance, we simulated a system with
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Figure 10. Range of speedups of stream programs over
conventional programs depending on the effectiveness of
SIMD hardware using (a) DDR2 and (b) DDR3 DRAM. The
conventional codes do not utilize the SIMD unit.

the assumption of faster kernel executions (because alpha
ISA lacks short-vector support). Kernels are run faster by
performing fewer loop iterations within the kernel. Mem-
ory traffic is simulated in full using the SLS unit. Figure 10
shows the speedups of stream programs over the conven-
tional programs with varying utilization of the SIMD unit for
the stream programs, and varying bandwidth/latency of the
DRAM system. The faster kernel execution with SIMD units
results in significant speedup for compute-bound programs
but less speedup as programs become memory-limited.

To study the sensitivity of overall application performance
to the utilization of the SIMD units, we look at the range
of speedups we could obtain if the SIMD unit is 0%, 50%,
and 100% utilized. The utilization varies depending on the
amount of control and integer code within the kernels, and
the limitations in hardware/compiler as discussed above. We
measure the execution speedup of the applications assum-
ing kernel speedups of 1x, 2x, and 4x, corresponding to the
SIMD utilizations, and also vary the memory bandwidth us-
ing DDR2 and DDR3 memory systems (Figure 10).

For the scenario where a SIMD unit is not used (i.e.,
SIMD utilization is 0%), indicated by Str-1x in the figure, we
see total run time speedups of about 0.96-1.8x (1.2x on aver-
age)? using DDR2. The speedup obtained is due to improved

2Using a base configuration with no hardware data prefetcher, we com-
puted much higher speedups of 1.15-3.8x (2.0x on average).

utilization of the memory bandwidth by the SLS unit and ef-
fective latency hiding of the stream model. Therefore, appli-
cations which are heavily compute-bound do not see signifi-
cant speedups without SIMD execution. The minor (< 5%)
slowdown observed in a few of the SPAS datasets is a result
of the effective hardware prefetching of the sequential loads
in the GPP case and the small overhead of synchronization
between SLS calls and the execution pipeline in the stream
case. We conclude that in the stream case, the SLS engine
is able to better exploit the lower available memory band-
width of DDR2, and hence, increases pressure on compute
resources. Notice that when bandwidth is increased (DDR3),
even conventional codes begin to perform better. Therefore,
we see lower speedups compared to DDR2 in the Str-1x case.

When the SIMD unit utilization increases to 50% and
100% (2x and 4x kernel speedups), the performance of the
compute-bound FEM and NEO applications grows linearly
achieving a maximum speedup of almost 4.5x over the con-
ventional implementation. The performance of CDP and
SPAS does not scale as well because memory bandwidth lim-
its their performance. However, as computation throughput
increases memory throughput becomes the performance bot-
tleneck. Therefore, we observe higher speedups in CDP and
SPAS for the higher bandwidth DDR3 when the SIMD units
are better utilized (Str-2x, Str-4x).

5 Related Work

Much previous work in DRAM controllers [14, 28, 21],
processor-in-memory systems [12], and vector gather/scatter
units [26] has aimed to improve memory/DRAM bandwidth
utilization by remapping sparse vector data, reordering mem-
ory requests, and/or adding vector units/register files to the
execution core. Our SLS design also improves memory sys-
tem behavior and core execution using related techniques.
However, our SLS unit is specifically designed to work in
concert with our other proposed extensions to efficiently sup-
port the stream programming model, which has fundamen-
tally different attributes (e.g., locally addressable on-chip
memory, bulk computations/memory accesses on complex
records) from conventional programming models and over-
comes the limitations of traditional vector processing. Unlike
earlier approaches, our SLS unit is designed as a minimal ex-
tension to the on-chip hardware prefetcher of a modern GPP
by reusing most of its existing components and datapaths. No
ISA extensions or OS intervention are needed to program the
SLS unit. Furthermore, the SLS unit has unique advanced
capabilities tailored for parallel execution such as hardware
alignment for short-vector SIMD operations, which is critical
to achieving high performance in stream programs.

Research on prefetching techniques also relates to the
work presented in this paper, because the SLS unit can
be envisioned as a programmable extension to a hard-
ware prefetcher (Section 3). Recently, several sophisticated
processor-side and memory-side prefetchers have been pro-
posed (e.g., [25] [29]). Although the hardware prefetch-
ers are effective when there is a clear pattern in the mem-
ory accesses, they fail when accesses are arbitrary and data-
dependent. Such “random” access patterns are common



in scientific applications. Another approach to prefetch-
ing data into the conventional cache hierarchy is to use
software prefetch instructions [13]. Although prefetch in-
structions can be inserted into the program by the compiler
for prefetching arbitrarily random accesses, there are uncer-
tainties in prefetch distance and a possibility for reduced
memory throughput and increased access latency as a result
of unintentional cache eviction. Moreover, mis-speculated
prefetches waste memory bandwidth which could adversely
affect performance in memory-bound applications.

There are several alternative approaches to target the
SIMD units of GPPs including compiler optimizations (e.g.,
auto-vectorization for Cell [3]) and assembly-level hand-
optimizations (e.g., GROMACS [1]). Compiler optimiza-
tions, although effective for well written programs that ac-
cess structured data with affine index expressions, are not
as capable of parallelizing applications that access data
in an arbitrarily data-dependent order. Low-level hand-
optimizations, on the other hand, are usually tedious and
time-consuming. By using the stream programming model
and a SLS engine to automatically align data for the SIMD
units, we complement these approaches and enhance “SIMD-
ization” of complex applications.

6 Conclusions and Future Work

Traditionally, general-purpose processor architects have
incorporated features that first appeared in special-purpose
processors. In the same vein, we propose a simple set of
extensions to incorporate the essential features of special-
purpose stream processors into general-purpose hardware.

In this paper we have shown how the stream programming
model can be efficiently run on GPPs with minimal hardware
extensions. The extensions we proposed require less than 1%
additional die area and are capable of significantly speeding
up compute/memory intensive applications by better utilizing
the memory bandwidth and functional units already existing
in the processor.

In the future, we will extend this work to address more
issues pertaining to multiple cores of a GPP. Several new
factors become important with multiple cores, including op-
timization for local vs. global memory bandwidth, placing
and migrating the data for the LM, and synchronization be-
tween kernels running on different cores.
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