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ABSTRACT
In this work, we propose and investigate the idea of enhancing a
System-on-Chip (SoC) communication architecture (the fabric that
integrates system components and carries the communication traf-
fic between them) to facilitate higher security. We observe that a
wide range of common security attacks are manifested as abnor-
malities in the system-level communication traffic. Therefore, the
communication architecture, with its global system-level visibil-
ity, can be used to detect them. The communication architecture
can also effectively react to security attacks by disallowing the of-
fending communication transactions, or by notifying appropriate
components of a security violation. We describe the general prin-
ciples involved in a security-enhanced communication architecture
(SECA) and show how several security objectives can be encoded
in terms of policies that govern the inter-component communica-
tion traffic. We detail the implementation of SECA in the context
of a popular commercial on-chip bus architecture (the AMBA ar-
chitecture from ARM) through a combination of a centralized se-
curity enforcement module, and enhancements to the bus interfaces
of system components. We illustrate how SECA can be used to en-
hance embedded system security in several application scenarios.
A simple instance of SECA has been implemented in a commercial
application processor SoC for mobile phones. We provide results of
experiments performed to validate the proposed concepts through
system-level simulation, and evaluate their overheads through hard-
ware implementation using a commercial design flow.
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1. INTRODUCTION
Embedded electronic systems such as cell phones, PDAs, sen-

sors, etc., are routinely used to capture, store, manipulate, and
access sensitive personal data, and perform various critical func-
tions. Security is naturally considered by users of such systems
as an important requirement for several applications and services.
As embedded systems become more complex, extensible through
software, and networked, they are susceptible to a wide range of
security attacks that have hitherto been the bane of general-purpose
computing systems.

While major advances have been achieved in developing theo-
retical underpinnings (such as cryptographic algorithms) and func-
tional security measures (such as secure communication protocols),
they are hardly sufficient to ensure security in practice. Most real
security attacks do not directly take on the theoretical strength of
cryptographic algorithms, choosing instead to target weaknesses
in a system’s implementation. This implies that security cannot
be added as an afterthought, but must be built-in through careful
consideration during various stages of the design process. Attacks
that target implementation weaknesses can be classified into physi-
cal, side-channel, and software attacks. Of these, software attacks,
which are launched by executing malicious software on the target
system, or by exploiting vulnerabilities in software that is already
installed on the system, are by far the most common, since they
are relatively easy to design and deploy. Software attacks are typi-
cally addressed by reactive measures such as anti-virus tools, soft-
ware patches, etc. These techniques are useful, but their scope is
limited to known viruses, worms, and vulnerabilities. Hence, they
are clearly not sufficient, as evidenced by the unabated growth in
the instances of successful software attacks – for example, a study
by IBM estimates that the number of new viruses increased from
4,551 in 2002 to 28,327 in 2004 [1]. The study also projects that
newer security threats are likely to target embedded devices such
as mobile phones, personal media players, satellite communication
systems in cars, etc.

The trends described above make it apparent that the design of
embedded systems cannot remain security-agnostic. Since it is of-
ten too late or too expensive to address security in the postmortem
of an attack, it becomes imperative that security is factored in
throughout the system design process. Security features are begin-
ning to appear in general-purpose processors. For example, Intel
and AMD’s x86 architectures [2], and Transmeta’s Efficieon [3]
feature a non-executable bit that prevents the execution of code in
selected areas of memory, thereby preventing some buffer over-
flow attacks. The Trusted Computing Group develops open speci-
fications to strengthen the security of computing platforms against
software attacks [4]. In the embedded domain, similar trends are re-
flected in recent developments such as ARM’s TrustZone technol-
ogy [5], and in security-aware SoCs such as TI’s OMAP 2420 [6]
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and NEC’s MP211 [7] mobile application processors, wherein se-
curity measures have been incorporated in the design to achieve
specific objectives such as the privacy or integrity of sensitive code
and data. These technologies and other research efforts are dis-
cussed further in Section 6.

Embedded systems are typically designed by assembling vari-
ous components (one or more processors, memories, application-
specific hardware, peripherals, I/O controllers, etc.) that are inte-
grated using standard communication architectures. In addition to
serving as a fabric for integrating diverse system components, the
communication architecture is also responsible for facilitating com-
munications between them. In this work, we propose that the com-
munication architecture, with its system-wide visibility and criti-
cal role in enabling system operation, can be exploited to detect
and prevent a wide range of software-based security attacks. The
communication architecture can answer questions such as (i) which
components or programs are accessing a given memory region? (ii)
are system-level access control rules (for example, read or write to
a peripheral device, or read-once or write-once policies for memory
locations) obeyed by a component? (iii) is the present configuration
or setting for a peripheral device valid for the accessing component
or component context? (iv) is the characteristic behavior of an ap-
plication (as defined by communication traffic properties) violated
due to an intrusion into the system?

We demonstrate that existing communication architectures, with
minimal or no changes, allow us to define meaningful security poli-
cies that can thwart a wide range of software attacks such as in-
formation leakage and corruption, access control violations, and
denial-of-service attacks. Security-enhanced communication archi-
tectures can be used to monitor and detect violations, block attacks,
and provide diagnostic information for triggering suitable response
and recovery mechanisms.

The modifications involved in SECA can easily be retrofitted
onto an existing communication architecture. They include the ad-
dition of a security enforcement module (SEM) that can be pro-
grammed to enforce desired security policies, and security enhance-
ments to the interfaces of selected system components. SECA can
be used to implement features such as (a) address-based protection,
which defines and regulates the access control privileges available
to selected memory locations and peripherals for a given compo-
nent or program, (b) data-based protection, which provides finer-
grained access control by restricting the data values that are as-
sumed by some memory locations and peripheral registers, and (c)
sequence-based protection that can perform complex checks based
on a sequence of transactions executed by the communication ar-
chitecture.

We describe our implementation of SECA in the context of a
popular commercial communication architecture – the AMBA on-
chip bus from ARM [8]. Our experiments with NEC’s in-house
SoC platform demonstrate that SECA can be used to enforce vari-
ous security policies with minimum overheads. We have also im-
plemented a simple instance of SECA – an address-based protec-
tion scheme – in NEC’s MP211 mobile phone application SoC.

The rest of this paper is organized as follows. Section 2 provides
an introduction to communication architectures by examining the
AMBA architecture that is used in this work. Section 3 uses various
application scenarios to illustrate software attacks that undermine
embedded system security. It also shows how these attacks are
manifested in the traffic seen by the communication architecture,
making a case for its use in detecting and preventing such attacks.

Section 4 then presents SECA, details its internal architecture, and
describes how it can be used to achieve various security objectives.
Section 5 presents our experimental framework and provides var-
ious results. Section 6 positions our work with respect to related
work in security-aware embedded system design.

2. PRELIMINARIES
Communication architectures such as ARM’s AMBA [8], IBM’s

CoreConnect [9], SONICS’s SMART Interconnect [10], etc., are
increasingly becoming a backbone of many embedded systems and
System-on-Chips (SoCs). In this section, we use the AMBA bus [8]
to introduce basic concepts, and to identify the information avail-
able in a communication architecture that can be used to enhance
security.

Figure 1 shows an example system built using the AMBA bus.
AMBA provides for a bus hierarchy consisting of (i) the Advanced
High Performance Bus (AHB) for components that require high
communication bandwidth (processors, memory, DMA controllers,
etc.), and (ii) the Advanced Peripheral Bus (APB) for lower band-
width peripheral devices.
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Figure 1: An example system that uses ARM’s AMBA on-chip bus
architecture

The AHB consists of (i) global interconnect wires for transfer-
ring address, control, and data values, and (ii) logic components,
including bus interfaces, arbiter, address decoder, address multi-
plexer, and data multiplexers, which together implement the AHB
protocol. The AHB facilitates communication between masters
(components that initiate bus transfers) and slaves (components that
can respond to transfer requests). All slaves are memory-mapped,
meaning that communication transactions are encoded as reads and
writes to specific addresses. A centralized arbiter is responsible
for regulating bus traffic according to a configurable arbitration
scheme. A transaction may be initiated when a master has re-
quested access to the bus and has been granted access by the arbiter.
During a transaction, multiplexers route address, control, and write
data from the appropriate master to the slaves. The address decoder
notifies the desired slave through a slave select signal. Another
multiplexer routes the slave response and read data to the masters.
The AHB and APB communicate via a bridge, which acts as a slave
on the AHB. The bridge is the only master component on the APB.
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Figure 2: Description of various AMBA signals

The AMBA architecture allows us to easily observe the system-
level communication traffic. Figure 2 describes the signals used
in the AHB and APB. These signals contain bus transaction infor-
mation. For example, in the system of Figure 1, suppose the pro-
cessor experiences a data cache miss and needs to refill the cache
line from memory. The processor raises the HBUSREQ1 signal to
inform the arbiter that it needs to use the bus. When the arbiter
responds by asserting the HGRANT1 signal, the HADDR[31:0]
and other control signals are routed by the address multiplexer to
the slaves, based on the HMASTER[3:0] signal that identifies the
current master (the processor). The control signals indicate trans-
fer properties such as the direction of data transfer (HWRITE), the
size of the transfer (HSIZE[2:0]), the burst mode properties of
the transfer (HBURST[2:0]), and protection control information
(HPROT[3:0]) including whether the access is due to an instruc-
tion or data fetch, whether the processor is in privileged or user
mode, etc. The address decoder uses HADDR[31:0] to raise the
select signal for the appropriate slave, in this case HSEL1 for the
memory controller. After reading from memory, the memory con-
troller returns the data through HRDATA[31:0] and indicates the
transfer status with HRESP[1:0]. This information is returned
to the processor through the read multiplexer. Thus, a sequence
of address, control, and data values is visible on the bus, which
is reflective of the communication transaction currently being per-
formed in the system. In the following sections, we will see how
this communication information is effectively used to implement
various security policies.

3. MOTIVATION
In this section, we discuss security vulnerabilities and attacks in

the context of a popular application – playback of protected mul-
timedia content. We then demonstrate that the communication ar-
chitecture provides useful information for detecting and preventing
such attacks. Based on the examples, we make several key infer-
ences that can be used to design a security-enhanced communica-
tion architecture. Before proceeding to the attacks, we first intro-
duce the application under consideration and highlight its security
requirements.

3.1 Example Application: Playback of
Protected Content

Playback of multimedia content (audio/video) has emerged as a
popular revenue-generating application in various consumer elec-
tronics appliances. In order to protect the content from unautho-
rized use, content providers depend on technologies such as dig-
ital rights management (DRM) protocols. Figure 3 shows a typ-
ical system architecture for portable systems that performs play-
back of protected audio/video content. The hardware architecture
consists of an ARM920T embedded processor [11] (CPUA), with
16kB instruction and data caches, a crypto-processor (CPUB) to
which cryptographic computations are offloaded by CPUA, a mem-
ory controller, several standard peripherals (timer, UART, GPIO),
all of which are connected by the AMBA bus [8]. The user in-
terface consists of an LCD controller peripheral that drives an LCD
panel and an audio codec interface that connects to the audio codec,
which in turn drives the speaker sub-system.
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Figure 3: Architecture of a portable audio/video player

We consider the playback of audio and video content protected
by the OMA DRM 2.0 protocol [12], using the system shown in
Figure 3. For the purpose of the following illustration, we discuss
only audio content (the same arguments apply to video playback as
well). The audio content is received in encrypted form, along with
an encrypted rights object. The rights object contains cryptographic
keys for unlocking the content, message authentication codes to
ensure that the content has not been tampered with, and permissions
and constraints for use of the content on the device. The stored copy
of the rights object is encrypted with a key that is device-specific
(tied to the specific appliance that requested the content).

The process of playing protected content entails four phases as
shown in Figure 4: registration, acquisition, installation, and con-
sumption. For the lifetime of a particular piece of protected content
on the system, the registration, acquisition, and installation phases
occur only once. Upon their completion, the audio player has regis-
tered with a rights issuer, requested and received a protected rights
object, verified the integrity and authenticity of the rights object,
and unwrapped the security keys contained in it. We focus on the
consumption phase of the application, but the reader can find fur-
ther details of all phases in [12, 13].

The tasks of the content playback application are partitioned be-
tween the main processor CPUA and the crypto-processor CPUB.
In Figure 4, the shaded blocks indicate the decryption and hash op-
erations in the consumption phase that are performed by the crypto-
processor. CPUA interprets the rights object to determine if the con-
tent is valid for use. If so, a hash check of the encrypted content is
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Figure 4: Flowchart for playback of protected content

performed by CPUB. The computed hash value is compared against
a reference value included with the rights object. Each encrypted
block of data is decrypted by CPUB using the content encryption
key KCEK . Prior to being encrypted, the content is typically com-
pressed, e.g., using the AAC (Advanced Audio Coding) standard,
to minimize data transmission time and storage space. Therefore,
each decrypted block is decompressed and then sent to the audio
codec, which outputs the audio to the speaker.

3.2 Attack 1: Stealing the Cryptographic Key

We will now examine an example attack on the system presented
in Section 3.1. We demonstrate how a stack overflow attack can
be used to steal the device key KDEV that is burnt into the system
ROM. Knowing KDEV , a user can circumvent the DRM rights ob-
ject to gain unlimited use of the protected content, including the
ability to distribute it in plain form. The stack overflow attack,
described in Figure 5, is launched by exploiting a vulnerability in
the audio player software – specifically by overflowing a buffer de-
clared on a function’s stack frame and consequently overwriting its
return address to point to malicious code [14]. The function tar-
geted for the attack is executed after the DRM rights object has
been evaluated, when the application prints out user-supplied song
information to the screen. The function printTitle() shown
in Figure 5 uses the library function strcpy() to extract the song
title from the input string songInfo. The function strcpy() does
not perform bounds checking, so if the title exceeds the size of the
array buffer[], then strcpy() overwrites the local variable temp,
the previous function frame pointer (FP), and the function return
address. The input string is maliciously crafted to contain attack
code and a corrupted return address that points to the initial instruc-
tion of the attack code, as shown in Figure 5. The code exploits the
application’s access rights to obtain a copy of the device key KDEV .

Fortunately, the communication architecture reveals valuable in-
formation about system behavior and can expose security viola-
tions such as the stack overflow described above. We simulated
the example system of Figure 4, including the execution of the au-
dio player software and the stack overflow attack, using NEC’s in-
house system-level simulation platform. Figure 6 provides a tim-
ing diagram from the simulation showing the bus transactions that

void printSongInfo() 
{

...
printTitle(songInfo);
...

}

void printTitle(char* songInfo) 
{

int temp;
char buffer[64];
...
strcpy(buffer, songInfo);
printf(“Title: %s\n”, buffer);

}

songInfo
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low 
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high 
addresses
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Figure 5: Stack overflow attack that targets the device key KDEV

occur when CPUA reads the device key from memory. From the
state of the communication architecture during the attack, we can
clearly detect the stealing of the device key. Access to KDEV is
distinguishable because it has a unique address that appears on bus
signals HADDR[31:0]. Since 128-bit AES encryption was used
in the DRM application, the key is 16 bytes long and we can also
observe the corresponding four words on the read data signal
(HRDATA[31:0]). Since the HWRITE signal goes low, these trans-
actions are read operations. Finally, the HMASTER[3:0] signals
show that CPUA is initiating the read. Functionally, we know from
the flowchart in Figure 4 that the crypto-processor CPUB is the only
bus master component that needs to read KDEV . However, the ob-
served bus transactions were initiated by CPUA, so we can infer
that a security violation has occurred.

Thus, we can conclude that the communication architecture can
be enhanced to monitor communication traffic to detect such infor-
mation stealing attacks. It should be noted that by just observing
the communication architecture, we required no prior knowledge
of the means used to launch the attack. For illustration, we used
a simple stack overflow attack but any other attack including heap
overflow, format string attacks, etc. could have been used.

81



D6000000

CPU A

HCLK

HMASTER[3:0]

HADDR[31:0]

HREADY

HRDATA[31:0]

NONSEQHTRANS[1:0] SEQ SEQ

T0 T1 T2 T3 T4 T5

SEQ

D6000004 D6000008 D600000C

INCRHBURST[2:0]

Control for burst SIZE = Word
HSIZE[2:0]
HPROT[3:0]

HWRITE

78563412

security violation: CPUA reading from illegal location

EFCDAB90 09BADCFE 21436587

128-bit AES key KDEV leaked!
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3.3 Attack 2: Exploiting Peripheral
Vulnerabilities

Peripheral devices are beginning to present several security con-
cerns in the end-to-end security chain. For example, the IEEE 1394
interface used in Apple’s FireWire and Sony’s iLink ports permits
client devices to access system memory directly, which can be used
to launch various attacks including kernel memory tamper, periph-
eral data corruption, etc. [15].

We now examine the security vulnerabilities in the ARM Prime-
Cell Advanced Audio CODEC Interface [16], in the context of the
SoC in Section 3.1 that is used to play protected content. The
CODEC interface is a slave on the APB that communicates with
off-chip CODECs through the AC-link protocol. There are four
separate channels to support modem, audio, headset, and micro-
phone devices. For our discussion, we assume that channel 1 con-
tains audio data for the speaker, channel 2 carries modem data,
channel 3 contains headset data, etc. The configuration of the
CODEC interface depends on the requirements of the current ap-
plication. For example, if the DRM rights object prohibits the dis-
tribution of content, the data cannot be transmitted to any device
other than an audio output device (headset or speaker). Therefore,
the audio player is limited to using only channels 1 or 3 to play
audio. Any attempt to use other channels can lead to forwarding of
content to other media/users, bypassing the protection of the DRM
protocol.

Figure 7 shows the memory map for the CODEC interface’s
control and data registers, along with a DRM-compliant config-
uration. Based on the restricted usage model of the DRM ap-
plication, the transmit control registers of channels 2, 3, and 4
(AACITXCR2-4) are set to zero, while AACITXCR1 is set to a
value of 0x0000C019 (this setting enables parameters TX3 � 1
and TX4� 1 in AACITXCR1 that allows for the usage of the audio
CODEC for PCM left and PCM right audio data output only). Our
DRM application sets this configuration prior to playing protected
content. However, any application vulnerability, such as a buffer
overflow, can be exploited to re-configure the CODEC interface
and circumvent the protection mechanism.

The attack code shown in Figure 8 configures the CODEC in-
terface to transmit modem data through channel 2. We can again
observe the AMBA bus signals to detect this violation. From the
HMASTER[3:0] signals, we see that the main processor CPUA
has initiated the data transfer. The address of AACITXCR2, the
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Figure 7: CODEC interface memory map with a configuration for the
DRM application

transmit control register for channel 2, appears on HADDR[31:0].
The HWRITE signal goes high indicating that the transaction is a
write. One cycle later, the configuration data is visible on
HWDATA[31:0], where it is apparent that a “non-zero” value
(0x00008021) is written to AACITXCR2 (a setting of TxFen �
1, TxEn � 1, and TX5 � 1, which results in forwarding of unen-
crypted, audio samples from the device to the AC-link modem).

mov r2, #0xC0000C18 ; address of AACITXCR2
mov r3, #0x8021 ; TxFen=1, TX5=1, TxEn=1
str r3, [r2] ; set AACITXCR2

C0000C18

CPU A

HCLK

HMASTER[3:0]

HADDR[31:0]

HREADY

HWDATA[31:0]

NONSEQHTRANS[1:0]

T0 T1 T2 T3

SINGLEHBURST[2:0]

SIZE=Word
HSIZE[2:0]
HPROT[3:0]

HWRITE

00008021

security violation: CPUA writing illegal value 
to AACITXCR2 register

Figure 8: A software attack to enable an AC-link modem to distribute
protected content

The above example shows that peripheral vulnerabilities can be
used to launch security attacks. However, such attacks can be de-
tected by monitoring a combination of bus signals – address, con-
trol, and data, and enforcing appropriate policies that regulate pe-
ripheral configuration and usage.
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3.4 Summary
The examples presented above show that the communication ar-

chitecture provides a system-level view of the interactions between
various components in an embedded system. Illegal accesses to
memory locations, invalid configuration settings to peripherals, etc.,
are manifested as specific communication transactions, and can
hence be detected by observing the communication architecture’s
address, control, and data lines. As described later in the paper,
more complex security attacks can be detected by observing a se-
quence of transactions. The following section describes how the
communication architecture can be enhanced to implement various
policies for the detection and prevention of security attacks.

4. PROPOSED ARCHITECTURE
In this section, we describe the design of the proposed security-

enhanced communication architecture (SECA). First, we provide
an overview of SECA at the system level. Next, we describe in
detail the Security Enforcement Module (SEM), the main block for
observing communication traffic and enforcing security policies.

4.1 System-level Overview
Figure 9 shows SECA implemented over a typical communica-

tion architecture such as AMBA. The architectural enhancements
of SECA can be realized as a single centralized module or as a
distribution of modules across the topology of the communication
architecture. The complexity and heterogeneity of system compo-
nents dictate the partitioning of SECA logic.
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Figure 9: SECA design using the AMBA bus

We present a SECA configuration consisting of a single Secu-
rity Enforcement Module (SEM) and a Security Enforcement In-
terface (SEI) for each slave device. The SEM is a plug-in hard-
ware block responsible for monitoring system communication and
enforcing programmed security policies including inter-component
access control and basic intrusion detection (to be discussed in Sec-
tion 4.2). The SEM appears as both a master and slave on the

AHB. Through its AHB master interface, the SEM can configure
the slave SEIs and generate security status messages when vio-
lations are detected. Through the AHB slave interface, the SEM
is programmed with security configurations for multiple contexts.
The context can range from coarse-grained demarcations of execu-
tion such as trusted or untrusted, or be as fine-grained as the appli-
cation (process) ID. At any point in time, the Context register of the
SEM determines which security policy is enforced. When a secu-
rity violation occurs, the SEM generates an interrupt that appears
on the non-maskable interrupt line of the processor.

The SEI helps the SEM filter the values that can reach the data
and control registers of a peripheral, in order to keep the periph-
eral in a state that corresponds to the current execution context.
Note that in addition to the APB devices themselves, the AHB-
APB bridge is enhanced with a SEI. Depending on the complexity
of the APB slaves, some security policies may be incorporated into
the bridge.

To make SECA a complete security solution, we need an estab-
lished trusted computing base (TCB) [17], consisting of a secure
kernel running on the main processor. The TCB allows us to safely
program the SEM, update the Context register, and respond to se-
curity violations. When a context switch occurs, the secure kernel
must send the new Context to the SEM. It is crucial that this trans-
action cannot be falsified, because it guarantees application authen-
ticity. SECA operates in three modes throughout the lifetime of an
application: program, monitor, and response. Program mode in-
volves transferring security configuration data from the TCB to the
SEM, and the SEM in turn configures the SEIs. In monitor mode,
the SEM samples each bus transaction and checks for security vio-
lations according to the programmed security policies and the cur-
rent Context value. When a security violation occurs, the SEM
notifies the processor with a non-maskable interrupt, which is vec-
tored to a response interrupt service routine (ISR) within the secure
kernel. The security status data is written to a buffer in memory to
be read by the response ISR. In addition to responding to security
violations with a protected ISR, the AHB logic can be enhanced
to block bus transfers when an illegal access is attempted. The
hardware components in the AHB logic that are modified to pre-
vent access violations are indicated by the shaded parts of the AHB
logic in Figure 9.

4.2 Security Enforcement Module (SEM)
The Security Enforcement Module (SEM), shown in Figure 10,

is the central architectural component responsible for monitoring
communications. To enforce various security policies, the SEM
includes three security modules: Address-based Protection Unit
(APU), Data-based Protection Unit (DPU), and Sequence-based
Protection Unit (SPU). The SEM also contains transaction assem-
bly logic to buffer each transaction and a central controller to man-
age the security modules and interface with other AHB devices.

4.2.1 Address-based Protection Unit (APU)
The APU enforces access control rules that specify how a com-

ponent can access a device (read-only, write-only, read-write, and
not accessible) while in a particular context. The APU uses a look-
up table where each entry contains permissions for a region in the
address space. We have chosen a simple 2-bit encoding (a read bit
and a write bit) for the permissions: 00 is not accessible, 01 is read-
only, 10 is write-only, and 11 is read-write. Each entry in the table
is indexed by the input signal APU Key from Figure 10, which is

83



Data-based 
Protection Unit (DPU)

Transaction
Assembly Logic

Address-based 
Protection Unit (APU)

FSA

SEM 
Controller

AHB Master IF

AHB Slave IF

Transaction Buffer

Input Register

Output Register

PermMaster&Context&Addr PermMaster&Context&Addr

Context&
SlaveID

Access Level

Sequence-based 
Protection Unit (SPU)

Context

SEM_Interrupt APU_Violation

Slave Address
SlaveID

HRESP, 
HRDATA

HGRANTx HADDR, Control, 
HRDATA, 
HBUSREQx

HADDR, Control, 
HWDATA, HMASTER

HSELx
HRESP, 
HRDATA

In_Data

Out_Data

HADDR, Control, 
HWDATA, HMASTER

HRESP, 
HRDATA

APU_Key

APU_Write

APU_Perm

APU_Mask

DPU_SlaveID

DPU_Context

DPU_Write

DPU_SlvAddr

DPU_AccLvl

SPU_Context

SPU_Write

SPU_Param

SPU_FsaID

SPU_Error

Trans_Data

Figure 10: Block diagram of the Security Enforcement Module (SEM)

the concatenation of the AHB signal HMASTER[3:0], the Con-
text, and the HADDR[31:0] signal. An entry can be programmed
through APU Key, APU Mask, and APU Perm inputs when
APU Write is high. For efficiency, the look-up table does not con-
tain entries for the entire address space, but instead contains entries
only for regions that are accessible (readable, writeable, or both).
Therefore, any APU Key that cannot be found in the table indi-
cates that the address is not accessible (00 permission value) by
the requesting bus master in the current context. The APU signal
APU Perm returns the permissions for the attempted access to the
SEM controller when APU Write is low.

Figure 11(a) illustrates the memory protection regions for the
DRM application presented in Section 3. The protection regions
for CPUA and CPUB isolate the data and code sections of the pro-
cessors from one another. Recall the stack smashing attack of Sec-
tion 3.2 that was used to access the device key. Now the device key
is protected because CPUA does not have permission to access the
key data stored at address 0xD6000000 and CPUB has read-only
access to this location.

Figure 11(b) shows the look-up table entries for safe execution
of the DRM application. Each entry defines a region of mem-
ory, which is determined by a stored key (first column), a mask
value (second column), and the corresponding permissions (third
column). The mask specifies the bits of the search key that are
don’t cares. The search key includes four bits for the master com-
ponent, four bits for the Context, and 32 bits for the memory ad-
dress. In this example application, CPUA is master 0 and CPUB is
master 1, and the TCB has assigned Context � 0. Consider the last
entry in the table (highlighted in the figure) where the stored key
is 0x10D6000000, the mask is 0x0000003FFF, and the per-
mission is 01. Based on the stored key, the start address for the
memory region is 0xD6000000. A bitwise OR of the start ad-
dress and the mask gives an end address of 0xD6003FFF. Since
the permission is 01, CPUB has read-only access to this address
range. CPUA is not allowed access to this memory region because
there is no corresponding entry in the table.

In hardware, the look-up table is implemented as a conventional
ternary content addressable memory (TCAM), which is frequently
used for address lookup in Internet routers [18]. A TCAM cell
stores a 0, 1, or X (don’t care), hence a single TCAM entry with
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Figure 11: (a) Memory protection regions for CPUA and CPUB run-
ning the DRM application, and (b) APU look-up table entries
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don’t cares may represent multiple memory addresses. In order to
simplify the look-up table design, we require that an entry contains
a varying number of significant address bits followed by don’t cares
for the consecutive low-order bits [19]. Consequently, the address
range of an entry is limited to a block of 2#don�t carebits locations1.
Assuming the programmer adheres to this addressing scheme, we
eliminate the need for complex decision logic to handle multiple
matches. Each TCAM entry indexes a location in a RAM which
holds the permissions for that memory region.

The described look-up table is essentially a fully-associative cache
of memory protection regions. The number of entries per applica-
tion and bus master component is not fixed. Each entry contains
a valid bit (not shown in the figure) indicating whether or not the
entry is currently being used by an application. When an applica-
tion terminates or is killed, the SEM controller invalidates all of the
application’s protection region entries. During the programming
phase, each new memory region is written to a vacant (invalid)
TCAM entry and the corresponding permission value is written to
RAM.

4.2.2 Data-based Protection Unit (DPU)
The DPU is responsible for configuring the SEI at each periph-

eral for data-based protection (refer to Figure 10). In the DPU,
there is a memory to store access level values – an access level
represents a set of valid operations for the device in a particular
execution context. The number of access level bits is scalable, but
we choose to limit it to 4 bits, giving a peripheral 16 potential op-
erating modes. There is another memory to store the address of
each peripheral’s configuration register. The SEI of each periph-
eral contains a configuration register that stores the access level of
the currently executing context. The DPU SlaveID input is used
to look up the configuration register address, which appears on the
DPU SlvAddr lines. The inputs DPU SlaveID and DPU Context
are concatenated to index the access level which is sent to the SEM
controller through the DPU AccLvl signal. The SEM controller
initiates a bus transaction to write DPU AccLvl to the configura-
tion register at DPU SlvAddr. The DPU can be programmed by
setting DPU Write high and providing values on the DPU SlvAddr
and DPU AccLvl lines.
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Figure 12: SEI for CODEC interface

The SEI that accompanies each slave device is responsible for
enforcing data-based protection. Figure 12 illustrates the SEI for

1In Figure 11(a), there are eight unique memory protection regions, which,
as a consequence of our addressing scheme, map to the 25 TCAM entries
shown in Figure 11(b). We believe the increase in the number of entries is
more area-efficient than alternative methods.

the CODEC interface. A look-up table holds the valid peripheral
configuration data that is indexed by the access level and regis-
ter address. There are three access levels depicted in this security
model:

� Level 0: Access level 0 is implicit and does not need a look-
up table entry. If an application operates at this level, it may
only write a disabling value to the control registers – the pe-
ripheral is essentially frozen and cannot be put in an opera-
tional mode. For the CODEC interface in Figure 12, a value
of zero disables the features specified by any control register.
Any application which must explicitly turn off the CODEC
is configured with level 0 access. However, the APU can
keep the application from modifying the current peripheral
configuration if required.

� Level 1: The CODEC interface is configured for the DRM
application in which one channel is used for audio output.
This access level can also be used for any other application
that involves simple audio playback. In Figure 12, we show
three registers that must be set correctly to permit use of the
CODEC interface. The transmit control register AACITXCR1
is configured to enable AC-link output frames, enable the
data FIFO, and map the data to the PCM Left and PCM Right
slots of the output frame. Transmit interrupts for channel 1
are enabled in the AACIIE1 register. The interface enable
bit of the main control register AACIMAINCR is raised high
to turn the CODEC interface on.

� Level 2: This level is available for applications that need to be
able to output both audio and modem data from the CODEC.
Besides the control registers that configure channel one for
audio output, the transmit control register AACITXCR2 (ad-
dress 0x18) and the interrupt enable register AACIIE2 (ad-
dress 0x24) for channel two have to be set correctly.

Any control register not defined in the look-up table is inoperable
from the current access level. Notice that the control logic includes
an address comparator to determine if the intended access is to a
control register or to a data register. The channel data FIFOs oc-
cupy the addresses above 0x90, so the SEI Interrupt is activated
only when the address is below this threshold.

The implementation of the SEI depends on the complexity of the
peripheral interface. Simple peripherals with few operating modes
need only a handful of registers to hold the legal data values. If
the device has many control registers and multiple access levels,
the SEI requires a look-up table as shown in Figure 12, and the
look-up table is implemented as a CAM.

4.2.3 Sequence-based Protection Unit (SPU)
Sequence-based protection relies on the fact that a sequence of

bus transactions can be used to define a signature of expected be-
havior or an attack. Logically, such behaviors can be specified
as finite-state automata (FSA), also termed security automata in
some scenarios [20]. The SPU can be used to implement various
application-specific security policies based on the execution con-
text. At present, we consider the SPU to be built as a static con-
figuration for simplicity and to minimize overhead. The security
automata parameters are configurable at run-time, but the security
automata themselves are fixed during the design phase. The in-
put SPU Param is used to initialize the FSAs based on the cur-
rent SPU Context. When an error is detected by an FSA, the SPU
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raises the SPU Error flag and returns the identification of the FSA
through the SPU FsaID output. In the rest of this section, we il-
lustrate the applicability of FSA as a part of the SEM hardware to
enforce specific security policies.

Play content at most x times

qinit

(context==DRMapp)

qplay qdone

(count < x) /
reset=1

(count = x)

play==0

(play==1) /
count++

Figure 13: Security automaton to enforce “play at most x times” pol-
icy

We consider the problem of enforcing the DRM application se-
curity policy “play content at most x times,” and we address it by
providing two security automata. The first automaton (Figure 13)
monitors and enforces that the content is played upto x times, while
the second automaton recognizes when content has been played
once and signals the first automaton (flag play). The maximum
number of allowed plays, i.e. the value of x, is given by the DRM
rights object. Through a non-volatile, memory-mapped register,
the application reads back the number of plays used count to de-
termine if a play request is valid. If the application attempts to
playback content when count has reached x, then a policy violation
is detected and notified to the processor.
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Figure 14: Security automaton to detect playing of DRM content

The automaton in Figure 14 generates the play input for the first
automaton, if the correct sequence of bus events occur. The first
step of the sequence is for CPUB to read the device key, indicated
to the automaton by the parameter KDEV addr. Next, the automaton
waits in the qRO state to signify that the rights object is being pro-
cessed. When CPUB reads the first address of the encrypted con-
tent, we enter state qCO to show that the content is being read. The

automaton compares the address seen on the bus with the address
associated with the encrypted content (parameter COaddr). The
last step in the sequence is to count the number of audio samples
(num data) output to the CODEC and compare it with the param-
eter y, which equals a threshold specified in the DRM rights ob-
ject. When CPUA reads the interrupt status register AACISR1 for
CODEC channel one, we check the read data to see if a transmit
complete interrupt (TxCI) has occurred. If so, the automaton tran-
sitions to state qout and increments the num data variable. Until
the next interrupt occurs, the automaton remains in the qwait state.
Once num data � y, a “play” of the content is assumed to have
occurred.

5. EXPERIMENTAL RESULTS
In this section, we evaluate SECA through simulation and actual

hardware implementation using two case studies: (i) secure exe-
cution of a DRM application running on a simulated SoC, and (ii)
code/data protection of cryptographic firmware in NEC’s MP211
mobile phone application chip. We then examine various trade-offs
associated with the hardware implementation of SECA.

Our experimental framework included NEC’s in-house SoC sim-
ulation platform configured to model the system shown in Fig-
ure 3 that uses the AMBA 2.0 architecture. The ARM920T pro-
cessor was modeled using an instruction set simulator, while Sys-
temC [21] was used to implement cycle-accurate functional mod-
els of the other SoC components and transaction-level models for
the AMBA bus. Benchmark applications written in C were cross-
compiled with the GNU ARM toolchain [22], and system simula-
tion was performed with the OSCI reference simulator [21]. Sim-
ulation was controlled by the GNU Insight debugger, which com-
municates with the target system through the remote GDB proto-
col [23].

5.1 Case Study: DRM Application
Our SoC platform was augmented with SECA to protect the

DRM application discussed in Section 3. The address-based pro-
tection configuration used is as shown in Figure 11. We imple-
mented data-based protection for the CODEC interface as illus-
trated in Figure 12 and for an LCD controller from ARM [24]. The
security automata shown in Figure 13 and Figure 14 were incor-
porated into the SPU. We now discuss the hardware area overheads
and the performance impact (on program execution time) due to the
proposed enhancements.

The SECA area overheads can be categorized into those due to
the APU, DPU, SPU, general control logic including the SEM con-
troller and transaction assembly logic, and the SEI logic. For the
APU and DPU, we estimated the area of the TCAM and CAMs
by using the memory models described in [25]. The FSMs and
control logic were synthesized into technology-mapped gate-level
netlists using Synopsys Design Compiler [26] with NEC’s 0.13µm
CB-130M CMOS standard cell library. To report area, we use the
ARM920T 32-bit RISC processor core with 16KB instruction and
data caches running at 250MHz as a base case. The processor oc-
cupies an area of 4.7mm2 in 0.13µm technology [11], and all area
numbers are given relative to this value.

Figure 15(a) displays the area overheads for three SECA con-
figurations: APU only (SECA-1), APU and DPU (SECA-2), and
APU, DPU, and SPU (SECA-3). The area overheads are quite low
in comparison to the processor area. When SECA is viewed in
the context of the entire SoC, the relative area overheads will be
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even lower. In Figure 15(b), the area of the SECA-3 configuration
is decomposed into its constituent logic blocks. The area of the
protection blocks varies according to the security demands of the
application under consideration. The TCAM for the APU (56%)
and the CAMs for the DPU (33%) dominate the SECA area be-
cause these modules require a large amount of data storage for the
DRM application. On the other hand, the SPU occupies only 6%
of the total area, while the control logic overhead is negligible.
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Figure 15: (a) Area overheads for three configurations of SECA, and
(b) Breakdown of area by major logic blocks for the SECA-3 configu-
ration

From the perspective of application performance, SECA adds
overhead due to the programming needed to configure SECA, and
the inherent latency of the SEM hardware. The impact of the pro-
gramming overhead depends on the normal application execution
time and the frequency of context switches. The DRM application
consists of standard cryptographic algorithms and the Mad MPEG
audio decoder from the MiBench benchmark
suite [27]. Both a small input mp3 file (42kB) and a large input mp3
file (382kB) were encrypted with the content encryption key and
input to the DRM application running on the simulated SoC. The
small file was decrypted and decompressed in 174 million cycles,
and the large file was decrypted and decompressed in 1.54 billion
cycles. The programming overhead is approximately 300 cycles,
and therefore has a negligible effect on application performance.
Also, when an application is run multiple times, the programming
overhead is incurred just once. In the absolute worst case, con-
text switching between the DRM application and other processes
in the system occurs with a frequency of 48kHZ. This frequency
represents the best sampling rate of digital audio, and the CODEC
generates an interrupt every sample period when it is not capable of
buffering samples. At this extreme, the programming overhead due
to context switching is 0.03% of the application execution time.

In order to evaluate the latency of the SEM, we synthesized the
FSMs for sequence-based protection and the control logic, and the
results indicate that the SEM hardware can easily meet the 250MHz
frequency target for this SoC.
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Figure 16: Block diagram of NEC’s cell phone application SoC

5.2 Case Study: NEC’s Mobile Phone
Application SoC

In this section, we describe the implementation of a specific in-
stance of SECA for NEC’s MP21x cell phone application SoC [7].

A simplified version of the SoC block diagram is shown in Fig-
ure 16 and it includes 3 ARM 926 CPUs and a cryptoprocessor.
The cryptoprocessor is a lightweight, RISC processor that has been
enhanced with special instructions for accelerating cryptographic
algorithms such as RSA, AES, 3DES, SHA-1, MD5, etc. The
firmware that executes on the cryptoprocessor is stored in an off-
chip Flash, and follows an execute-in-place (XIP) model [28]. The
cryptoprocessor is associated with an off-chip data space that in-
cludes the shaded area in the SDRAM (where the firmware’s stack
and heap exist). In addition, a shared memory is provided for com-
munication between the ARM CPUs and the cryptoprocessor. The
cryptoprocessor is responsible for securely executing portions of
security protocols such as SSL, and one of the security objectives
is to ensure that the private data space in the SDRAM and the cryp-
toprocessor firmware in the Flash are protected from tamper by ap-
plications running on the ARM CPUs.

We used a simple instance of SECA to achieve this objective.
We describe the hardware and software modifications employed to
achieve this:

� The SEM includes an APU, which is physically realized by
registers used for storing the addresses associated with start
and end of the protected memory segments in the Flash and
SDRAM, respectively. The SEM is physically configurable
only by the cryptoprocessor. Once programmed, these mem-
ory segments are configured to allow for exclusive access by
the cryptoprocessor. The SEM asserts the non-maskable in-
terrupt line of the cryptoprocessor in the event of a protection
violation.

� Programming of the APU registers is performed at boot time
as shown in Figure 17. The code responsible for program-
ming the SEM is part of the cryptoprocessor boot code that
resides in on-chip boot ROM local to the cryptoprocessor.
Since the hardware was fixed early on in the SoC design cy-
cle, it was not possible to fix the start and end addresses of the
firmware and data spaces apriori. As a consequence, these
addresses were not a part of the boot code burnt into the chip,
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but are included in an off-chip header stored in the Flash. The
privacy of the addresses is ensured by 3DES encryption with
the device key. For ensuring integrity, a golden hash of the
addresses is computed and included in the header. During the
boot process, the cryptoprocessor decrypts the header, com-
putes a hash and compares against the golden value, and if
successful, programs the APU.

During execution, if the SEM interrupts the cryptoprocessor
in the event of a violation, the cryptoprocessor invokes the
appropriate interrupt service routine (ISR) that is also a part
of the boot ROM. The cryptoprocessor executes the ISR, ze-
roizes the protected data memory, and notifies the ARM CPU
for initiating further recovery mechanisms.
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SEM Header
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Figure 17: Cryptoprocessor boot sequence including programming
the SEM registers

5.3 Design Trade-offs
In this section, we discuss a few design trade-offs involved in

a SECA implementation. Since our earlier experiments indicated
that the performance impact of the proposed architectural enhance-
ments is negligible, we focus on the area overheads due to SECA.

From our experiments, we found that the access control TCAM
in the SEM incurs the largest area overhead. Its size is parameter-
ized according to the number of entries (N), the number of contexts
(M), and the protection granularity that it must support. In Fig-
ure 18(a), we give an equivalent gate count for the TCAM as the
number of entries and contexts are varied. We limit the value of M
to 64 contexts, and expect a typical SoC to operate with less than
16 contexts. For a small number of entries, we only consider values
of M that allow at least one entry per context (i.e., if N � 16, then
M � 16). When N � 80, the gate count of the TCAM is greater
than 60K gates or 10% of the ARM920T area.

The memory protection granularity of TCAM entries can be fixed
in order to shorten the width of the search index and reduce area.
Figure 18(b) shows the gate count for an increasing number of
entries as we scale from protection of a single byte to protection
of a 1kB block. For an increasing number of entries, the benefit
of a coarse granularity for memory protection becomes more pro-
nounced. Switching from byte resolution to word resolution returns
a minimum of 4% area savings. At a 1kB protection resolution, we
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Figure 18: (a) TCAM area as a function of the number of entries
and contexts, and (b) TCAM area scaling with protection granularity
varying from 1B to 1kB

see an area savings of well over 20% with respect to byte reso-
lution. Clearly there is a notable area reduction if the TCAM is
hand-tuned to match the constraints of the system and a known set
of applications.

6. RELATED WORK
In this section, we first briefly outline research in other domains

that guided the design of SECA. We then examine the domain of
security-aware processors or SoCs and see how they are designed
to achieve various security objectives.

The design of SECA was influenced by the concept of firewalls
and intrusion detection systems in classical networked systems.
Firewalls [29] monitor the information passing through a network
and function as a trusted point responsible for auditing and control-
ling accesses into a system. In some sense, the address-based and
data-based protection units of SEM allow it to function as memory
and peripheral firewalls. SECA also employs run-time monitoring
of inter-component communication to detect deviations from ex-
pected system behavior in SoCs. This is conceptually similar to
classical network intrusion detection approaches [29, 30], which
use a wide range of statistical, rule, and/or model based techniques
to detect abnormalities based on usage patterns.

The domain of security-aware SoCs include solutions such as
TI’s OMAP 2420 [6], which start with limited security objectives
such as securing the boot process. This is achieved by includ-
ing the boot code on-chip, which is then used to verify the in-
tegrity of the operating system that is stored off-chip. Other efforts
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have attempted to provide security solutions that are applicable dur-
ing application runtime. For example, recent architectures such as
AEGIS [31] and XOM [32] attempt to provide strong process-level
isolation to protect a process’s sensitive data or code, even when
an untrusted operating system and physically insecure memory are
used. Isolation is achieved by associating unique tags with each
process and encrypting code or data with these tags. The tag-based
scheme is implemented by using extra bits throughout the archi-
tecture (register files, caches, memory subsystem, communication
architecture, etc.).

While the security assurance achieved by such designs is high,
it comes with significant overheads. Commercially, ARM’s Trust-
Zone [5] attempts to provide assurance at a much coarser level by
defining two bins for applications – “trusted” and “untrusted”. A
single tag or bit (called S-bit) is needed to implement this scheme,
and again, this extra bit is used throughout the system to achieve
its objective. On the software side, the scheme relies on a small,
trusted code base to handle entry and exit into, and management of,
the trusted domain – the idea is that this code base will be relatively
easier/less expensive to secure from various attacks. ARM Trust-
Zone also requires ARM’s AMBA bus architecture and peripheral
interfaces to be modified to support the S-bit.

Conceptually, ARM’s TrustZone and AEGIS/XOM represent two
possible extremes in a spectrum of possible security policies. Tags
required in both these architectures have specific connotations or
usage models: Either a single tag is used to bind an application to
its security state (trusted/untrusted), or a unique tag is used to lock
or unlock each application’s code or data. As seen in this work,
tag semantics in SECA are intended to be general-purpose and can
be defined according to the desired security model. SECA can eas-
ily support the modifications to the communication architecture re-
quired in ARM’s TrustZone or AEGIS/XOM by using single or
multiple access control bits in the SEM and in SECA’s bus inter-
face layers.

It is also worth noting that security-aware design of communica-
tion architectures is becoming a necessity in the context of overall
embedded SoC/device security, and emerging commercial products
such as ARM’s AMBA 3.0 system bus and SonicsMX SMART In-
terconnect [10] testify to this trend.

7. CONCLUSIONS
In this work, we presented a framework called SECA for security-

aware design of on-chip communication architectures. SECA ex-
ploits the fact that a communication architecture can be used to
monitor and regulate the interactions between various components
in an SoC. SECA offers access control and intrusion detection ca-
pabilities by adding a central, regulatory block called SEM and
minimal modifications at the bus interfaces. We have validated the
ability of the proposed architecture to monitor and detect attacks
using NEC’s embedded SoC simulator, and evaluated the area and
performance overheads of our modifications. Finally, we demon-
strated the efficacy of our proposed scheme by implementing a spe-
cific instance of SECA in a commercial mobile phone application
SoC.
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