
Understanding the Impact of Emerging
Non-Volatile Memories on High-Performance,

IO-Intensive Computing
Adrian M. Caulfield∗ Joel Coburn∗ Todor I. Mollov∗ Arup De∗ Ameen Akel∗

Jiahua He∗† Arun Jagatheesan†
Rajesh K. Gupta∗ Allan Snavely† Steven Swanson∗

∗Department of Computer Science and Engineering, University of California, San Diego
†San Diego Supercomputer Center, University of California, San Diego

Abstract—Emerging storage technologies such as flash mem-
ories, phase-change memories, and spin-transfer torque memo-
ries are poised to close the enormous performance gap between
disk-based storage and main memory. We evaluate several
approaches to integrating these memories into computer sys-
tems by measuring their impact on IO-intensive, database, and
memory-intensive applications. We explore several options for
connecting solid-state storage to the host system and find that
the memories deliver large gains in sequential and random
access performance, but that different system organizations
lead to different performance trade-offs. The memories provide
substantial application-level gains as well, but overheads in the
OS, file system, and application can limit performance. As a
result, fully exploiting these memories’ potential will require
substantial changes to application and system software. Finally,
paging to fast non-volatile memories is a viable option for some
applications, providing an alternative to expensive, power-
hungry DRAM for supporting scientific applications with large
memory footprints.

Index Terms—storage systems, non-volatile memory, IO
performance, flash memory, phase change memory, spin-torque
transfer memory.

I. INTRODUCTION

Non-volatile, solid-state memories (NVMs) are poised
to revolutionize storage in systems for high-performance
computing. Flash memory is already finding applications
in large-scale systems, and emerging technologies, such as
phase-change memories (PCM), spin-torque transfer memo-
ries (STTM), and more exotic technologies (e.g., the mem-
ristor and carbon nanotube based memories) will provide
orders of magnitude better performance than either con-
ventional disks or flash-based solid-state drives can deliver.
What impact these emerging technologies will have on
future systems is not yet clear, but they will likely be more
disruptive than flash memory has been (and continues to be).

The painfully slow performance of non-volatile storage
has been an unfortunate reality for system designers for
several decades. Systems designers have gone to great
lengths to try to mitigate this poor performance: Operating
systems employ complex schedulers for IO, and most of
the complexity in database management systems is in buffer
management and query optimizations designed, in large part,
to minimize IO.

Slow disks have also had a large impact on how we
build supercomputers. Many large-scale scientific applica-

tions benefit as much (or more) from the terabytes of DRAM
that high-end systems provide as they do from the number of
FLOPS. Using DRAM to provide support for large working
sets has been the only practical solution, but it is expensive
and energy-intensive.

Non-volatile, solid-state storage technologies promise to
resolve these problems and enable high-performance sys-
tems that are faster, cheaper, and more agile than those
we build today. Whether they can deliver on this promise
remains to be seen, but it will certainly require that we
understand the performance potential of these memories,
their limitations, and how they will change the balance
points within a system. It will also require evaluating the
memories in the context of complete systems, since radically
altering the cost of IO will reveal or create bottlenecks
elsewhere.

This paper presents a comparison of memory technologies
ranging from hard disks connected via SATA to advanced
phase-change memories attached to a DDR3 memory bus.
We evaluate the impact of these technologies on applications
that vary widely in their bandwidth requirements, latency
needs, and access patterns. We use these applications to
identify several bottlenecks that these technologies reveal
and to delineate where these technologies will have the most
impact.

Since our study covers a range of NVM technologies, it
compliments prior work that has focused on flash memory
and flash-based SSDs. These include studies of the basic per-
formance properties of SSDs [8] as well as their system-level
performance for particular domains such as scientific [28],
[33], [2], data center/database applications [24], [23], [32],
and E-business [21], [25]. Emerging technologies have also
sparked interest in their usefulness in building so-called
ExaScale systems [1].

Our results demonstrate that advanced non-volatile tech-
nologies can provide large gains in both raw IO and
application-level performance. In some cases, memories
such as PCM and STTM can accelerate database applica-
tions by over 60× relative to disk, reducing the running
time of scientifically important queries from days to hours.
Finally, we analyze the performance of our system and
show that higher levels of performance are possible, but that
achieving them will require significant changes to operating

c©2010 IEEE Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes
or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works
must be obtained from the IEEE.
SC10 November 2010, New Orleans, Louisiana, USA 978-1- 4244-7558-2/10/$26.00

TABLE I
MEMORY TECHNOLOGY SUMMARY

Technology Density Latency
Cur. Pred. [15] Read Write

SLC Flash 4 F 2 4 F 2 25 µs 200 µs
PCM 10 F 2 4 F 2 67.5 ns 215 ns

STTM 64 F 2 15 F 2 29.5 ns 95 ns
DRAM 6 F 2 4 F 2 25 ns 25 ns

systems and system architecture. These technologies also
appear well-suited for paging in some applications: Paging
to our prototype NVM storage system increases performance
by 35× on average and can bring execution time to within
a factor of 4 relative to running in DRAM without paging.

The rest of the paper is organized as follows: Section II
describes the non-volatile memories we consider in this
study. Sections III and IV describe the storage architectures
and workloads we consider. Section V presents the results
of our experiments and discusses their implications. Finally,
in Section VI, we conclude.

II. NON-VOLATILE MEMORIES

Non-volatile storage technologies exhibit a range of per-
formance and density characteristics that determine their
impact on systems. Disks are, of course, well known and
represent the status quo for non-volatile storage. Table I
describes the solid state technologies we will consider in
this study. Density predictions are from the International
Technology Roadmap for Semiconductors (ITRS) [15] for
2015. Latencies for PCM and STTM are from [34] and
[4], while DRAM and flash values are taken from typical
datasheets. In addition to flash memory, which has entered
wide use, we consider two advanced non-volatile memories:
phase change memory (PCM) and spin-torque transfer mem-
ory (STTM). PCM-based products are already available and
STTM devices should be on the market within a few years.
We include DRAM to put these technologies in context.

The table lists the density of current prototype devices
and the 2015 target densities for the devices from the
ITRS. The densities are given in terms of F 2 where F is
the minimum feature size of a given silicon manufacturing
generation. This provides a metric for memory density that
is independent of silicon manufacturing technology. For
instance, the data show that PCM density is expected to
increase by 2.5× by 2015 in addition to the increases offered
by raw improvements in silicon manufacturing.

The ITRS values represent goals that the semiconductor
manufacturing industry has set. Recent concerns about the
continued scaling of both DRAM and NAND flash mean
that PCM and/or STTM could surpass the density of these
technologies in the future. PCM and STTM also consume
much less power than DRAM when idle because they do
not require refresh.

The latencies in the table for PCM, STTM, DRAM, and
flash include just the latency to access the memory itself.
They exclude the additional latency that busses and memory
controllers may add.

While we focus on two emerging technologies (PCM
and STTM) and describe them in more detail below, our
study does not rely on specific characteristics of either
memory. Our results will hold for any non-volatile, solid-
state technology (e.g., the memristor or carbon nanotube
memories) that presents a memory-like interface. From this
perspective the main difference between technologies is read
and write latency. We analyze the effect of device latency
in detail in Section V-A.

A. Phase-change memory
PCM devices are already commercially available and

research suggests they may play multiple roles in future
systems. PCM stores data in the crystalline state of a
chalcogenide metal layer [7]. As features sizes drop, PCM
memories become faster and more energy efficient without
sacrificing reliability. Recent work ([22], [30]) has demon-
strated that this scalability will make PCM a viable main
memory technology as DRAM’s scaling begins to falter.
NAND flash faces similar scaling challenges, making PCM
a potentially attractive storage technology as well. The
analysis in [22] provides a good characterization of PCM’s
performance and power consumption characteristics. We use
the values from that work to model PCM devices.

Despite this promise, PCM does suffer from some re-
liability concerns: Like flash memory, it eventually wears
out, although its lifetime (in terms of write cycles) is ap-
proximately 1,000× that of flash. As a result, PCM requires
some form of wear management to ensure reasonable device
lifetime. Recent research [11], [22], [37], [9], [29] has
demonstrated that providing transparent wear-leveling for
PCM is possible with minimal overhead. We use the start-
gap scheme in [29] which provides wear-leveling with less
that 1% overhead.

B. Spin-torque transfer memory
Discrete STTM memories will be available in the next

2-3 years, and their speed may eventually rival that of
DRAM. STTM store bits as a magnetic orientation of one
layer in a magnetic tunnel junction (MTJ). Depending on
the orientation, the junction’s resistance is either low (the
“anti-parallel” state) or high (the “parallel” state) [12]. In
this respect, STTM is similar to previous magnetic RAM
technologies. STTM differs in how it sets the orientation in
the MTJ: Instead of using electric fields as previous MRAM
technologies have, STTM uses a current of polarized elec-
trons. This avoids the scaling limitations that plagued field-
based devices.

Currently, several companies including Grandis,
Sony [14], Hitachi [19] and Renesas [35] have developed
STTM prototypes. Cell sizes range from 48 to 64F 2 [35],
[20]. Eventually STTM’s density, latency, and power
consumption may approach those of DRAM. In this work
we base our estimates for performance on a published
paper [34] and discussions with industry.

III. HARDWARE

Our testbed systems include multiple non-volatile storage
technologies. Figure 1 shows the system configuration and

PCIe 1.1 x8 (2GB/s)6x DDR3 (10.6GB/s x 6)

SATA 2

 (375MB/s)

PCIe 2.0 x4 (2GB/s)

CPU RAID Controller

32GB

SSD

1TB

Disk
Fusion-IO 80GB

HASTE 64GB

CPUCPUCPUCPUCPUCPUNehalem CPU

72GB DRAM
128GB

RAID-0

4TB

RAID-0

SATA Controller

Fig. 1. Test system The test system incorporates many currently-available technologies along with a large amount of DRAM connected via multiple
interconnects. PCIe links are full duplex, and the bandwidth values are per-direction.

TABLE II
TECHNOLOGIES UNDER TEST

Name Capacity Description
PCIe-attached
PCM/STTM

64 GB Modeled PCM or STTM attached
via PCIe bus

DDR-attached
PCM/STTM

64 GB Modeled PCM or STTM attached
via DDR3 DRAM bus

Fusion-IO 80 GB Fusion-IO 80 GB PCIe SSD
RAID-SSD 128 GB RAID-0 of 4x 32 GB X-25E SSDs
RAID-Disk 4 TB RAID-0 of 4x 1 TB 7200 rpm

hard drives

how each storage technology connects to the system. The
testbed machines are two-socket, Core i7 Quad (a total of 8
cores) machines running at 2.26 GHz with 72 GB of physical
DRAM and two 8 MB L2 caches (one per socket). The
machines include a four disk RAID array of conventional
1TB hard drives, a four disk array of 32 GB Intel Extreme
flash-based SSDs, and an 80 GB Fusion-IO PCIe-based
solid-state disk. The final system component is the High-
performance Advanced Storage Technology Emulator, or
HASTE. HASTE contains four FPGAs that manage 64 GB
of DRAM. We use the system DRAM and the DRAM
in HASTE to emulate the emerging NVM technologies
described in Section II. Table II lists the specifics of the
storage devices we study. The following sections describe
each device in detail.

A. HASTE: Emulating NVMs on the PCIe bus

HASTE can model PCIe-based SSDs that use advanced
solid-state memories to store data. HASTE holds 64 GB
of 667 MHz DDR2 DRAM, running at 250 MHz DDR
(500M transfers per second), under the control of four Xilinx
Virtex 5 FPGAs. It connects to the main system via an 8x
PCIe 1.1 link with a peak bandwidth of 4 GB/s (2 GB/s
in each direction). HASTE is based on the BEE3 FPGA
prototyping system designed by Microsoft Research for use
in the RAMP project [31] and sold by BEECube.

Internally, HASTE uses eight independent, high-
performance memory controllers to access memory. A
4.5 GB/s ring-based network connects the controllers to
provide uniform access to all 64 GB of storage. Figure 2
shows the internal architecture of HASTE.

One FPGA in HASTE has a PCIe link to the host system.
This FPGA contains the request processor and handles all

of the scheduling of accesses to the memory on all four
FPGAs. The request processor handles requests that contain
a host memory DMA address, sector number, length, oper-
ation (read or write), and tag. The sector number identifies
which block of memory within HASTE to access, while the
DMA address identifies a buffer in the host’s DRAM. The
scheduler can track up to 64 outstanding requests.

A DMA engine moves data between host system memory
and a set of four local buffers. The request processor issues
reads and writes to the eight DDR2 controllers over a token-
based ring network with a peak bandwidth of 4.5 GB/s and
round trip latency of 88 ns.

The request scheduler processes requests in order. For a
write request, the DMA engine transfers data from the host’s
memory into a local buffer on the FPGA. When the target
memory controller is idle, data streams over the ring network
into a FIFO in the DDR controller before the DDR controller
commits it to memory. For read requests, a similar process
happens, but in reverse, with data moving from the memory
controller to the DMA engine and then to host memory.
When the data transfer completes, the scheduler raises an
interrupt and sets a tag status bit in the hardware. The
operating system completes the request once the interrupt
arrives by checking the tag register.

To model PCM and STTM memories, we assume they
have an internal architecture similar to DRAM chips. To
access data, the memory controller issues a row address to
all the chips on one DIMM. This “opens” the row for reading
or writing and transfers its contents into a set of buffers in
the memory chips. The aggregate size of the row across the
chips is 8 KB, and once the row is open, accesses to that
data can proceed at the memory’s 250 MHz DDR bus speed
(4.8 GB/s for 64-bit reads or writes).

To add the additional latency that PCM and STTM would
incur, we modify the memory controller to add latency
between the read address strobe and column address strobe
commands during reads and extends the pre-charge latency
after a write. We can adjust the extra delay independently
for reads and writes in 4 ns increments. An interesting
consequence of this arrangement is that HASTE only incurs
the extra delay once when reading a 4 KB page.

To achieve high performance, HASTE requires significant
changes to the Linux IO scheduler. Under normal operation,
the thread requesting an IO operation places a request in a
queue. A separate thread later removes the request and issues

4GB DDR2

4GB DDR2

4GB DDR2

4GB DDR2

4
G

B
 D

D
R

2

4
G

B
 D

D
R

2

4
G

B
 D

D
R

2

4
G

B
 D

D
R

2

4
G

B
 D

D
R

2

4
G

B
 D

D
R

2

4
G

B
 D

D
R

2

4
G

B
 D

D
R

2
4GB DDR2

4GB DDR2

4GB DDR2

4GB DDR2

PCIe 1.1 8xHost System

Ring

FPGA FPGA

FPGA
Main

FPGA

Fig. 2. The HASTE system A single 8x PCIe 1.1 endpoint connects
the four FPGAs to the host system. A ring-based interconnect provides
uniform latency access to all of the eight memory banks.

D
D

R
2

 C
trl

PCIe

Endpoint

DMA

Buffers L
a

te
n

c
y
 S

h
im

Request

Processor

DDR2 Ctrl

4.5GB/s Ring

Latency Shim

Fig. 3. The HASTE controller Two state machines manage requests for
data transfers between the host memory, buffers on the FPGAs, and the
DDR2 controllers distributed around the ring.

it to the storage device. This process adds at least 5 µs to
the request latency. For disks, this latency is negligible, but
for HASTE this cost is unacceptable.

The HASTE driver removes the queue entirely. The thread
making the request issues it to the HASTE hardware and
spins until it completes. The combination of these two
changes reduces the latency for a single 4 KB access on
HASTE from 23 to 16 µs. We examine the latency of
HASTE accesses in more detail in Section V.

B. RAM-disks and DDR-attached NVMs

Modeling NVM storage attached to the processor’s DDR
memory bus also requires accounting for increased memory
access times. We use a customized version of the Linux
ramdisk driver that uses a large amount of kernel memory
to implement a block device. The driver inserts extra delay
on accesses to match the latency of non-volatile memories.
We model the same delays described above for HASTE.
Setting the delays to zero gives a ramdisk that runs at full
DRAM speed.

C. Fusion-IO

The Fusion-IO card represents a significant step in SSD
evolution. Instead of relying on conventional hard drive
interfaces, it connects 25 high-performance single-level cell
(SLC) NAND flash memory devices to the PCIe bus via an
FPGA-based controller. It uses a custom driver that performs
sophisticated scheduling and buffering using system DRAM.
The driver consumes 800 MB of kernel memory for this
purpose. The company rates the 80 GB card at 750 MB/s
for reads and 500 MB/s for writes, with a read latency of
26 µs.

The Fusion-IO drive has default settings that are well
tuned for both sequential and random accesses. Fusion-IO
recommends using direct IO to bypass the file buffer cache
whenever possible to maximize performance. We following
this recommendation.

D. RAID-SSD
The SSD-based RAID-0 array in our system contains four

Intel Extreme 32 GB SSDs (SSDSA2SH032G1GN). Intel
rates the SSDs at 250 MB/s for reads and 170 MB/s for
writes giving a theoretical peak bandwidth of 1 GB/s for
four drives. The drives have a nominal latency of 75 µs.

Our measurements and other recent work [13] shows that
software RAID provides better performance for SSD-based
arrays than hardware controllers, because the processors on
hardware RAID controllers become a bottleneck. Therefore,
we use software RAID for this array. We tuned the array
separately for sequential and random IO operations (using
XDD), and found the same settings (64 KB stripe size) were
optimal in both cases. We use this configuration in all our
experiments.

E. RAID-Disk
The disk-based RAID-0 array in our system contains

four 1TB Hitachi HDE721010SLA330 drives that spin at
7200rpm. They attach to an 8-channel 3ware 9650SE-
8LPML RAID controller that can provide 256MB of on-
board DRAM for caching and write buffering. We tuned
the array for both sequential and random workloads. For
sequential accesses, a stripe size of 128KB with no write
journaling was optimal. For random accesses, a stripe size
of 16KB with no write journaling achieved the highest
performance.

IV. WORKLOADS

Solid-state non-volatile memories will potentially find use
in many different types of applications, and their impact
will vary depending on how systems use them. There are at
least three large categories of applications that may benefit
significantly:

1) Raw device and file access In these applications,
NVMs replace disks as the primary storage medium.
Applications access the data via normal file operations

TABLE III
BENCHMARKS AND APPLICATIONS

Name Data footprint Description
IO benchmarks

XDD Sequential 55 GB 4 MB sequential reads, writes, or reads/writes from 16 threads
XDD Random 55 GB 4 KB random reads, writes, or reads/writes from 16 threads
Linux Build 0.5 GB Compilation of the Linux 2.6 kernel
Linux Patch 17 GB Applies patches to the Linux kernel from version 2.6.0 to 2.6.29

Postmark 0.5 GB Models an email server
Database applications

Berkeley-DB Btree 16 GB Transactional updates to a B+tree key/value store
Berkeley-DB HashTable 16 GB Transactional updates to a hash table key/value store

BiologicalNetworks 35 GB Biological database queried for properties of genes and biological-networks
PTF 50 GB Palomar Transient Factory database real time sky survey queries

Memory-hungry applications
Thrash 4-60 GB Randomly update values in a large array.

DGEMM 21 GB Matrix multiplication and addition with 30,000×30,000 matrices
BT 11 GB Computational fluid dynamics simulation
CG 18 GB Computes an approximation of the smallest eigenvalue of a matrix
IS 35 GB Sorts integers with the bucket sort algorithm
LU 9 GB LU matrix decomposition
MG 28 GB Solves three-dimensional matrices with the multigrid method
SP 12 GB Simulated CFD code solves scalar-pentadiagonal bands of linear equations
UA 8 GB Solves a heat transfer problem on an unstructured, adaptive grid

(open(), close(), read(), write(), etc.) or by
accessing the raw block device directly.

2) Database applications Databases are playing a grow-
ing role in many scientific applications. They provide
sophisticated buffer management systems meant to
hide the latency of slow disks. Buffer management
and file system efficiency both impact performance.

3) Paging Using non-volatile storage to virtualize
DRAM can increase effective memory capacity. The
impact of paging on application performance is po-
tentially quite large, especially for hard drive-based
paging systems. Solid-state storage technologies, how-
ever, may be fast enough to make paging a useful
alternative to increasing DRAM capacity in high-
performance systems.

Table III summarizes the applications we use in this study,
and we describe them below in more detail. For all appli-
cations that require a file system, we use XFS. Section V
uses these workloads to evaluate NVM performance.

A. Raw device and file access
We use four different applications to measure basic device

and file performance.

XDD
XDD [36] characterizes basic IO bandwidth and latency

performance. We use XDD to perform 12 tests with the
following characteristics: 100% reads, 100% writes, and
50% reads/writes; sequential accesses of 4 MB chunks and
random accesses of 4 KB chunks; and with and without a
file system. We use 16 threads in each test.

Linux Build

The build workload compiles version 2.6.23.1 of the
Linux kernel source tree. All options are enabled in the
configuration to maximize the amount of work done by
benchmark. Build does file IO but is compute bound.

Linux Patch

Patch applies patches to the Linux kernel from version
2.6.0 to 2.6.29. It uncompresses each patch and applies it to
file throughout the source tree.

Postmark

Postmark [18] is a file IO benchmark that emulates the
activity of a large email server. The benchmark works on a
pool of 10,000 files ranging in size from 1 KB to 64 MB, and
performs 100,000 transactions, each consisting of a pair of
read or write and create or delete operations. We modified
Postmark to allow it use direct IO to bypass the system
buffer cache. For our tests, we ran it with and without direct
IO and report the best value.

B. Database applications

To measure basic database operation and transaction
processing performance, we use BerkeleyDB. We use two
full-fledged scientific databases to measure application-level
performance.

R
aw

 4
M

B
 R

ea
d

R
aw

 4
M

B
 R

W

R
aw

 4
M

B
 W

rit
e

R
aw

 4
K

B
 R

ea
d

R
aw

 4
K

B
 R

W

R
aw

 4
K

B
 W

rit
e

F
S

 4
M

B
 R

ea
d

F
S

 4
M

B
 R

W

F
S

 4
M

B
 W

rit
e

F
S

 4
K

B
 R

ea
d

F
S

 4
K

B
 R

W

F
S

 4
K

B
 W

rit
e

B
an

dw
id

th
 (

G
B

/s
)

0

1

2

3

4

5

6

7 DDR−DRAM
DDR−STTM
DDR−PCM
HASTE−DRAM
HASTE−STTM
HASTE−PCM
FUSION−IO
SSD RAID
DISK RAID

Fig. 4. Device bandwidth Bandwidth across different storage technologies differs significantly with access type and whether a file system is present.

Berkeley DB
Berkeley Database (Berkeley DB) is a popular high-

performance embedded database and it serves as a generic
key/value store for a variety of applications. This workload
performs random inserts and deletes in a 16 GB key/value
store implemented as either a B+tree or a hash table. All
updates to storage are done through ACID transactions.

Biological pathway analysis
BiologicalNetworks [5] is a systems biology software

platform for analysis and visualization of biological path-
ways, gene regulation, and protein interaction networks.
Typical usage performs a large number of long and short-
running queries to a PostgreSQL database. These queries
are a bottleneck for researchers in this domain when they
have to analyze pathways using a visual interface. Our tests
include a series of real-world BiologicalNetworks queries
over a database sized to fit within our storage systems.

Palomar Transient Factory
The Palomar Transient Factory (PTF) [27] uses several

large databases of astronomical data to classify objects that
appear suddenly in the night sky (i.e., “transients”). PTF
typically identifies on the order of 100 new transients every
minute it is in operation along with 1000 spurious detections
related to image artifacts, etc. The queries vet and classify
the transients in order to quickly schedule more detailed
observations very quickly (e.g., in less than 24 hours or
even in real time), so query response times are critical. Our
workload runs six of the most time critical queries on a
50 GB database.

C. Paging applications

Some high-performance applications running on super-
computers benefit as much or more from the large DRAM
capacities that the machines offer as they do from FLOPS.
Using non-volatile storage as virtual memory can effectively
increase memory capacity, but the poor performance of disk-
based storage leads to unacceptable performance degrada-
tion. If a solid-state storage array is fast enough, it may

alleviate this problem and make it possible to run large
memory applications on smaller, more efficient machines.
We use several applications to measure paging performance
on our solid-state storage technologies.

Thrash
Thrash is a simple paging microbenchmark that allocates

a large array of integers, touches each page once, and then
spawns 16 threads that randomly update entries in the array
and perform no other work. To avoid contention effects, each
thread accesses a separate region of the array. We vary the
data set size between 4 GB (which will fit in DRAM) and
60 GB.

DGEMM
DGEMM performs double-precision matrix multiplica-

tion. Our implementation uses GotoBLAS2 [6] and operates
on 30,000×30,000 element matrices.

NAS Parallel Benchmarks
We use applications from the NAS Parallel Benchmark

(NPB) suite [3] version 3.3 written for OpenMP ([26], [16]).
We use the BT, CG, IS, LU, MG, SP, and UA kernels
running with class D problem sizes because they have large
data sets (8 to 35 GB) that force the system to page. We
run each benchmark with 16 threads.

V. RESULTS

This section evaluates our storage arrays using the bench-
marks described in the previous section.

A. File and raw device access

XDD measures operation latency and aggregate band-
width and can quantify the impact of the file system on
performance. It also demonstrates that the impact of non-
volatile storage technology parameters varies depending on
system architecture.

Bandwidth and latency
Figure 4 shows the average bandwidth of each stor-

age technology measured using XDD running 16 threads.

The data show the decrease in performance as bus band-
width shrinks and device latencies increase. DDR-DRAM’s
7.1 GB/s peak performance dwarfs all of the other storage
technologies because of the disparity in bus bandwidth
between the 6 DDR3 channels (63 GB/s total) and the
PCIe links (2 GB/s). DDR-STTM adds 70 ns of latency
to each write compared to DDR-DRAM with a resulting
performance drop of 4%, while DDR-PCM’s 120 ns of
additional latency vs. DDR-DRAM causes a 42% drop in
bandwidth. The costs of the system calls, file system, and
operating system are steep: They prevent the ramdisk from
utilizing more than 12% of the bandwidth that the DDR3
memory bus can deliver.

HASTE-DRAM, HASTE-STTM, and HASTE-PCM all
achieve nearly the same performance on 4MB accesses,
reaching 1.5 GB/s for reads and 1.7 GB/s for writes. Write
performance is higher because HASTE can make more
efficient use of buffers during write requests.

Request overhead makes up a larger percentage of the
request latency for 4 KB writes, limiting bandwidth to
1.33 GB/s for reads and 1.37 GB/s for writes. Variation
in system performance between runs accounts for the small
variations in bandwidth across memory types.

The XFS filesystem adds significant overheads in some
cases. For instance, for HASTE-DRAM, it reduces perfor-
mance by 50 MB/s for both 4 MB reads and 4 MB writes,
while 4 KB writes suffer a 84% drop in performance.

The long latency of flash memory limits Fusion-IO’s
peak performance on 4 KB accesses (280 MB/s), but its
customized architecture delivers nearly 5× more read band-
width than the SSD array, despite the fact that the SSD array
contains 55 more flash devices (80 vs. 25). We suspect this
gap is due to Fusion-IO’s lower per-operation latency and
its more streamlined architecture. Fusion-IO’s 4KB random
writes are 3.3× better than the SSD. Interestingly, the SSD
array has 43% better sequential read performance than the
Fusion-IO drive. Sequential writes are almost the same
across both drives, suggesting that the additional parallelism
in the SSD array enables slightly better read bandwidth, but
write latency limits performance on both devices.

Figure 5 measures latency for read and write operations
with and without the file system for each storage technology.
Note the logarithmic scale. We collected these data with
XDD running a single thread and performing random 4 KB
accesses.

Without a file system, latency is similar for all three
HASTE configurations (DRAM, STTM, and PCM) and for
both reads and writes (∼15µs). The DDR-attached NVM has
lower, but also more variable latency: DRAM accesses take
3µs for both reads and writes, but the extra latency for PCM
and STTM slow down accesses considerably, especially for
writes. We explore these effects in more detail below.

File system overheads
Figures 4 and 5 both show that the file system has a large

impact on both bandwidth and latency, and that the impact
is much larger for faster devices. For DISK RAID, XFS has
relatively little impact: It never reduces bandwidth by more
than 10%. As the storage systems get faster, though, the

R
aw

 R
ea

d

F
S

 R
ea

d

R
aw

 W
rit

e

F
S

 W
rit

e

Lo
g

4K
B

 R
eq

. L
at

en
cy

 (
us

)

1

10

100

1000

10000

DDR−DRAM DDR−STTM DDR−PCM
HASTE−DRAM HASTE−STTM HASTE−PCM
FUSION−IO SSD RAID DISK RAID

Fig. 5. Device latency The differences in latency between devices and
interconnects are very large. NVMs such as PCM and STTM can offer
between two and three orders of magnitude reduction in latency compared
to disk.

impact increases. SSD RAID sees a reduction of between
5% (sequential reads and writes) and 10% (random reads
and writes) in bandwidth and a 4% increase in latency. For
HASTE, random write bandwidth drops from 1.3 GB/s to
210 MB/s. Finally, for the ramdisk, the file system increases
latency by 2.7× and reduces random access bandwidth by
96% for writes and 55% for reads.

The latency cost of the file system is also large. For the
DDR-attached and HASTE devices, the file system consis-
tently increases per-access latency by 6 µs. This amounts to
an increase of 93% and 50% for the DDR-attached PCM
configurations and HASTE-PCM, respectively. For DISK
RAID the increase is larger in absolute terms (580 µs), but
is a much smaller percentage (8%).

For comparison, we ran the same experiments with ext3
instead of XFS. The two file systems had almost identical
effects on DISK RAID performance, but for all of the faster
storage devices ext3 reduced performance much further. This
was especially true for sequential accesses on fast devices:
Adding ext3 reduced bandwidth for those accesses by 74%,
while XFS actually increased bandwidth by 2%.

These file system overheads are representative of the chal-
lenges that fast non-volatile storage arrays present: System
designers have assumed that IO devices are slow and that
assumption permeates the entire system. Optimizations in
HASTE and Fusion-IO drivers eliminated many of these
costs at the block device level, but file systems clearly
require additional effort. We expect that IO intensive appli-
cation will also implicitly assume that IO is slow and will
require optimization to take full advantage of fast storage.

This work has begun at the file system level: For instance,
DFS [17] is a file system optimized specifically for Fusion-
IO-style drives. BPFS [10] targets fast, byte-addressable
memories.

Additional Latency (ns)

1.0 1.0E+1 1.0E+2 1.0E+3 1.0E+4 1.0E+5

4K
B

 R
eq

. L
at

en
cy

 (
us

)

0

20

40

60

80

100

120

140

160
DDR

HASTE

Fig. 6. The impact of NVM latency Increasing the latency of the
raw memory devices has a larger impact for DDR configurations than
for HASTE, because HASTE’s memory controller perform a complete IO
request at once rather than using the CPU to copy data.

Additional Latency (ns)

1.0 1.0E+1 1.0E+2 1.0E+3 1.0E+4 1.0E+5

B
an

dw
id

th
 (

G
B

/s
)

0

1

2

3

4

5

6

7
DDR

HASTE

Fig. 7. NVM latency and bandwidth Memory latency has a smaller
impact on total latency for HASTE because HASTE has greater internal
parallelism that it uses to hide latency.

Memory technology performance impact
Figures 6 and 7 explore the impact of increased memory

latency in more detail. In both figures, we vary the latency
for reads and writes between 25 ns and 51,200 ns (about
twice the read latency of SLC NAND flash), and measure the
latency without a file system. For the DDR-attached NVMs,
we show data only to 1600 ns, since it is likely that, for
slower memories, attaching them to the DDR bus is not
worthwhile.

The data in Figure 6 show that increased memory latency
has a much larger impact for the DDR-attached memories
than for HASTE. The reason for this difference stems from
differences in how the ramdisk and HASTE access memory.
In HASTE the operating system issues a DMA request to
the HASTE hardware. For HASTE-DRAM, servicing the
request takes about 6.4 µs. Of this, 6µs is PCIe transfer
time and interrupt processing and about 125 ns is due to
the interconnect and buffering within HASTE. The memory
access accounts for just 280 ns. The remainder of the 16 µs
total access latency (as seen by XDD) is in the operating
system and includes several lock acquisitions and a context
switch. With all this overhead, the memory access time
accounts for just 4.5% of total operation latency while the
operating system accounts for 63%.

For DDR-attached memories, total access time is much
smaller (just 3 µs). This is due both to the removal of the
PCIe bus, but also to a simpler driver for the ramdisk: The
ramdisk driver does not include the lock acquisition, context
switch, or interrupt processing. This reduction in overhead
translates to greater relative impact from increased NVM
latency.

In addition, the HASTE memory controllers are fully
dedicated to servicing one 4 KB request at a time, so
they can stream the data out at the full speed of the DDR
interface. It also means that HASTE only has to pay the high
cost of accessing NVMs once per 4 KB access (as described
in Section III).

In contrast, the accesses to the DDR-attached memories
come from the processor. It must issue a long series of 64-

bit reads or writes to the memory system. These accesses
must traverse the cache hierarchy and compete with other
requests for access to the DRAM controllers and to the 6
DRAM busses in the system (vs. the 8 in HASTE). As a
result, if raw memory latency exceeds 800 ns, the DDR-
attached memory’s latency exceeds that of HASTE.

Increased latency impacts HASTE’s bandwidth less than
it affects DDR-attached configurations. The reason is the
lock acquisitions in the kernel combined with HASTE’s
ability to use parallelism to hide latency. The lock protects
the HASTE driver’s internal control structures, and prevents
the OS from issuing more than one operation every 5 µs,
on average. Contention for both this lock and the PCIe bus
means there is little parallelism in the HASTE hardware
when the NVM is fast. As operation latency increases, the
number of outstanding requests rises. HASTE contains eight
DDR memory controllers which can all access memory in
parallel. HASTE’s bandwidth does not begin to drop until
all these controllers are consistently busy. In our system this
occurs for latencies larger than 12.8 µs.

The caching and memory bus contention effects described
above also exacerbate the impact of increased latency on the
DDR configurations’ bandwidth.

File-intensive application performance
File system overheads limit the performance of Build,

Patch, and Postmark, our file-intensive applications, and
much of this overhead is due to the buffer cache. Moving
from disk to a faster storage device with better random
access performance helps, but the choice of which storage
device seems to make little difference. For Patch, we see
a nearly uniform 4× speedup for HASTE and the DDR
memories compared to DISK RAID. For Postmark, there is
more variation: We see improvements high as 3.3× for the
DDR devices, 3.5× for HASTE and 2.9× for FUSION-IO
over DISK RAID. Interestingly, for Postmark and Patch, us-
ing direct IO improves performance for all storage devices.
Build is a compute bound benchmark, and the latency of
the storage technology is mostly hidden: Moving to NVMs
improves performance by only 10% on average.

Tr
an

sa
ct

io
ns

/s
ec

 0

 3000

 6000

 9000

12000

15000

18000

21000

DDR−DRAM DDR−STTM

BTree HashTable
DDR−PCM HASTE−DRAM HASTE−STTM HASTE−PCM FUSION−IO SSD RAID DISK RAID

BiologicalNetworks

Q
ue

rie
s/

se
c

0

2.0E−5

4.0E−5

6.0E−5

8.0E−5

1.0E−4

1.2E−4

1.4E−4

PTF

Q
ue

rie
s/

se
c

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
100

Fig. 8. Database application performance The graph on the left shows the throughput in transactions/second of a B+tree and hash table implemented
in BerkeleyDB. The center and right graphs display the queries/sec for the BiologicalNetworks and PTF databases respectively. BiologicalNetworks runs
a very long query, and in the case of DISK RAID, we had to stop its execution after 140 hours.

B. Database applications
Figure 8 measures the performance of our database appli-

cations. The left graph in the figure shows transactions per
second for Btree and HashTable running on BerkeleyDB.
The DDR and HASTE NVM arrays improve throughput for
BerkeleyDB by between 58 and 97× over DISK RAID. The
throughput increases for the BiologicalNetworks (center)
and PTF (right) databases are lower, and although still large,
the benefits of NVMs on the DDR bus versus HASTE
drop significantly, especially for the PCM configuration. We
suspect this is due to the greater complexity and correspond-
ingly larger overheads of the PostgreSQL database com-
pared to BerkeleyDB. As with the file system, optimizing the
database software layer may expose more of the underlying
hardware performance to the application.

Despite those overheads, the BiologicalNetworks and PTF
results provide excellent case studies for the large practical
benefits that advanced non-volatile memories can offer.

For the BiologicalNetworks, the largest query in our
workload ran for over 140 hours on RAID-disk without
completing and took over 33 hours to complete on the SSD
RAID. Fusion-IO reduces the running time for this query
to under 10 hours (2.9E-05 queries/s). HASTE improves
performance by an additional 3×, with all three versions
achieving similar performance. The ramdisk reduces runtime
by a further 36% (to 145 minutes or 1.1E-04 queries/s) for
STTM and DRAM, while the PCM version actually slows
down slightly relative to HASTE.

For PTF, moving to non-volatile memory dramatically
increases performance. The SSD array achieves one fourth
the throughput of HASTE or NVMs on the DDR memory
bus. Disk is even worse with 40× fewer queries per second.
Using HASTE or the ramdisk makes it possible to process
queries in a little over 1 ms on average. This is especially
significant because it would allow the PTF to categorize
transients in real time as they appear.

C. Paging applications
Many important scientific applications have large memory

working sets and limited parallelism. To achieve reasonable
performance, these jobs run on large-scale supercomputers

Working Set Size (GB)
0 8 16 24 32 40 48 56 64

Lo
g

O
pe

ra
tio

ns
/S

ec
on

d

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

NO PAGING DDR−DRAM DDR−STTM
DDR−PCM HASTE−DRAM HASTE−STTM
HASTE−PCM FUSION−IO SSD RAID
DISK RAID

Fig. 9. Paging microbenchmark performance Although paging reduces
performance dramatically, paging to advanced NVMs offers between one
and two orders of magnitude improvement in performance. Performance
for all HASTE configurations level out at 1×105.

because of their large DRAM capacity, but significantly
underutilize the machine’s computational resources. The
result is that the applications both increase contention for
these large machines but also run with very low energy
efficiency, since they incur the energy cost of mostly-idle
compute nodes.

If NVMs could serve as a backing store for paged virtual
memory without crippling performance, they could increase
the efficiency of these computations and reduce contention
for supercomputers that have both large compute and large
memory capabilities. This approach is one of several motiva-
tions for building a machine called Flash Gordon at the San
Diego Supercomputing Center that will incorporate several
terabytes of flash memory.

Figure 9 contains the results for our paging microbench-
mark, thrash. The top line is the performance running with
64GB of DRAM, so very little paging occurs. The lines
show the performance (in random updates per second) for
each memory technology as the working set size increases.

The figures make it clear why spinning disks are not use-

BT CG IS LU MG SP UA DGEMM

Sp
ee

du
p

re
la

tiv
e

to
 n

o
pa

gi
ng

 0.00

 0.10

 0.20

 0.30

 0.40

DDR−DRAM DDR−PCM HASTE−STT
HASTE−PCM

DDR−STT
FUSION−IO SSD RAID

HASTE−DRAM
DISK RAID

Fig. 10. Paging applications NVMs can significantly reduce the cost of the paging for memory-intensive applications. This makes paging a viable
option for expanding working sets in some cases.

ful for paging: Paging to DISK RAID reduces performance
by up to 20,000×. SSD RAID and Fusion-IO reduce that
margin to around 1000-4000×. Moving to PCM or STTM
on either the DDR bus or in HASTE closes the gap to just
516-683×. If these slow downs hold for real applications,
intensive paging would not be a feasible option on any
technology.

Figure 10 shows the impact for real applications is much
smaller. The applications require between 8 and 35 GB
of memory, but we limit the applications to just 8 GB of
DRAM, forcing them to page. For comparison, we also run
the workloads with sufficient DRAM to prevent paging, and
present performance relative to the no paging version. The
graph measures performance in application instructions per
second collected via hardware performance counters, since
the applications would take several days or weeks to com-
plete when paging to RAID-disk. We start measurements
once the applications have finished their initialization phase.

Paging to spinning disk results in very poor performance:
It reduces performance by between 32 and 1515×. SSD
RAID and Fusion-IO do better, but still reduce performance
by an average of 11 and 33× respectively. HASTE slows
down performance by only 5.8×, which might be acceptable
for some applications. Paging to the DDR configurations
reduces this gap to 5.5×, which is just 12% better than
HASTE. Thus, using a high-performance storage device like
HASTE for paging is a good way to increase the effective
working set of an application.

The impact of paging varies, not surprisingly, with the
memory requirements of the program. For instance, both IS
and MG have large memory footprints (35 and 28 GB re-
spectively) and little spatial locality, resulting in slow downs
of 16 and 54× when paging to HASTE. In contrast, CG and
LU use less memory (18 and 9 GB, respectively) and exhibit
more spatial locality, so performance drops by 66-68%. UA
has the smallest working set, but its unstructured accesses
lead to larger slowdowns than LU and CG.

VI. CONCLUSION AND FUTURE WORK

This paper has characterized the performance of currently
available and emerging solid-state storage technologies both
in terms of raw performance and application-level impact.

We find that NVMs offer large gains in latency and band-
width and can significantly accelerate database applications,
reducing query execution time from days to hours in some
cases. Their usefulness as backing store for paged virtual
memory varies between applications depending on paging
frequency.

While NVMs provide large improvements in latency
and bandwidth, performance still falls short of what these
memory devices should be able to deliver. Our latency
measurements provide a case in point: STTM and PCM
chips will be able to perform a read operation in between 29
and 67 ns, yet the total latency for a DDR-attached PCM
or STTM memory is at least 3 µs, roughly 100× longer.
The transfer time for 4KB over our DDR3 memory bus is
360 ns, leaving 2.6 µs of pure overhead. The PCIe bus adds
even more overhead.

The overheads stem from inefficiencies both in the hard-
ware (e.g., PCIe latency) and software (e.g., operating and
file systems overheads). HASTE removes several of these
inefficiencies and represents a lower bound on the perfor-
mance that PCIe-attached advanced NVMs can provide. We
are still refining HASTE, its driver, and how it interacts with
the OS and file system. We believe that further improve-
ments are possible, but they may require more substantial
changes to many parts of the system including the file
system and applications. Understanding what these changes
should be and integrating them elegantly into existing sys-
tems is the central challenge in fully exploiting fast non-
volatile memories.

ACKNOWLEDGMENTS

This work was sponsored in part by the National Science
Foundation under NSF OCI #0951583 entitled “I/O Model-
ing EAGER”, by NSF OCI #0910847 entitled “Gordon: A
Data Intensive Supercomputer,” and by hardware donations
from Xilinx. The authors would also like to thank Nathan
Goulding, Brett Kettering, and James Nunez.

REFERENCES

[1] Exascale computing study: Technology challenges in achieving ex-
ascale systems. Technical Report TR-2008-13, University of Notre
Dame, CSE Department, September 2008.

[2] R. Agrawal, A. Ailamaki, P. A. Bernstein, E. A. Brewer, M. J. Carey,
S. Chaudhuri, A. Doan, D. Florescu, M. J. Franklin, H. Garcia-
Molina, J. Gehrke, L. Gruenwald, L. M. Haas, A. Y. Halevy, J. M.
Hellerstein, Y. E. Ioannidis, H. F. Korth, D. Kossmann, S. Madden,
R. Magoulas, B. C. Ooi, T. O’Reilly, R. Ramakrishnan, S. Sarawagi,
M. Stonebraker, A. S. Szalay, and G. Weikum. The claremont report
on database research. Communications of the ACM, 52(6):56–65,
2009.

[3] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, and V. Venkatakrishnan. The nas parallel
benchmarks, 1994.

[4] F. Bedeschi, C. Resta, O. Khouri, E. Buda, L. Costa, M. Ferraro,
F. Pellizzer, F. Ottogalli, A. Pirovano, M. Tosi, R. Bez, R. Gastaldi,
and G. Casagrande. An 8mb demonstrator for high-density 1.8v
phase-change memories. VLSI Circuits, 2004. Digest of Technical
Papers. 2004 Symposium on, pages 442–445, June 2004.

[5] Biological networks website. http://biologicalnetworks.net/.
[6] Gotoblas2 website. http://www.tacc.utexas.edu/tacc-projects/.
[7] M. J. Breitwisch. Phase change memory. Interconnect Technology

Conference, 2008. IITC 2008. International, pages 219–221, June
2008.

[8] F. Chen, D. A. Koufaty, and X. Zhang. Understanding intrinsic
characteristics and system implications of flash memory based solid
state drives. In SIGMETRICS ’09: Proceedings of the eleventh
international joint conference on Measurement and modeling of
computer systems, pages 181–192, New York, NY, USA, 2009. ACM.

[9] S. Cho and H. Lee. Flip-n-write: A simple deterministic technique
to improve pram write performance, energy and endurance. In To
appear in MICRO 2009, 2009.

[10] J. Condit, E. B. Nightingale, E. Ipek, D. Burger, B. Lee, and
D. Coetzee. Better i/o through byte-addressable, persistent memory.
In SOSP ’09: Proceedings of the twenty-second ACM Symposium on
Operating systems principles. To appear.

[11] G. Dhiman, R. Ayoub, and T. Rosing. Pdram: a hybrid pram and
dram main memory system. In DAC ’09: Proceedings of the 46th
Annual Design Automation Conference, pages 664–469, New York,
NY, USA, 2009. ACM.

[12] B. Dieny, R. Sousa, G. Prenat, and U. Ebels. Spin-dependent
phenomena and their implementation in spintronic devices. VLSI
Technology, Systems and Applications, 2008. VLSI-TSA 2008. Inter-
national Symposium on, pages 70–71, April 2008.

[13] J. He, A. Jagatheesan, S. Gupta, J. Bennett, and A. Snavely. Dash:
A recipe for a flash-based data intensive supercomputer. November
2010.

[14] M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Ya-
mane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao,
and H. Kano. A novel nonvolatile memory with spin torque transfer
magnetization switching: spin-ram. Electron Devices Meeting, 2005.
IEDM Technical Digest. IEEE International, pages 459–462, Dec.
2005.

[15] International technology roadmap for semiconductors: Emerging re-
search devices, 2009.

[16] H. Jin, H. Jin, M. Frumkin, M. Frumkin, J. Yan, and J. Yan.
The openmp implementation of nas parallel benchmarks and its
performance. Technical report, NASA, 1999.

[17] W. K. Josephson, L. A. Bongo, D. Flynn, and K. Li. Dfs: A file
system for virtualized flash storage. In Proceedings of FAST 10: 8th
USENIX Conference on File and Storage Technologies, 2010.

[18] J. Katcher. Postmark filesystem performance benchmark.
http://www.netapp.com/tech library/3022.html.

[19] T. Kawahara, R. Takemura, K. Miura, J. Hayakawa, S. Ikeda, Y. Lee,
R. Sasaki, Y. Goto, K. Ito, I. Meguro, F. Matsukura, H. Takahashi,
H. Matsuoka, and H. Ohno. 2mb spin-transfer torque ram (spram)
with bit-by-bit bidirectional current write and parallelizing-direction
current read. Solid-State Circuits Conference, 2007. ISSCC 2007.
Digest of Technical Papers. IEEE International, pages 480–617, Feb.
2007.

[20] T. Kawahara, R. Takemura, K. Miura, J. Hayakawa, S. Ikeda,
Y. M. Lee, R. Sasaki, Y. Goto, K. Ito, T. Meguro, F. Matsukura,
H. Takahashi, H. Matsuoka, and H. Ohno. 2 mb spram (spin-
transfer torque ram) with bit-by-bit bi-directional current write and
parallelizing-direction current read. Solid-State Circuits, IEEE Jour-
nal of, 43(1):109–120, Jan. 2008.

[21] D.-S. Ko and S.-K. Cheong. Web performance enhancement of
e-business system using the ssd. In FGCNS ’08: Proceedings of
the 2008 Second International Conference on Future Generation

Communication and Networking Symposia, pages 81–84, Washington,
DC, USA, 2008. IEEE Computer Society.

[22] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting phase
change memory as a scalable dram alternative. In ISCA ’09:
Proceedings of the 36th annual international symposium on Computer
architecture, pages 2–13, New York, NY, USA, 2009. ACM.

[23] S.-W. Lee, B. Moon, and C. Park. Advances in flash memory
ssd technology for enterprise database applications. In SIGMOD
’09: Proceedings of the 35th SIGMOD international conference on
Management of data, pages 863–870, New York, NY, USA, 2009.
ACM.

[24] S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W. Kim. A case
for flash memory ssd in enterprise database applications. In SIGMOD
’08: Proceedings of the 2008 ACM SIGMOD international conference
on Management of data, pages 1075–1086, New York, NY, USA,
2008. ACM.

[25] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Row-
stron. Migrating server storage to ssds: analysis of tradeoffs. In
EuroSys ’09: Proceedings of the 4th ACM European conference on
Computer systems, pages 145–158, New York, NY, USA, 2009. ACM.

[26] NASA. Nas parallel benchmarks, March 2010.
http://www.nas.nasa.gov/Resources/Software/npb.html.

[27] Palomar transient factory (ptf) website.
http://www.astro.caltech.edu/ptf/.

[28] S. Park and K. Shen. A performance evaluation of scientific i/o
workloads on flash-based ssds. In Workshop on Interfaces and
Architectures for Scientific Data Storage, 2009.

[29] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras,
and B. Abali. Enhancing lifetime and security of pcm-based main
memory with start-gap wear leveling. In MICRO 42: Proceedings of
the 42nd Annual IEEE/ACM International Symposium on Microar-
chitecture, pages 14–23, New York, NY, USA, 2009. ACM.

[30] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable high perfor-
mance main memory system using phase-change memory technology.
International Symposium on Computer Architecture, June 2009.

[31] The ramp project. http://ramp.eecs.berkeley.edu/index.php?index.
[32] K. Schmidt, Y. Ou, and T. Härder. The promise of solid state disks:

increasing efficiency and reducing cost of dbms processing. In C3S2E
’09: Proceedings of the 2nd Canadian Conference on Computer
Science and Software Engineering, pages 35–41, New York, NY,
USA, 2009. ACM.

[33] A. S. Szalay, G. C. Bell, H. H. Huang, A. Terzis, and A. White. Low-
power amdahl-balanced blades for data intensive computing. SIGOPS
Oper. Syst. Rev., 44(1):71–75, 2010.

[34] R. Takemura, T. Kawahara, K. Miura, J. Hayakawa, S. Ikeda, Y. Lee,
R. Sasaki, Y. Goto, K. Ito, T. Meguro, F. Matsukura, H. Takahashi,
H. Matsuoka, and H. Ohno. 2mb spram design: Bi-directional current
write and parallelizing-direction current read schemes based on spin-
transfer torque switching. Integrated Circuit Design and Technology,
2007. ICICDT ’07. IEEE International Conference on, pages 1–4, 30
2007-June 1 2007.

[35] H. Tanizaki, T. Tsuji, J. Otani, Y. Yamaguchi, Y. Murai, H. Furuta,
S. Ueno, T. Oishi, M. Hayashikoshi, and H. Hidaka. A high-density
and high-speed 1t-4mtj mram with voltage offset self-reference sens-
ing scheme. Solid-State Circuits Conference, 2006. ASSCC 2006.
IEEE Asian, pages 303–306, Nov. 2006.

[36] Xdd version 6.5. http://www.ioperformance.com/.
[37] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A durable and energy

efficient main memory using phase change memory technology. In
ISCA ’09: Proceedings of the 36th annual international symposium
on Computer architecture, pages 14–23, New York, NY, USA, 2009.
ACM.

